MODULE usrdef_hgr !!====================================================================== !! *** MODULE usrdef_hgr *** !! !! === ICEDYN configuration === !! !! User defined : mesh and Coriolis parameter of a user configuration !!====================================================================== !! History : NEMO ! 2016-08 (S. Flavoni, G. Madec) Original code !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! usr_def_hgr : initialize the horizontal mesh for ICEDYN configuration !!---------------------------------------------------------------------- USE dom_oce ! ocean space and time domain USE par_oce ! ocean space and time domain USE phycst ! physical constants USE usrdef_nam, ONLY: rn_dx, rn_dy, ln_corio, rn_ppgphi0 ! horizontal resolution in meters ! coriolis and reference latitude USE in_out_manager ! I/O manager USE lib_mpp ! MPP library IMPLICIT NONE PRIVATE PUBLIC usr_def_hgr ! called by domhgr.F90 !!---------------------------------------------------------------------- !! NEMO/OPA 4.0 , NEMO Consortium (2016) !! $Id:$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE usr_def_hgr( plamt , plamu , plamv , plamf , & ! geographic position (required) & pphit , pphiu , pphiv , pphif , & ! & kff , pff_f , pff_t , & ! Coriolis parameter (if domain not on the sphere) & pe1t , pe1u , pe1v , pe1f , & ! scale factors (required) & pe2t , pe2u , pe2v , pe2f , & ! & ke1e2u_v , pe1e2u , pe1e2v ) ! u- & v-surfaces (if gridsize reduction is used in strait(s)) !!---------------------------------------------------------------------- !! *** ROUTINE usr_def_hgr *** !! !! ** Purpose : user defined mesh and Coriolis parameter !! !! ** Method : set all intent(out) argument to a proper value !! ICEDYN configuration : uniform grid spacing (rn_dx) !! without Coriolis force (f=0) !! !! ** Action : - define longitude & latitude of t-, u-, v- and f-points (in degrees) !! - define coriolis parameter at f-point if the domain in not on the sphere (on beta-plane) !! - define i- & j-scale factors at t-, u-, v- and f-points (in meters) !! - define u- & v-surfaces (if gridsize reduction is used in some straits) (in m2) !!---------------------------------------------------------------------- REAL(wp), DIMENSION(:,:), INTENT(out) :: plamt, plamu, plamv, plamf ! longitude outputs [degrees] REAL(wp), DIMENSION(:,:), INTENT(out) :: pphit, pphiu, pphiv, pphif ! latitude outputs [degrees] INTEGER , INTENT(out) :: kff ! =1 Coriolis parameter computed here, =0 otherwise REAL(wp), DIMENSION(:,:), INTENT(out) :: pff_f, pff_t ! Coriolis factor at f-point [1/s] REAL(wp), DIMENSION(:,:), INTENT(out) :: pe1t, pe1u, pe1v, pe1f ! i-scale factors [m] REAL(wp), DIMENSION(:,:), INTENT(out) :: pe2t, pe2u, pe2v, pe2f ! j-scale factors [m] INTEGER , INTENT(out) :: ke1e2u_v ! =1 u- & v-surfaces computed here, =0 otherwise REAL(wp), DIMENSION(:,:), INTENT(out) :: pe1e2u, pe1e2v ! u- & v-surfaces (if reduction in strait) [m2] ! INTEGER :: ji, jj ! dummy loop indices REAL(wp) :: zphi0, zlam0, zbeta, zf0 REAL(wp) :: zti, zui, ztj, zvj ! local scalars !!------------------------------------------------------------------------------- ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'usr_def_hgr : ICEDYN configuration bassin' IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' f-plane with irregular grid-spacing (+- 10%)' IF(lwp) WRITE(numout,*) ' the max is given by rn_dx and rn_dy' ! ========== zlam0 = -(jpiglo-1)/2 * 1.e-3 * rn_dx zphi0 = -(jpjglo-1)/2 * 1.e-3 * rn_dy #if defined key_agrif IF( .NOT. Agrif_Root() ) THEN !clem zlam0 = Agrif_Parent(zlam0) + (Agrif_ix())*Agrif_Parent(rn_dx) * 1.e-5 !clem zphi0 = Agrif_Parent(zphi0) + (Agrif_iy())*Agrif_Parent(rn_dy) * 1.e-5 zlam0 = ( 0.5_wp - ( Agrif_parent(jpiglo) - 1 ) / 2 ) * 1.e-3 * Agrif_irhox() * rn_dx & & + ( Agrif_Ix() + nbghostcells - 1 ) * Agrif_irhox() * rn_dx * 1.e-3 - ( 0.5_wp + nbghostcells ) * rn_dx * 1.e-3 zphi0 = ( 0.5_wp - ( Agrif_parent(jpjglo) - 1 ) / 2 ) * 1.e-3 * Agrif_irhoy() * rn_dy & & + ( Agrif_Iy() + nbghostcells - 1 ) * Agrif_irhoy() * rn_dy * 1.e-3 - ( 0.5_wp + nbghostcells ) * rn_dy * 1.e-3 ENDIF #endif DO jj = 1, jpj DO ji = 1, jpi zti = FLOAT( ji - 1 + nimpp - 1 ) ; ztj = FLOAT( jj - 1 + njmpp - 1 ) zui = FLOAT( ji - 1 + nimpp - 1 ) + 0.5_wp ; zvj = FLOAT( jj - 1 + njmpp - 1 ) + 0.5_wp plamt(ji,jj) = zlam0 + rn_dx * 1.e-3 * zti plamu(ji,jj) = zlam0 + rn_dx * 1.e-3 * zui plamv(ji,jj) = plamt(ji,jj) plamf(ji,jj) = plamu(ji,jj) pphit(ji,jj) = zphi0 + rn_dy * 1.e-3 * ztj pphiv(ji,jj) = zphi0 + rn_dy * 1.e-3 * zvj pphiu(ji,jj) = pphit(ji,jj) pphif(ji,jj) = pphiv(ji,jj) END DO END DO ! Horizontal scale factors (in meters) ! ====== !! ==> EITHER 1) variable scale factors !! clem: This can be used with a 1proc simulation but I think it breaks repro when >1procs are used !! DO jj = 1, jpj !! DO ji = 1, jpi !! !!pe1t(ji,jj) = rn_dx * EXP( -0.8/REAL(jpiglo**2) * (mi0(ji)-REAL(jpiglo+1)*0.5)**2 ) ! gaussian shape !! !!pe2t(ji,jj) = rn_dy * EXP( -0.8/REAL(jpjglo**2) * (mj0(jj)-REAL(jpjglo+1)*0.5)**2 ) ! gaussian shape !! pe1t(ji,jj) = rn_dx * ( 1. -0.1 * ABS(REAL(mi0(ji))-REAL(jpiglo+1)*0.5) / (1.-REAL(jpiglo+1)*0.5) ) ! linear shape !! pe2t(ji,jj) = rn_dy * ( 1. -0.1 * ABS(REAL(mj0(jj))-REAL(jpjglo+1)*0.5) / (1.-REAL(jpjglo+1)*0.5) ) ! linear shape !! END DO !! END DO !!#if defined key_agrif !! IF( .NOT. Agrif_Root() ) THEN ! only works if the zoom is positioned at the center of the parent grid !! DO jj = 1, jpj !! DO ji = 1, jpi !! pe1t(ji,jj) = rn_dx * ( 1. -0.1 * ABS(REAL(mi0(ji))-REAL(jpiglo+1)*0.5) / (1.-REAL(jpiglo+1)*0.5) & !! & * REAL(jpiglo) / REAL(Agrif_Parent(jpiglo) * Agrif_Rhox()) ) ! factor to match parent grid !! pe2t(ji,jj) = rn_dy * ( 1. -0.1 * ABS(REAL(mj0(jj))-REAL(jpjglo+1)*0.5) / (1.-REAL(jpjglo+1)*0.5) & !! & * REAL(jpjglo) / REAL(Agrif_Parent(jpjglo) * Agrif_Rhoy()) ) ! factor to match parent grid !! END DO !! END DO !! ENDIF !!#endif !! ==> OR 2) constant scale factors pe1t(:,:) = rn_dx pe2t(:,:) = rn_dy !! ==> END pe1u(:,:) = pe1t(:,:) ; pe2u(:,:) = pe2t(:,:) pe1v(:,:) = pe1t(:,:) ; pe2v(:,:) = pe2t(:,:) pe1f(:,:) = pe1t(:,:) ; pe2f(:,:) = pe2t(:,:) ! ! NO reduction of grid size in some straits ke1e2u_v = 0 ! ==>> u_ & v_surfaces will be computed in dom_ghr routine pe1e2u(:,:) = 0._wp ! CAUTION: set to zero to avoid error with some compilers that pe1e2v(:,:) = 0._wp ! require an initialization of INTENT(out) arguments ! ! ! !== Coriolis parameter ==! kff = 1 ! indicate not to compute Coriolis parameter afterward ! IF( ln_corio ) THEN zbeta = 2._wp * omega * COS( rad * rn_ppgphi0 ) / ra zf0 = 2._wp * omega * SIN( rad * rn_ppgphi0 ) pff_f(:,:) = zf0 + zbeta * pphif(:,:) * 1.e+3 pff_t(:,:) = zf0 + zbeta * pphit(:,:) * 1.e+3 ELSE pff_f(:,:) = 0. pff_t(:,:) = 0. ENDIF ! END SUBROUTINE usr_def_hgr !!====================================================================== END MODULE usrdef_hgr