MODULE trcsms_cfc !!====================================================================== !! *** MODULE trcsms_cfc *** !! TOP : CFC main model !!====================================================================== !! History : OPA ! 1999-10 (JC. Dutay) original code !! NEMO 1.0 ! 2004-03 (C. Ethe) free form + modularity !! 2.0 ! 2007-12 (C. Ethe, G. Madec) reorganisation !! 4.0 ! 2016-11 (T. Lovato) Add SF6, Update Schmidt number !!---------------------------------------------------------------------- !! trc_sms_cfc : compute and add CFC suface forcing to CFC trends !! cfc_init : sets constants for CFC surface forcing computation !!---------------------------------------------------------------------- USE oce_trc ! Ocean variables USE par_trc ! TOP parameters USE trc ! TOP variables USE trd_oce USE trdtrc USE iom ! I/O library IMPLICIT NONE PRIVATE PUBLIC trc_sms_cfc ! called in ??? PUBLIC trc_sms_cfc_alloc ! called in trcini_cfc.F90 INTEGER , PUBLIC, PARAMETER :: jphem = 2 ! parameter for the 2 hemispheres INTEGER , PUBLIC :: jpyear ! Number of years read in input data file (in trcini_cfc) INTEGER , PUBLIC :: ndate_beg ! initial calendar date (aammjj) for CFC INTEGER , PUBLIC :: nyear_res ! restoring time constant (year) INTEGER , PUBLIC :: nyear_beg ! initial year (aa) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: p_cfc ! partial hemispheric pressure for all CFC REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: xphem ! spatial interpolation factor for patm REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: qtr_cfc ! flux at surface REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: qint_cfc ! cumulative flux REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: atm_cfc ! partial hemispheric pressure for used CFC REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: patm ! atmospheric function REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: soa ! coefficient for solubility of CFC [mol/l/atm] REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: sob ! " " REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: sca ! coefficients for schmidt number in degrees Celsius ! ! coefficients for conversion REAL(wp) :: xconv1 = 1.0 ! conversion from to REAL(wp) :: xconv2 = 0.01/3600. ! conversion from cm/h to m/s: REAL(wp) :: xconv3 = 1.0e+3 ! conversion from mol/l/atm to mol/m3/atm REAL(wp) :: xconv4 = 1.0e-12 ! conversion from mol/m3/atm to mol/m3/pptv !!---------------------------------------------------------------------- !! NEMO/TOP 3.3 , NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE trc_sms_cfc( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE trc_sms_cfc *** !! !! ** Purpose : Compute the surface boundary contition on CFC 11 !! passive tracer associated with air-mer fluxes and add it !! to the general trend of tracers equations. !! !! ** Method : - get the atmospheric partial pressure - given in pico - !! - computation of solubility ( in 1.e-12 mol/l then in 1.e-9 mol/m3) !! - computation of transfert speed ( given in cm/hour ----> cm/s ) !! - the input function is given by : !! speed * ( concentration at equilibrium - concentration at surface ) !! - the input function is in pico-mol/m3/s and the !! CFC concentration in pico-mol/m3 !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time-step index ! INTEGER :: ji, jj, jn, jl, jm INTEGER :: iyear_beg, iyear_end INTEGER :: im1, im2, ierr REAL(wp) :: ztap, zdtap REAL(wp) :: zt1, zt2, zt3, zt4, zv2 REAL(wp) :: zsol ! solubility REAL(wp) :: zsch ! schmidt number REAL(wp) :: zpp_cfc ! atmospheric partial pressure of CFC REAL(wp) :: zca_cfc ! concentration at equilibrium REAL(wp) :: zak_cfc ! transfert coefficients REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zpatm ! atmospheric function !!---------------------------------------------------------------------- ! IF( ln_timing ) CALL timing_start('trc_sms_cfc') ! ALLOCATE( zpatm(jphem,jp_cfc), STAT=ierr ) IF( ierr > 0 ) THEN CALL ctl_stop( 'trc_sms_cfc: unable to allocate zpatm array' ) ; RETURN ENDIF IF( kt == nittrc000 ) CALL cfc_init ! Temporal interpolation ! ---------------------- iyear_beg = nyear - 1900 IF ( nmonth <= 6 ) THEN iyear_beg = iyear_beg - 1 im1 = 6 - nmonth + 1 im2 = 6 + nmonth - 1 ELSE im1 = 12 - nmonth + 7 im2 = nmonth - 7 ENDIF iyear_end = iyear_beg + 1 ! !------------! DO jl = 1, jp_cfc ! CFC loop ! ! !------------! jn = jp_cfc0 + jl - 1 ! time interpolation at time kt DO jm = 1, jphem zpatm(jm,jl) = ( atm_cfc(iyear_beg, jm, jl) * REAL(im1, wp) & & + atm_cfc(iyear_end, jm, jl) * REAL(im2, wp) ) / 12. END DO ! !------------! DO jj = 1, jpj ! i-j loop ! DO ji = 1, jpi !------------! ! space interpolation zpp_cfc = xphem(ji,jj) * zpatm(1,jl) & & + ( 1.- xphem(ji,jj) ) * zpatm(2,jl) ! Computation of concentration at equilibrium : in picomol/l ! coefficient for solubility for CFC-11/12 in mol/l/atm IF( tmask(ji,jj,1) .GE. 0.5 ) THEN ztap = ( tsn(ji,jj,1,jp_tem) + 273.16 ) * 0.01 zdtap = sob(1,jl) + ztap * ( sob(2,jl) + ztap * sob(3,jl) ) zsol = EXP( soa(1,jl) + soa(2,jl) / ztap + soa(3,jl) * LOG( ztap ) & & + soa(4,jl) * ztap * ztap + tsn(ji,jj,1,jp_sal) * zdtap ) ELSE zsol = 0.e0 ENDIF ! conversion from mol/l/atm to mol/m3/atm and from mol/m3/atm to mol/m3/pptv zsol = xconv4 * xconv3 * zsol * tmask(ji,jj,1) ! concentration at equilibrium zca_cfc = xconv1 * zpp_cfc * zsol * tmask(ji,jj,1) ! Computation of speed transfert ! Schmidt number revised in Wanninkhof (2014) zt1 = tsn(ji,jj,1,jp_tem) zt2 = zt1 * zt1 zt3 = zt1 * zt2 zt4 = zt2 * zt2 zsch = sca(1,jl) + sca(2,jl) * zt1 + sca(3,jl) * zt2 + sca(4,jl) * zt3 + sca(5,jl) * zt4 ! speed transfert : formulae revised in Wanninkhof (2014) zv2 = wndm(ji,jj) * wndm(ji,jj) zsch = zsch / 660. zak_cfc = ( 0.31 * xconv2 * zv2 / SQRT(zsch) ) * tmask(ji,jj,1) ! Input function : speed *( conc. at equil - concen at surface ) ! trn in pico-mol/l idem qtr; ak in en m/a qtr_cfc(ji,jj,jl) = -zak_cfc * ( trb(ji,jj,1,jn) - zca_cfc ) & & * tmask(ji,jj,1) * ( 1. - fr_i(ji,jj) ) ! Add the surface flux to the trend tra(ji,jj,1,jn) = tra(ji,jj,1,jn) + qtr_cfc(ji,jj,jl) / e3t_n(ji,jj,1) ! cumulation of surface flux at each time step qint_cfc(ji,jj,jl) = qint_cfc(ji,jj,jl) + qtr_cfc(ji,jj,jl) * rdt ! !----------------! END DO ! end i-j loop ! END DO !----------------! ! !----------------! END DO ! end CFC loop ! ! IF( lrst_trc ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'trc_sms_cfc : cumulated input function fields written in ocean restart file ', & & 'at it= ', kt,' date= ', ndastp IF(lwp) WRITE(numout,*) '~~~~' jl = 0 DO jn = jp_cfc0, jp_cfc1 jl = jl + 1 CALL iom_rstput( kt, nitrst, numrtw, 'qint_'//ctrcnm(jn), qint_cfc(:,:,jl) ) END DO ENDIF ! IF( lk_iomput ) THEN jl = 0 DO jn = jp_cfc0, jp_cfc1 jl = jl + 1 CALL iom_put( 'qtr_'//TRIM(ctrcnm(jn)) , qtr_cfc (:,:,jl) ) CALL iom_put( 'qint_'//TRIM(ctrcnm(jn)), qint_cfc(:,:,jl) ) ENDDO END IF ! IF( l_trdtrc ) THEN DO jn = jp_cfc0, jp_cfc1 CALL trd_trc( tra(:,:,:,jn), jn, jptra_sms, kt ) ! save trends END DO END IF ! IF( ln_timing ) CALL timing_stop('trc_sms_cfc') ! END SUBROUTINE trc_sms_cfc SUBROUTINE cfc_init !!--------------------------------------------------------------------- !! *** cfc_init *** !! !! ** Purpose : sets constants for CFC model !!--------------------------------------------------------------------- INTEGER :: jn, jl ! !!---------------------------------------------------------------------- ! jn = 0 ! coefficient for CFC11 !---------------------- if ( ln_cfc11 ) then jn = jn + 1 ! Solubility soa(1,jn) = -229.9261 soa(2,jn) = 319.6552 soa(3,jn) = 119.4471 soa(4,jn) = -1.39165 sob(1,jn) = -0.142382 sob(2,jn) = 0.091459 sob(3,jn) = -0.0157274 ! Schmidt number sca(1,jn) = 3579.2 sca(2,jn) = -222.63 sca(3,jn) = 7.5749 sca(4,jn) = -0.14595 sca(5,jn) = 0.0011874 ! atm. concentration atm_cfc(:,:,jn) = p_cfc(:,:,1) endif ! coefficient for CFC12 !---------------------- if ( ln_cfc12 ) then jn = jn + 1 ! Solubility soa(1,jn) = -218.0971 soa(2,jn) = 298.9702 soa(3,jn) = 113.8049 soa(4,jn) = -1.39165 sob(1,jn) = -0.143566 sob(2,jn) = 0.091015 sob(3,jn) = -0.0153924 ! schmidt number sca(1,jn) = 3828.1 sca(2,jn) = -249.86 sca(3,jn) = 8.7603 sca(4,jn) = -0.1716 sca(5,jn) = 0.001408 ! atm. concentration atm_cfc(:,:,jn) = p_cfc(:,:,2) endif ! coefficient for SF6 !---------------------- if ( ln_sf6 ) then jn = jn + 1 ! Solubility soa(1,jn) = -80.0343 soa(2,jn) = 117.232 soa(3,jn) = 29.5817 soa(4,jn) = 0.0 sob(1,jn) = 0.0335183 sob(2,jn) = -0.0373942 sob(3,jn) = 0.00774862 ! schmidt number sca(1,jn) = 3177.5 sca(2,jn) = -200.57 sca(3,jn) = 6.8865 sca(4,jn) = -0.13335 sca(5,jn) = 0.0010877 ! atm. concentration atm_cfc(:,:,jn) = p_cfc(:,:,3) endif IF( ln_rsttr ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' Read specific variables from CFC model ' IF(lwp) WRITE(numout,*) ' ~~~~~~~~~~~~~~' ! jl = 0 DO jn = jp_cfc0, jp_cfc1 jl = jl + 1 CALL iom_get( numrtr, jpdom_autoglo, 'qint_'//ctrcnm(jn), qint_cfc(:,:,jl) ) END DO ENDIF IF(lwp) WRITE(numout,*) ! END SUBROUTINE cfc_init INTEGER FUNCTION trc_sms_cfc_alloc() !!---------------------------------------------------------------------- !! *** ROUTINE trc_sms_cfc_alloc *** !!---------------------------------------------------------------------- ALLOCATE( xphem (jpi,jpj) , atm_cfc(jpyear,jphem,jp_cfc) , & & qtr_cfc (jpi,jpj,jp_cfc) , qint_cfc(jpi,jpj,jp_cfc) , & & soa(4,jp_cfc) , sob(3,jp_cfc) , sca(5,jp_cfc) , & & STAT=trc_sms_cfc_alloc ) ! IF( trc_sms_cfc_alloc /= 0 ) CALL ctl_warn('trc_sms_cfc_alloc : failed to allocate arrays.') ! END FUNCTION trc_sms_cfc_alloc !!====================================================================== END MODULE trcsms_cfc