MODULE domain !!============================================================================== !! *** MODULE domain *** !! Ocean initialization : domain initialization !!============================================================================== !! History : OPA ! 1990-10 (C. Levy - G. Madec) Original code !! ! 1992-01 (M. Imbard) insert time step initialization !! ! 1996-06 (G. Madec) generalized vertical coordinate !! ! 1997-02 (G. Madec) creation of domwri.F !! ! 2001-05 (E.Durand - G. Madec) insert closed sea !! NEMO 1.0 ! 2002-08 (G. Madec) F90: Free form and module !! 2.0 ! 2005-11 (V. Garnier) Surface pressure gradient organization !! 3.3 ! 2010-11 (G. Madec) initialisation in C1D configuration !! 3.6 ! 2013 ( J. Simeon, C. Calone, G. Madec, C. Ethe ) Online coarsening of outputs !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! dom_init : initialize the space and time domain !! dom_nam : read and contral domain namelists !! dom_ctl : control print for the ocean domain !!---------------------------------------------------------------------- USE oce ! ocean variables USE dom_oce ! domain: ocean USE sbc_oce ! surface boundary condition: ocean USE phycst ! physical constants USE closea ! closed seas USE in_out_manager ! I/O manager USE lib_mpp ! distributed memory computing library USE domhgr ! domain: set the horizontal mesh USE domzgr ! domain: set the vertical mesh USE domstp ! domain: set the time-step USE dommsk ! domain: set the mask system USE domwri ! domain: write the meshmask file USE domvvl ! variable volume USE c1d ! 1D vertical configuration USE dyncor_c1d ! Coriolis term (c1d case) (cor_c1d routine) USE timing ! Timing USE lbclnk ! ocean lateral boundary condition (or mpp link) IMPLICIT NONE PRIVATE PUBLIC dom_init ! called by opa.F90 !! * Substitutions # include "domzgr_substitute.h90" !!------------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!------------------------------------------------------------------------- CONTAINS SUBROUTINE dom_init !!---------------------------------------------------------------------- !! *** ROUTINE dom_init *** !! !! ** Purpose : Domain initialization. Call the routines that are !! required to create the arrays which define the space !! and time domain of the ocean model. !! !! ** Method : - dom_msk: compute the masks from the bathymetry file !! - dom_hgr: compute or read the horizontal grid-point position !! and scale factors, and the coriolis factor !! - dom_zgr: define the vertical coordinate and the bathymetry !! - dom_stp: defined the model time step !! - dom_wri: create the meshmask file if nmsh=1 !! - 1D configuration, move Coriolis, u and v at T-point !!---------------------------------------------------------------------- INTEGER :: jk ! dummy loop argument INTEGER :: iconf = 0 ! local integers !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('dom_init') ! IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'dom_init : domain initialization' WRITE(numout,*) '~~~~~~~~' ENDIF ! CALL dom_nam ! read namelist ( namrun, namdom, namcla ) CALL dom_clo ! Closed seas and lake CALL dom_hgr ! Horizontal mesh CALL dom_zgr ! Vertical mesh and bathymetry CALL dom_msk ! Masks IF( ln_sco ) CALL dom_stiff ! Maximum stiffness ratio/hydrostatic consistency ! ht_0(:,:) = 0.0_wp ! Reference ocean depth at T-points hu_0(:,:) = 0.0_wp ! Reference ocean depth at U-points hv_0(:,:) = 0.0_wp ! Reference ocean depth at V-points DO jk = 1, jpk ht_0(:,:) = ht_0(:,:) + e3t_0(:,:,jk) * tmask(:,:,jk) hu_0(:,:) = hu_0(:,:) + e3u_0(:,:,jk) * umask(:,:,jk) hv_0(:,:) = hv_0(:,:) + e3v_0(:,:,jk) * vmask(:,:,jk) END DO ! IF( lk_vvl ) CALL dom_vvl_init ! Vertical variable mesh ! IF( lk_c1d ) CALL cor_c1d ! 1D configuration: Coriolis set at T-point ! ! hu(:,:) = 0._wp ! Ocean depth at U-points hv(:,:) = 0._wp ! Ocean depth at V-points ht(:,:) = 0._wp ! Ocean depth at T-points DO jk = 1, jpkm1 hu(:,:) = hu(:,:) + fse3u_n(:,:,jk) * umask(:,:,jk) hv(:,:) = hv(:,:) + fse3v_n(:,:,jk) * vmask(:,:,jk) ht(:,:) = ht(:,:) + fse3t_n(:,:,jk) * tmask(:,:,jk) END DO ! ! Inverse of the local depth hur(:,:) = 1._wp / ( hu(:,:) + 1._wp - umask_i(:,:) ) * umask_i(:,:) hvr(:,:) = 1._wp / ( hv(:,:) + 1._wp - vmask_i(:,:) ) * vmask_i(:,:) CALL dom_stp ! time step IF( nmsh /= 0 ) CALL dom_wri ! Create a domain file IF( .NOT.ln_rstart ) CALL dom_ctl ! Domain control ! IF( nn_timing == 1 ) CALL timing_stop('dom_init') ! END SUBROUTINE dom_init SUBROUTINE dom_nam !!---------------------------------------------------------------------- !! *** ROUTINE dom_nam *** !! !! ** Purpose : read domaine namelists and print the variables. !! !! ** input : - namrun namelist !! - namdom namelist !! - namcla namelist !! - namnc4 namelist ! "key_netcdf4" only !!---------------------------------------------------------------------- USE ioipsl NAMELIST/namrun/ cn_ocerst_indir, cn_ocerst_outdir, nn_stocklist, ln_rst_list, & & nn_no , cn_exp , cn_ocerst_in, cn_ocerst_out, ln_rstart , ln_rstdate, nn_rstctl, & & nn_it000, nn_itend , nn_date0 , nn_leapy , nn_istate , nn_stock , & & nn_write, ln_dimgnnn, ln_mskland , ln_cfmeta , ln_clobber, nn_chunksz, nn_euler NAMELIST/namdom/ nn_bathy, rn_bathy , rn_e3zps_min, rn_e3zps_rat, nn_msh, rn_hmin, & & nn_acc , rn_atfp , rn_rdt , rn_rdtmin , & & rn_rdtmax, rn_rdth , nn_closea , ln_crs, & & jphgr_msh, & & ppglam0, ppgphi0, ppe1_deg, ppe2_deg, ppe1_m, ppe2_m, & & ppsur, ppa0, ppa1, ppkth, ppacr, ppdzmin, pphmax, ldbletanh, & & ppa2, ppkth2, ppacr2 NAMELIST/namcla/ nn_cla #if defined key_netcdf4 NAMELIST/namnc4/ nn_nchunks_i, nn_nchunks_j, nn_nchunks_k, ln_nc4zip #endif INTEGER :: ios ! Local integer output status for namelist read !!---------------------------------------------------------------------- REWIND( numnam_ref ) ! Namelist namrun in reference namelist : Parameters of the run READ ( numnam_ref, namrun, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namrun in reference namelist', lwp ) REWIND( numnam_cfg ) ! Namelist namrun in configuration namelist : Parameters of the run READ ( numnam_cfg, namrun, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namrun in configuration namelist', lwp ) IF(lwm) WRITE ( numond, namrun ) ! IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*) 'dom_nam : domain initialization through namelist read' WRITE(numout,*) '~~~~~~~ ' WRITE(numout,*) ' Namelist namrun' WRITE(numout,*) ' job number nn_no = ', nn_no WRITE(numout,*) ' experiment name for output cn_exp = ', cn_exp WRITE(numout,*) ' file prefix restart input cn_ocerst_in= ', cn_ocerst_in WRITE(numout,*) ' restart input directory cn_ocerst_indir= ', cn_ocerst_indir WRITE(numout,*) ' file prefix restart output cn_ocerst_out= ', cn_ocerst_out WRITE(numout,*) ' restart output directory cn_ocerst_outdir= ', cn_ocerst_outdir WRITE(numout,*) ' restart logical ln_rstart = ' , ln_rstart WRITE(numout,*) ' datestamping of restarts ln_rstdate = ', ln_rstdate WRITE(numout,*) ' start with forward time step nn_euler = ', nn_euler WRITE(numout,*) ' control of time step nn_rstctl = ', nn_rstctl WRITE(numout,*) ' number of the first time step nn_it000 = ', nn_it000 WRITE(numout,*) ' number of the last time step nn_itend = ', nn_itend WRITE(numout,*) ' initial calendar date aammjj nn_date0 = ', nn_date0 WRITE(numout,*) ' leap year calendar (0/1) nn_leapy = ', nn_leapy WRITE(numout,*) ' initial state output nn_istate = ', nn_istate IF( ln_rst_list ) THEN WRITE(numout,*) ' list of restart dump times nn_stocklist =', nn_stocklist ELSE WRITE(numout,*) ' frequency of restart file nn_stock = ', nn_stock ENDIF WRITE(numout,*) ' frequency of output file nn_write = ', nn_write WRITE(numout,*) ' multi file dimgout ln_dimgnnn = ', ln_dimgnnn WRITE(numout,*) ' mask land points ln_mskland = ', ln_mskland WRITE(numout,*) ' additional CF standard metadata ln_cfmeta = ', ln_cfmeta WRITE(numout,*) ' overwrite an existing file ln_clobber = ', ln_clobber WRITE(numout,*) ' NetCDF chunksize (bytes) nn_chunksz = ', nn_chunksz ENDIF no = nn_no ! conversion DOCTOR names into model names (this should disappear soon) cexper = cn_exp nrstdt = nn_rstctl nit000 = nn_it000 nitend = nn_itend ndate0 = nn_date0 nleapy = nn_leapy ninist = nn_istate nstock = nn_stock nstocklist = nn_stocklist nwrite = nn_write neuler = nn_euler IF ( neuler == 1 .AND. .NOT. ln_rstart ) THEN WRITE(ctmp1,*) 'ln_rstart =.FALSE., nn_euler is forced to 0 ' CALL ctl_warn( ctmp1 ) neuler = 0 ENDIF ! ! control of output frequency IF ( nstock == 0 .OR. nstock > nitend ) THEN WRITE(ctmp1,*) 'nstock = ', nstock, ' it is forced to ', nitend CALL ctl_warn( ctmp1 ) nstock = nitend ENDIF IF ( nwrite == 0 ) THEN WRITE(ctmp1,*) 'nwrite = ', nwrite, ' it is forced to ', nitend CALL ctl_warn( ctmp1 ) nwrite = nitend ENDIF #if defined key_agrif IF( Agrif_Root() ) THEN #endif SELECT CASE ( nleapy ) ! Choose calendar for IOIPSL CASE ( 1 ) CALL ioconf_calendar('gregorian') IF(lwp) WRITE(numout,*) ' The IOIPSL calendar is "gregorian", i.e. leap year' CASE ( 0 ) CALL ioconf_calendar('noleap') IF(lwp) WRITE(numout,*) ' The IOIPSL calendar is "noleap", i.e. no leap year' CASE ( 30 ) CALL ioconf_calendar('360d') IF(lwp) WRITE(numout,*) ' The IOIPSL calendar is "360d", i.e. 360 days in a year' END SELECT #if defined key_agrif ENDIF #endif REWIND( numnam_ref ) ! Namelist namdom in reference namelist : space & time domain (bathymetry, mesh, timestep) READ ( numnam_ref, namdom, IOSTAT = ios, ERR = 903) 903 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namdom in reference namelist', lwp ) ! REWIND( numnam_cfg ) ! Namelist namdom in configuration namelist : space & time domain (bathymetry, mesh, timestep) READ ( numnam_cfg, namdom, IOSTAT = ios, ERR = 904 ) 904 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namdom in configuration namelist', lwp ) IF(lwm) WRITE ( numond, namdom ) IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) ' Namelist namdom : space & time domain' WRITE(numout,*) ' flag read/compute bathymetry nn_bathy = ', nn_bathy WRITE(numout,*) ' Depth (if =0 bathy=jpkm1) rn_bathy = ', rn_bathy WRITE(numout,*) ' min depth of the ocean (>0) or rn_hmin = ', rn_hmin WRITE(numout,*) ' min number of ocean level (<0) ' WRITE(numout,*) ' minimum thickness of partial rn_e3zps_min = ', rn_e3zps_min, ' (m)' WRITE(numout,*) ' step level rn_e3zps_rat = ', rn_e3zps_rat WRITE(numout,*) ' create mesh/mask file(s) nn_msh = ', nn_msh WRITE(numout,*) ' = 0 no file created ' WRITE(numout,*) ' = 1 mesh_mask ' WRITE(numout,*) ' = 2 mesh and mask ' WRITE(numout,*) ' = 3 mesh_hgr, msh_zgr and mask' WRITE(numout,*) ' ocean time step rn_rdt = ', rn_rdt WRITE(numout,*) ' asselin time filter parameter rn_atfp = ', rn_atfp WRITE(numout,*) ' acceleration of converge nn_acc = ', nn_acc WRITE(numout,*) ' nn_acc=1: surface tracer rdt rn_rdtmin = ', rn_rdtmin WRITE(numout,*) ' bottom tracer rdt rdtmax = ', rn_rdtmax WRITE(numout,*) ' depth of transition rn_rdth = ', rn_rdth WRITE(numout,*) ' suppression of closed seas (=0) nn_closea = ', nn_closea WRITE(numout,*) ' online coarsening of dynamical fields ln_crs = ', ln_crs WRITE(numout,*) ' type of horizontal mesh jphgr_msh = ', jphgr_msh WRITE(numout,*) ' longitude of first raw and column T-point ppglam0 = ', ppglam0 WRITE(numout,*) ' latitude of first raw and column T-point ppgphi0 = ', ppgphi0 WRITE(numout,*) ' zonal grid-spacing (degrees) ppe1_deg = ', ppe1_deg WRITE(numout,*) ' meridional grid-spacing (degrees) ppe2_deg = ', ppe2_deg WRITE(numout,*) ' zonal grid-spacing (degrees) ppe1_m = ', ppe1_m WRITE(numout,*) ' meridional grid-spacing (degrees) ppe2_m = ', ppe2_m WRITE(numout,*) ' ORCA r4, r2 and r05 coefficients ppsur = ', ppsur WRITE(numout,*) ' ppa0 = ', ppa0 WRITE(numout,*) ' ppa1 = ', ppa1 WRITE(numout,*) ' ppkth = ', ppkth WRITE(numout,*) ' ppacr = ', ppacr WRITE(numout,*) ' Minimum vertical spacing ppdzmin = ', ppdzmin WRITE(numout,*) ' Maximum depth pphmax = ', pphmax WRITE(numout,*) ' Use double tanf function for vertical coordinates ldbletanh = ', ldbletanh WRITE(numout,*) ' Double tanh function parameters ppa2 = ', ppa2 WRITE(numout,*) ' ppkth2 = ', ppkth2 WRITE(numout,*) ' ppacr2 = ', ppacr2 ENDIF ntopo = nn_bathy ! conversion DOCTOR names into model names (this should disappear soon) e3zps_min = rn_e3zps_min e3zps_rat = rn_e3zps_rat nmsh = nn_msh nacc = nn_acc atfp = rn_atfp rdt = rn_rdt rdtmin = rn_rdtmin rdtmax = rn_rdtmin rdth = rn_rdth REWIND( numnam_ref ) ! Namelist namcla in reference namelist : Cross land advection READ ( numnam_ref, namcla, IOSTAT = ios, ERR = 905) 905 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namcla in reference namelist', lwp ) REWIND( numnam_cfg ) ! Namelist namcla in configuration namelist : Cross land advection READ ( numnam_cfg, namcla, IOSTAT = ios, ERR = 906 ) 906 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namcla in configuration namelist', lwp ) IF(lwm) WRITE( numond, namcla ) IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) ' Namelist namcla' WRITE(numout,*) ' cross land advection nn_cla = ', nn_cla ENDIF IF ( nn_cla .EQ. 1 ) THEN IF ( cp_cfg == "orca" .AND. jp_cfg == 2 ) THEN ! ORCA R2 CONTINUE ELSE CALL ctl_stop( 'STOP', 'Cross land advation iplemented only for ORCA2 configuration: cp_cfg = "orca" and jp_cfg = 2 ' ) ENDIF ENDIF #if defined key_netcdf4 ! ! NetCDF 4 case ("key_netcdf4" defined) REWIND( numnam_ref ) ! Namelist namnc4 in reference namelist : NETCDF READ ( numnam_ref, namnc4, IOSTAT = ios, ERR = 907) 907 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namnc4 in reference namelist', lwp ) REWIND( numnam_cfg ) ! Namelist namnc4 in configuration namelist : NETCDF READ ( numnam_cfg, namnc4, IOSTAT = ios, ERR = 908 ) 908 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namnc4 in configuration namelist', lwp ) IF(lwm) WRITE( numond, namnc4 ) IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*) ' Namelist namnc4 - Netcdf4 chunking parameters' WRITE(numout,*) ' number of chunks in i-dimension nn_nchunks_i = ', nn_nchunks_i WRITE(numout,*) ' number of chunks in j-dimension nn_nchunks_j = ', nn_nchunks_j WRITE(numout,*) ' number of chunks in k-dimension nn_nchunks_k = ', nn_nchunks_k WRITE(numout,*) ' apply netcdf4/hdf5 chunking & compression ln_nc4zip = ', ln_nc4zip ENDIF ! Put the netcdf4 settings into a simple structure (snc4set, defined in in_out_manager module) ! Note the chunk size in the unlimited (time) dimension will be fixed at 1 snc4set%ni = nn_nchunks_i snc4set%nj = nn_nchunks_j snc4set%nk = nn_nchunks_k snc4set%luse = ln_nc4zip #else snc4set%luse = .FALSE. ! No NetCDF 4 case #endif ! END SUBROUTINE dom_nam SUBROUTINE dom_ctl !!---------------------------------------------------------------------- !! *** ROUTINE dom_ctl *** !! !! ** Purpose : Domain control. !! !! ** Method : compute and print extrema of masked scale factors !!---------------------------------------------------------------------- INTEGER :: iimi1, ijmi1, iimi2, ijmi2, iima1, ijma1, iima2, ijma2 INTEGER, DIMENSION(2) :: iloc ! REAL(wp) :: ze1min, ze1max, ze2min, ze2max !!---------------------------------------------------------------------- ! IF(lk_mpp) THEN CALL mpp_minloc( e1t(:,:), tmask_i(:,:), ze1min, iimi1,ijmi1 ) CALL mpp_minloc( e2t(:,:), tmask_i(:,:), ze2min, iimi2,ijmi2 ) CALL mpp_maxloc( e1t(:,:), tmask_i(:,:), ze1max, iima1,ijma1 ) CALL mpp_maxloc( e2t(:,:), tmask_i(:,:), ze2max, iima2,ijma2 ) ELSE ze1min = MINVAL( e1t(:,:), mask = tmask_i(:,:) == 1._wp ) ze2min = MINVAL( e2t(:,:), mask = tmask_i(:,:) == 1._wp ) ze1max = MAXVAL( e1t(:,:), mask = tmask_i(:,:) == 1._wp ) ze2max = MAXVAL( e2t(:,:), mask = tmask_i(:,:) == 1._wp ) iloc = MINLOC( e1t(:,:), mask = tmask_i(:,:) == 1._wp ) iimi1 = iloc(1) + nimpp - 1 ijmi1 = iloc(2) + njmpp - 1 iloc = MINLOC( e2t(:,:), mask = tmask_i(:,:) == 1._wp ) iimi2 = iloc(1) + nimpp - 1 ijmi2 = iloc(2) + njmpp - 1 iloc = MAXLOC( e1t(:,:), mask = tmask_i(:,:) == 1._wp ) iima1 = iloc(1) + nimpp - 1 ijma1 = iloc(2) + njmpp - 1 iloc = MAXLOC( e2t(:,:), mask = tmask_i(:,:) == 1._wp ) iima2 = iloc(1) + nimpp - 1 ijma2 = iloc(2) + njmpp - 1 ENDIF IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'dom_ctl : extrema of the masked scale factors' WRITE(numout,*) '~~~~~~~' WRITE(numout,"(14x,'e1t maxi: ',1f10.2,' at i = ',i5,' j= ',i5)") ze1max, iima1, ijma1 WRITE(numout,"(14x,'e1t mini: ',1f10.2,' at i = ',i5,' j= ',i5)") ze1min, iimi1, ijmi1 WRITE(numout,"(14x,'e2t maxi: ',1f10.2,' at i = ',i5,' j= ',i5)") ze2max, iima2, ijma2 WRITE(numout,"(14x,'e2t mini: ',1f10.2,' at i = ',i5,' j= ',i5)") ze2min, iimi2, ijmi2 ENDIF ! END SUBROUTINE dom_ctl SUBROUTINE dom_stiff !!---------------------------------------------------------------------- !! *** ROUTINE dom_stiff *** !! !! ** Purpose : Diagnose maximum grid stiffness/hydrostatic consistency !! !! ** Method : Compute Haney (1991) hydrostatic condition ratio !! Save the maximum in the vertical direction !! (this number is only relevant in s-coordinates) !! !! Haney, R. L., 1991: On the pressure gradient force !! over steep topography in sigma coordinate ocean models. !! J. Phys. Oceanogr., 21, 610???619. !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk REAL(wp) :: zrxmax REAL(wp), DIMENSION(4) :: zr1 !!---------------------------------------------------------------------- rx1(:,:) = 0.e0 zrxmax = 0.e0 zr1(:) = 0.e0 DO ji = 2, jpim1 DO jj = 2, jpjm1 DO jk = 1, jpkm1 zr1(1) = umask(ji-1,jj ,jk) *abs( (gdepw_0(ji ,jj ,jk )-gdepw_0(ji-1,jj ,jk ) & & +gdepw_0(ji ,jj ,jk+1)-gdepw_0(ji-1,jj ,jk+1)) & & /(gdepw_0(ji ,jj ,jk )+gdepw_0(ji-1,jj ,jk ) & & -gdepw_0(ji ,jj ,jk+1)-gdepw_0(ji-1,jj ,jk+1) + rsmall) ) zr1(2) = umask(ji ,jj ,jk) *abs( (gdepw_0(ji+1,jj ,jk )-gdepw_0(ji ,jj ,jk ) & & +gdepw_0(ji+1,jj ,jk+1)-gdepw_0(ji ,jj ,jk+1)) & & /(gdepw_0(ji+1,jj ,jk )+gdepw_0(ji ,jj ,jk ) & & -gdepw_0(ji+1,jj ,jk+1)-gdepw_0(ji ,jj ,jk+1) + rsmall) ) zr1(3) = vmask(ji ,jj ,jk) *abs( (gdepw_0(ji ,jj+1,jk )-gdepw_0(ji ,jj ,jk ) & & +gdepw_0(ji ,jj+1,jk+1)-gdepw_0(ji ,jj ,jk+1)) & & /(gdepw_0(ji ,jj+1,jk )+gdepw_0(ji ,jj ,jk ) & & -gdepw_0(ji ,jj+1,jk+1)-gdepw_0(ji ,jj ,jk+1) + rsmall) ) zr1(4) = vmask(ji ,jj-1,jk) *abs( (gdepw_0(ji ,jj ,jk )-gdepw_0(ji ,jj-1,jk ) & & +gdepw_0(ji ,jj ,jk+1)-gdepw_0(ji ,jj-1,jk+1)) & & /(gdepw_0(ji ,jj ,jk )+gdepw_0(ji ,jj-1,jk ) & & -gdepw_0(ji, jj ,jk+1)-gdepw_0(ji ,jj-1,jk+1) + rsmall) ) zrxmax = MAXVAL(zr1(1:4)) rx1(ji,jj) = MAX(rx1(ji,jj), zrxmax) END DO END DO END DO CALL lbc_lnk( rx1, 'T', 1. ) zrxmax = MAXVAL(rx1) IF( lk_mpp ) CALL mpp_max( zrxmax ) ! max over the global domain IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'dom_stiff : maximum grid stiffness ratio: ', zrxmax WRITE(numout,*) '~~~~~~~~~' ENDIF END SUBROUTINE dom_stiff !!====================================================================== END MODULE domain