Custom Query (2349 matches)

Filters
 
Or
 
  
 
Columns

Show under each result:


Results (10 - 12 of 2349)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Ticket Resolution Summary Owner Reporter
#2525 fixed missing comments in do loops systeam smasson
Description

Context

comments following DO loops on ji, jj, or jk have been lost when rewriting the loops between r4.0-HEAD and the actual trunk…

Analysis

There is a tentative list of the comments that have been potentially lost base on what is existing in the r4.0-HEAD…

> cd r4.0-HEAD
> grep -ir "do j[ijk] *= .*\!"  src 2>/dev/null | grep -iv "vector opt" | grep -iv "vect. opt." | grep -v "slab" | grep -v "INNER domain" | grep -iv "interior value" | wc -l


src/ICE/icecor.F90:         DO jj = 2, jpjm1           !-----------------------------------------------------
src/ICE/icedyn_adv_pra.F90:            DO jk = 1, nlay_s                                                                           !--- snow heat content
src/ICE/icedyn_adv_pra.F90:            DO jk = 1, nlay_i                                                                           !--- ice heat content
src/ICE/icedyn_adv_pra.F90:            DO jk = 1, nlay_s                                                                           !--- snow heat content
src/ICE/icedyn_adv_pra.F90:            DO jk = 1, nlay_i                                                                           !--- ice heat content
src/ICE/icedyn_adv_pra.F90:         DO jj = 2, jpjm1                      !  Flux from i to i+1 WHEN u GT 0
src/ICE/icedyn_adv_pra.F90:         DO jj = 2, jpjm1                      !  Flux from i+1 to i when u LT 0.
src/ICE/icedyn_adv_pra.F90:         DO jj = 2, jpjm1                     !  Readjust moments remaining in the box.
src/ICE/icedyn_adv_pra.F90:         DO jj = 2, jpjm1                     !   Flux from i to i+1 IF u GT 0.
src/ICE/icedyn_adv_pra.F90:         DO jj = 2, jpjm1                      !  Flux from i+1 to i IF u LT 0.
src/ICE/icedyn_adv_pra.F90:         DO jj = 1, jpj                     !  Flux from j to j+1 WHEN v GT 0
src/ICE/icedyn_adv_pra.F90:         DO jj = 1, jpjm1                   !  Flux from j+1 to j when v LT 0.
src/ICE/icedyn_adv_pra.F90:         DO jj = 2, jpjm1                    !   Flux from j to j+1 IF v GT 0.
src/ICE/icedyn_adv_pra.F90:         DO jj = 2, jpjm1                      !  Flux from j+1 to j IF v LT 0.
src/ICE/icedyn_adv_umx.F90:         DO jj = 2, jpjm1         ! First derivative (gradient)
src/ICE/icedyn_adv_umx.F90:         DO jj = 2, jpjm1         ! Third derivative
src/ICE/icedyn_adv_umx.F90:         DO jj = 1, jpjm1         ! First derivative (gradient)
src/ICE/icedyn_adv_umx.F90:         DO jj = 2, jpjm1         ! Second derivative (Laplacian)
src/ICE/icedyn_adv_umx.F90:         DO jj = 1, jpjm1         ! First derivative
src/ICE/icedyn_adv_umx.F90:         DO jj = 2, jpjm1         ! Second derivative
src/ICE/icedyn_rhg_evp.F90:         DO jj = 1, jpjm1         ! loops start at 1 since there is no boundary condition (lbc_lnk) at i=1 and j=1 for F points
src/ICE/icedyn_rhg_evp.F90:         DO jj = 2, jpj    ! loop to jpi,jpj to avoid making a communication for zs1,zs2,zs12
src/ICE/icedyn_rhg_evp.F90:            DO ji = 2, jpi ! no vector loop
src/ICE/icedyn_rhg_evp.F90:         DO ji = 2, jpim1 ! no vector loop
src/ICE/iceistate.F90:            DO jk = 1,jpkm1                     ! adjust initial vertical scale factors
src/ICE/iceitd.F90:         DO jk = 1, nlay_s         !--- Snow heat content
src/ICE/iceitd.F90:         DO jk = 1, nlay_i         !--- Ice heat content
src/ICE/icethd_zdf_bl99.F90:         DO ji = 1, npti   ! Snow-ice interface
src/ICE/icethd_zdf_bl99.F90:         DO ji = 1, npti   ! Snow-ice interface
src/ICE/iceupdate.F90:         DO jj = 2, jpjm1                             !* update the modulus of stress at ocean surface (T-point)
src/ICE/iceupdate.F90:      DO jj = 2, jpjm1                                !* update the stress WITHOUT an ice-ocean rotation angle
src/ICE/icevar.F90:      DO jk = 1, nlay_i             ! Sea ice energy of melting
src/ICE/icevar.F90:      DO jk = 1, nlay_s             ! Snow energy of melting
src/NST/agrif_oce_interp.F90:         DO jk = 1, jpkm1              ! Mask domain edges
src/NST/agrif_oce_interp.F90:         DO jk = 1, jpkm1              ! Mask domain edges
src/NST/agrif_oce_interp.F90:            DO jk = 1, jpkm1           ! Smooth
src/NST/agrif_oce_interp.F90:         DO jk = 1, jpkm1              ! Mask domain edges
src/NST/agrif_oce_interp.F90:            DO jk = 1, jpkm1           ! Smooth
src/NST/agrif_oce_interp.F90:         DO jk = 1, jpkm1              ! Mask domain edges
src/OCE/ASM/asminc.F90:            DO jk = 1, jpkm1           ! zhdiv = e1e1 * div
src/OCE/C1D/dtauvd.F90:         DO jj = 1, jpj                   ! vertical interpolation of U & V current:
src/OCE/C1D/dtauvd.F90:            DO ji = 1, jpi                ! determines the interpolated U & V current profiles at each (i,j) point
src/OCE/C1D/dtauvd.F90:               DO jk = 1, jpkm1           ! apply mask
src/OCE/CRS/crsdom.F90:      DO jj = 1, jpj_crsm1                      ! bottom k-index of u- (v-) level
src/OCE/DIA/diaar5.F90:            DO jj = 1, jpj               ! interpolation of salinity at the last ocean level (i.e. the partial step)
src/OCE/DIA/diaar5.F90:               DO jj = 1, jpj               ! interpolation of salinity at the last ocean level (i.e. the partial step)
src/OCE/DIA/diacfl.F90:      DO jk = 1, jpk       ! calculate Courant numbers
src/OCE/DIA/diadct.F90:            DO jk = 1, mbkt(k%I,k%J)            !Sum of the transport on the vertical
src/OCE/DIA/diahsb.F90:      DO jk = 1, jpkm1           ! volume variation (calculated with scale factors)
src/OCE/DIA/diahsb.F90:      DO jk = 1, jpkm1           ! heat content variation
src/OCE/DIA/diahsb.F90:      DO jk = 1, jpkm1           ! salt content variation
src/OCE/DIA/diahsb.F90:      DO jk = 1, jpkm1           ! total ocean volume (calculated with scale factors)
src/OCE/DIA/diahth.F90:            DO jk = jpkm1, 2, -1   ! loop from bottom to 2
src/OCE/DIA/diahth.F90:            DO jk = jpkm1, nlb10, -1   ! loop from bottom to nlb10
src/OCE/DIA/diahth.F90:      DO jk = 1, jpkm1   ! beware temperature is not always decreasing with depth => loop from top to bottom
src/OCE/DIA/diawri.F90:         DO jj = 2, jpjm1                                    ! sst gradient
src/OCE/DOM/domain.F90:      DO jj = 1, jpj                   ! depth of the iceshelves
src/OCE/DOM/domain.F90:      DO ji = 1, jpi                 ! local domain indices ==> global domain indices
src/OCE/DOM/dommsk.F90:            DO ji = 1, fs_jpim1   ! vector loop
src/OCE/DOM/domvvl.F90:      DO jk = 2, jpk                               ! vertical sum
src/OCE/DOM/domvvl.F90:         DO jk = 1, jpkm1        ! a - first derivative: diffusive fluxes
src/OCE/DOM/domvvl.F90:         DO jj = 1, jpj          ! b - correction for last oceanic u-v points
src/OCE/DOM/domvvl.F90:         DO jk = 1, jpkm1        ! c - second derivative: divergence of diffusive fluxes
src/OCE/DOM/dtatsd.F90:         DO jj = 1, jpj                         ! vertical interpolation of T & S
src/OCE/DOM/dtatsd.F90:               DO jk = 1, jpk                        ! determines the intepolated T-S profiles at each (i,j) points
src/OCE/DYN/divhor.F90:      DO jk = 1, jpkm1                                      !==  Horizontal divergence  ==!
src/OCE/DYN/dynadv_cen2.F90:      DO jk = 1, jpkm1                    ! horizontal transport
src/OCE/DYN/dynadv_cen2.F90:         DO jj = 1, jpjm1                 ! horizontal momentum fluxes (at T- and F-point)
src/OCE/DYN/dynadv_cen2.F90:         DO jj = 2, jpjm1                 ! divergence of horizontal momentum fluxes
src/OCE/DYN/dynadv_cen2.F90:      DO jj = 2, jpjm1                    ! surface/bottom advective fluxes set to zero
src/OCE/DYN/dynadv_cen2.F90:      DO jk = 2, jpkm1                    ! interior advective fluxes
src/OCE/DYN/dynadv_cen2.F90:         DO jj = 2, jpj                       ! 1/4 * Vertical transport
src/OCE/DYN/dynadv_cen2.F90:      DO jk = 1, jpkm1                    ! divergence of vertical momentum flux divergence
src/OCE/DYN/dynadv_ubs.F90:      DO jk = 1, jpkm1                       !  Laplacian of the velocity  !
src/OCE/DYN/dynadv_ubs.F90:         DO jj = 2, jpjm1                          ! laplacian
src/OCE/DYN/dynadv_ubs.F90:      DO jk = 1, jpkm1                       ! ====================== !
src/OCE/DYN/dynadv_ubs.F90:         DO jj = 1, jpjm1                          ! horizontal momentum fluxes at T- and F-point
src/OCE/DYN/dynadv_ubs.F90:         DO jj = 2, jpjm1                          ! divergence of horizontal momentum fluxes
src/OCE/DYN/dynadv_ubs.F90:      DO jj = 2, jpjm1                             ! surface/bottom advective fluxes set to zero
src/OCE/DYN/dynadv_ubs.F90:      DO jk = 2, jpkm1                          ! interior fluxes
src/OCE/DYN/dynadv_ubs.F90:      DO jk = 1, jpkm1                          ! divergence of vertical momentum flux divergence
src/OCE/DYN/dynhpg.F90:         DO jk = 1, jpk                   !- compute density of the water displaced by the ice shelf
src/OCE/DYN/dynhpg.F90:         DO jj = 1, jpj                         ! (used to compute hpgi/j for all the level from 1 to miku/v)
src/OCE/DYN/dynhpg.F90:            DO ji = 1, jpi                      ! divided by 2 later
src/OCE/DYN/dynkeg.F90:      DO jk = 1, jpkm1                    !==  grad( KE ) added to the general momentum trends  ==!
src/OCE/DYN/dynldf_iso.F90:         DO jk = 1, jpk         ! set the slopes of iso-level
src/OCE/DYN/dynldf_iso.F90:            DO ji = 2, jpim1          !!gm Question vectop possible??? !!bug
src/OCE/DYN/dynldf_lap_blp.F90:         DO jj = 2, jpjm1                             ! - curl( curl) + grad( div )
src/OCE/DYN/dynspg.F90:            DO jj = 2, jpjm1                          ! gradient of Patm using inverse barometer ssh
src/OCE/DYN/dynspg.F90:            DO jj = 2, jpjm1                         ! add tide potential forcing
src/OCE/DYN/dynspg.F90:               DO jj = 2, jpjm1                    ! add scalar approximation for load potential
src/OCE/DYN/dynspg.F90:         DO jk = 1, jpkm1                    !== Add all terms to the general trend
src/OCE/DYN/dynspg_exp.F90:         DO jj = 2, jpjm1                    ! now surface pressure gradient
src/OCE/DYN/dynspg_exp.F90:         DO jk = 1, jpkm1                    ! Add it to the general trend
src/OCE/DYN/dynspg_ts.F90:      DO jk = 1, jpkm1                    !  ------------------------  !
src/OCE/DYN/dynspg_ts.F90:               DO ji = 2, jpim1                ! SPG with the application of W/D gravity filters
src/OCE/DYN/dynspg_ts.F90:      DO jj = 2, jpjm1                          ! Remove coriolis term (and possibly spg) from barotropic trend
src/OCE/DYN/dynspg_ts.F90:               DO ji = 1, jpim1   ! not jpi-column
src/OCE/DYN/dynspg_ts.F90:            DO jj = 1, jpjm1        ! not jpj-row
src/OCE/DYN/dynspg_ts.F90:         DO ji = 1, jpim1   ! not jpi-column
src/OCE/DYN/dynspg_ts.F90:      DO jj = 1, jpjm1   ! not jpj-row
src/OCE/DYN/dynvor.F90:               DO ji = 1, jpim1                          ! relative vorticity
src/OCE/DYN/dynzad.F90:      DO jk = 2, jpkm1              ! Vertical momentum advection at level w and u- and v- vertical
src/OCE/DYN/dynzad.F90:         DO jj = 2, jpj                   ! vertical fluxes
src/OCE/DYN/dynzad.F90:         DO jj = 2, jpjm1                 ! vertical momentum advection at w-point
src/OCE/DYN/dynzad.F90:      DO jk = 1, jpkm1              ! Vertical momentum advection at u- and v-points
src/OCE/DYN/dynzdf.F90:         DO jk = 1, jpkm1        ! remove barotropic velocities
src/OCE/DYN/dynzdf.F90:         DO jj = 2, jpjm1        ! Add bottom/top stress due to barotropic component only
src/OCE/DYN/dynzdf.F90:         DO jj = 2, jpjm1     !* Surface boundary conditions
src/OCE/DYN/dynzdf.F90:         DO jj = 2, jpjm1     !* Surface boundary conditions
src/OCE/DYN/dynzdf.F90:      DO jk = 2, jpkm1        !==  First recurrence : Dk = Dk - Lk * Uk-1 / Dk-1   (increasing k)  ==
src/OCE/DYN/dynzdf.F90:      DO jj = 2, jpjm1        !==  second recurrence:    SOLk = RHSk - Lk / Dk-1  Lk-1  ==!
src/OCE/DYN/dynzdf.F90:      DO jj = 2, jpjm1        !==  thrid recurrence : SOLk = ( Lk - Uk * Ek+1 ) / Dk  ==!
src/OCE/DYN/dynzdf.F90:         DO jj = 2, jpjm1     !* Surface boundary conditions
src/OCE/DYN/dynzdf.F90:         DO jj = 2, jpjm1        !* Surface boundary conditions
src/OCE/DYN/dynzdf.F90:      DO jk = 2, jpkm1        !==  First recurrence : Dk = Dk - Lk * Uk-1 / Dk-1   (increasing k)  ==
src/OCE/DYN/dynzdf.F90:      DO jj = 2, jpjm1        !==  second recurrence:    SOLk = RHSk - Lk / Dk-1  Lk-1  ==!
src/OCE/DYN/dynzdf.F90:      DO jj = 2, jpjm1        !==  third recurrence : SOLk = ( Lk - Uk * SOLk+1 ) / Dk  ==!
src/OCE/DYN/sshwzv.F90:      DO jk = 1, jpkm1                                 ! Horizontal divergence of barotropic transports
src/OCE/DYN/sshwzv.F90:         DO jk = jpkm1, 1, -1                       ! integrate from the bottom the hor. divergence
src/OCE/DYN/sshwzv.F90:         DO jk = jpkm1, 1, -1                       ! integrate from the bottom the hor. divergence
src/OCE/DYN/sshwzv.F90:         DO jk = jpkm1, 2, -1                           ! or scan Courant criterion and partition
src/OCE/DYN/sshwzv.F90:            DO jj = 1, jpj                              ! w where necessary
src/OCE/DYN/wet_dry.F90:      DO jk = 1, jpkm1     ! Horizontal Flux in u and v direction
src/OCE/DYN/wet_dry.F90:      DO jj = 2, jpj      ! Horizontal Flux in u and v direction
src/OCE/IOM/iom.F90:         DO ji = 1, nbdelay   ! save only ocean delayed global communication variables
src/OCE/IOM/iom_nf90.F90:         DO ji = 1, i_nvd                       ! dimensions size
src/OCE/LBC/mpp_nfd_generic.h90:                  DO jj = nlcj-ipj+1, nlcj             ! Scatter back to ARRAY_IN
src/OCE/LDF/ldfc1d_c2d.F90:         DO jk = jpkm1, 1, -1                ! pah1 at T-point
src/OCE/LDF/ldfc1d_c2d.F90:         DO jk = jpkm1, 1, -1                ! pah2 at F-point (zdep2 is an approximation in zps-coord.)
src/OCE/LDF/ldfdyn.F90:            DO jj = 1, jpj             ! Set local gridscale values
src/OCE/LDF/ldfdyn.F90:               DO jj = 2, jpjm1                                ! T-point value
src/OCE/LDF/ldfdyn.F90:               DO jj = 1, jpjm1                                ! F-point value
src/OCE/LDF/ldfslp.F90:      DO jk = 1, jpk             !==   i- & j-gradient of density   ==!
src/OCE/LDF/ldfslp.F90:      DO jk = 2, jpkm1                            !* Slopes at u and v points
src/OCE/LDF/ldfslp.F90:         DO jj = 2, jpjm1, MAX(1, jpj-3)                        ! rows jj=2 and =jpjm1 only
src/OCE/LDF/ldfslp.F90:         DO jj = 3, jpj-2                               ! other rows
src/OCE/LDF/ldfslp.F90:         DO jj = 2, jpjm1, MAX(1, jpj-3)                        ! rows jj=2 and =jpjm1 only
src/OCE/LDF/ldfslp.F90:         DO jj = 3, jpj-2                               ! other rows
src/OCE/LDF/ldfslp.F90:         DO jk = 1, jpkm1                     ! done each pair of triad
src/OCE/LDF/ldfslp.F90:            DO jj = 1, jpjm1                  ! NB: not masked ==>  a minimum value is set
src/OCE/LDF/ldfslp.F90:         DO jk = 1, jpkm1                     ! done each pair of triad
src/OCE/LDF/ldfslp.F90:            DO jj = 1, jpj                    ! NB: not masked ==>  a minimum value is set
src/OCE/LDF/ldfslp.F90:      DO jj = 1, jpj                          !==  Reciprocal depth of the w-point below ML base  ==!
src/OCE/LDF/ldfslp.F90:      DO jk = 1, jpk                               ! =1 inside the mixed layer, =0 otherwise
src/OCE/LDF/ldftra.F90:         DO jk = 1, jpkm1                             ! deeper value = surface value + mask for all levels
src/OCE/LDF/ldftra.F90:      DO jj = 2, jpjm1                          !== aei at u- and v-points  ==!
src/OCE/LDF/ldftra.F90:      DO jk = 2, jpkm1                          !==  deeper values equal the surface one  ==!
src/OCE/LDF/ldftra.F90:      DO jk = 1, jpkm1                                         ! e2u e3u u_eiv = -dk[psi_uw]
src/OCE/LDF/ldftra.F90:      DO jk = 1, jpkm1                                         ! e1v e3v v_eiv = -dk[psi_vw]
src/OCE/LDF/ldftra.F90:      DO jk = 1, jpkm1                                         ! e1 e2 w_eiv = dk[psix] + dk[psix]
src/OCE/SBC/fldread.F90:            DO jk = 2, jpk                               ! vertical sum
src/OCE/SBC/fldread.F90:            DO jk = 2, jpk                               ! vertical sum
src/OCE/SBC/fldread.F90:            DO jk = 1, jpk                                ! calculate transport on model grid
src/OCE/SBC/fldread.F90:            DO jk = 1, jpk                                ! make transport correction
src/OCE/SBC/fldread.F90:            DO jk = 1, jpk                                ! calculate transport on model grid
src/OCE/SBC/fldread.F90:            DO jk = 1, jpk                                ! make transport correction
src/OCE/SBC/sbcblk.F90:      DO jj = 1, jpj             ! tau module, i and j component
src/OCE/SBC/sbcblk.F90:      DO jj = 2, jpj    ! at T point
src/OCE/SBC/sbcblk.F90:      DO jj = 2, jpjm1  ! U & V-points (same as ocean).
src/OCE/SBC/sbcblk.F90:      DO jj = 2, jpjm1           ! reduced loop is necessary for reproducibility
src/OCE/SBC/sbccpl.F90:               DO jj = 2, jpjm1                                          ! T ==> (U,V)
src/OCE/SBC/sbccpl.F90:            DO jj = 2, jpjm1                                   ! T ==> (U,V)
src/OCE/SBC/sbcflx.F90:         DO jj = 1, jpj                                           ! set the ocean fluxes from read fields
src/OCE/SBC/sbcice_cice.F90:               DO jk = 1,jpkm1                     ! adjust initial vertical scale factors
src/OCE/SBC/sbcrnf.F90:            DO jj = 1, jpj                   ! update the depth over which runoffs are distributed
src/OCE/SBC/sbcrnf.F90:                  DO jk = 1, nk_rnf(ji,jj)                           ! recalculates h_rnf to be the depth in metres
src/OCE/SBC/sbcrnf.F90:         DO jj = 1, jpj                                ! set the associated depth
src/OCE/SBC/sbcrnf.F90:         DO jj = 1, jpj                     ! take in account min depth of ocean rn_hmin
src/OCE/SBC/sbcrnf.F90:         DO jj = 1, jpj                                ! set the associated depth
src/OCE/SBC/sbcwave.F90:         DO jj = 1, jpjm1              ! exp. wave number & Stokes drift velocity at u- & v-points
src/OCE/SBC/sbcwave.F90:         DO jj = 1, jpjm1              ! exp. wave number & Stokes drift velocity at u- & v-points
src/OCE/SBC/sbcwave.F90:      DO jk = 1, jpkm1               ! Horizontal e3*divergence
src/OCE/SBC/sbcwave.F90:      DO jk = jpkm1, ik, -1          ! integrate from the bottom the hor. divergence (NB: at k=jpk w is always zero)
src/OCE/SBC/sbcwave.F90:      DO jk = 1, jpkm1                                 !
src/OCE/TRA/eosbn2.F90:      DO jk = 2, jpkm1           ! interior points only (2=< jk =< jpkm1 )
src/OCE/TRA/eosbn2.F90:         DO jj = 1, jpj          ! surface and bottom value set to zero one for all in istate.F90
src/OCE/TRA/traadv.F90:         DO jk = 1, jpkm1                                                       ! eulerian transport + Stokes Drift
src/OCE/TRA/traadv_cen.F90:            DO jk = 1, jpkm1                       ! masked gradient
src/OCE/TRA/traadv_cen.F90:            DO jk = 1, jpkm1                       ! Horizontal advective fluxes
src/OCE/TRA/traadv_cen.F90:         DO jk = 1, jpkm1              !--  Divergence of advective fluxes  --!
src/OCE/TRA/traadv_fct.F90:         DO jk = 1, jpkm1     !* trend and after field with monotonic scheme
src/OCE/TRA/traadv_fct.F90:            DO jk = 1, jpkm1                 ! Laplacian
src/OCE/TRA/traadv_fct.F90:               DO jj = 1, jpjm1                    ! 1st derivative (gradient)
src/OCE/TRA/traadv_fct.F90:               DO jj = 2, jpjm1                    ! 2nd derivative * 1/ 6
src/OCE/TRA/traadv_fct.F90:            DO jk = 1, jpkm1                 ! Horizontal advective fluxes
src/OCE/TRA/traadv_fct.F90:            DO jk = 1, jpkm1                 ! 1st derivative (gradient)
src/OCE/TRA/traadv_fct.F90:            DO jk = 1, jpkm1                 ! Horizontal advective fluxes
src/OCE/TRA/traadv_fct.F90:            DO jk = 1, jpkm1     !* trend and after field with monotonic scheme
src/OCE/TRA/traadv_fct.F90:      DO jk = 3, jpkm1        !==  build the three diagonal matrix  ==!
src/OCE/TRA/traadv_fct.F90:      DO jj = 1, jpj                ! first recurrence
src/OCE/TRA/traadv_fct.F90:      DO jj = 1, jpj                ! second recurrence:    Zk = Yk - Ik / Tk-1  Zk-1
src/OCE/TRA/traadv_fct.F90:      DO jj = 1, jpj                ! third recurrence: Xk = (Zk - Sk Xk+1 ) / Tk
src/OCE/TRA/traadv_fct.F90:      DO jk = 3, jpkm1                 ! interior (from jk=3 to jpk-1)
src/OCE/TRA/traadv_fct.F90:      DO jj = 2, jpjm1                 ! 2nd order centered at top & bottom
src/OCE/TRA/traadv_fct.F90:      DO jj = 2, jpjm1              !* 1st recurrence:   Tk = Dk - Ik Sk-1 / Tk-1
src/OCE/TRA/traadv_fct.F90:      DO jj = 2, jpjm1              !* 2nd recurrence:    Zk = Yk - Ik / Tk-1  Zk-1
src/OCE/TRA/traadv_fct.F90:      DO jj = 2, jpjm1              !* 3d recurrence:    Xk = (Zk - Sk Xk+1 ) / Tk
src/OCE/TRA/traadv_fct.F90:      DO jj = 2, jpjm1              !* 1st recurrence:   Tk = Dk - Ik Sk-1 / Tk-1
src/OCE/TRA/traadv_fct.F90:      DO jj = 2, jpjm1              !* 2nd recurrence:    Zk = Yk - Ik / Tk-1  Zk-1
src/OCE/TRA/traadv_fct.F90:      DO jj = 2, jpjm1              !* 3d recurrence:    Xk = (Zk - Sk Xk+1 ) / Tk
src/OCE/TRA/traadv_mus.F90:         DO jk = 1, jpkm1                 !-- Slopes limitation
src/OCE/TRA/traadv_mus.F90:         DO jk = 1, jpkm1                 !-- MUSCL horizontal advective fluxes
src/OCE/TRA/traadv_mus.F90:         DO jk = 1, jpkm1                 !-- Tracer advective trend
src/OCE/TRA/traadv_mus.F90:         DO jk = 2, jpkm1                 !-- Slopes limitation
src/OCE/TRA/traadv_mus.F90:         DO jk = 1, jpk-2                 !-- vertical advective flux
src/OCE/TRA/traadv_mus.F90:         DO jk = 1, jpkm1                 !-- vertical advective trend
src/OCE/TRA/traadv_qck.F90:         DO jk = 1, jpkm1     !--- Computation of the ustream and downstream value of the tracer and the mask
src/OCE/TRA/traadv_qck.F90:         DO jk = 2, jpkm1                    !* Interior point   (w-masked 2nd order centered flux)
src/OCE/TRA/traadv_qck.F90:         DO jk = 1, jpkm1          !==  Tracer flux divergence added to the general trend  ==!
src/OCE/TRA/traadv_ubs.F90:         DO jk = 1, jpkm1        !==  horizontal laplacian of before tracer ==!
src/OCE/TRA/traadv_ubs.F90:            DO jj = 1, jpjm1              ! First derivative (masked gradient)
src/OCE/TRA/traadv_ubs.F90:            DO jj = 2, jpjm1              ! Second derivative (divergence)
src/OCE/TRA/traadv_ubs.F90:         DO jk = 1, jpkm1        !==  Horizontal advective fluxes  ==!     (UBS)
src/OCE/TRA/traadv_ubs.F90:         DO jk = 1, jpkm1        !==  add the horizontal advective trend  ==!
src/OCE/TRA/traadv_ubs.F90:            DO jk = 1, jpkm1           !* trend and after field with monotonic scheme
src/OCE/TRA/traadv_ubs.F90:         DO jk = 1, jpkm1        !  final trend with corrected fluxes
src/OCE/TRA/traadv_ubs.F90:            DO jk = 1, jpkm1                       ! (compute -w.dk[ptn]= -dk[w.ptn] + ptn.dk[w])
src/OCE/TRA/traadv_ubs.F90:      DO jk = 1, jpkm1     ! search maximum in neighbourhood
src/OCE/TRA/traadv_ubs.F90:      DO jk = 1, jpkm1     ! search minimum in neighbourhood
src/OCE/TRA/trabbl.F90:         DO jj = 2, jpjm1                                    ! Compute the trend
src/OCE/TRA/trabbl.F90:            DO ji = 1, jpim1            ! CAUTION start from i=1 to update i=2 when cyclic east-west
src/OCE/TRA/trabbl.F90:                  DO jk = ikus, ikud-1                            ! down-slope upper to down T-point (deep column)
src/OCE/TRA/trabbl.F90:                  DO jk = ikvs, ikvd-1                            ! down-slope upper to down T-point (deep column)
src/OCE/TRA/trabbl.F90:         DO jj = 1, jpjm1                      ! (criteria for non zero flux: grad(rho).grad(h) < 0 )
src/OCE/TRA/trabbl.F90:            DO jj = 1, jpjm1                                 ! criteria: grad(rho).grad(h)<0  and grad(rho).grad(h)<0
src/OCE/TRA/trabbl.F90:            DO jj = 1, jpjm1                            ! criteria: rho_up > rho_down
src/OCE/TRA/trabbl.F90:      DO jj = 1, jpjm1                    ! (the "shelf" bottom k-indices are mbku and mbkv)
src/OCE/TRA/trabbl.F90:      DO jj = 1, jpjm1              !* bbl thickness at u- (v-) point
src/OCE/TRA/trabbl.F90:         DO ji = 1, jpim1                 ! minimum of top & bottom e3u_0 (e3v_0)
src/OCE/TRA/traldf_iso.F90:            DO jj = 1, jpjm1              ! bottom correction (partial bottom cell)
src/OCE/TRA/traldf_iso.F90:            DO jj = 1 , jpjm1            !==  Horizontal fluxes
src/OCE/TRA/traldf_iso.F90:            DO jj = 2 , jpjm1          !== horizontal divergence and add to pta
src/OCE/TRA/traldf_iso.F90:         DO jk = 2, jpkm1           ! interior (2=<jk=<jpk-1)
src/OCE/TRA/traldf_iso.F90:         DO jk = 1, jpkm1                 !==  Divergence of vertical fluxes added to pta  ==!
src/OCE/TRA/traldf_lap_blp.F90:         DO jk = 1, jpkm1              !== First derivative (gradient)  ==!
src/OCE/TRA/traldf_lap_blp.F90:            DO jj = 1, jpjm1                    ! bottom
src/OCE/TRA/traldf_lap_blp.F90:         DO jk = 1, jpkm1              !== Second derivative (divergence) added to the general tracer trends  ==!
src/OCE/TRA/traldf_triad.F90:         DO jk = 1, jpkm1        !==  before lateral T & S gradients at T-level jk  ==!
src/OCE/TRA/traldf_triad.F90:            DO jj = 1, jpjm1                       ! bottom level
src/OCE/TRA/traldf_triad.F90:         DO jk = 1, jpkm1                 !==  Divergence of vertical fluxes added to pta  ==!
src/OCE/TRA/tramle.F90:         DO jk = jpkm1, nlb10, -1                      ! from the bottom to nlb10 (10m)
src/OCE/TRA/tramle.F90:               DO ji = 1, jpi                          ! index of the w-level at the ML based
src/OCE/TRA/tramle.F90:      DO jk = 1, ikmax                                 ! MLD and mean buoyancy and N2 over the mixed layer
src/OCE/TRA/tramle.F90:      DO jk = 2, ikmax                                ! start from 2 : surface value = 0
src/OCE/TRA/tramle.F90:         DO jj = 1, jpjm1                          ! CAUTION pu,pv must be defined at row/column i=1 / j=1
src/OCE/TRA/tramle.F90:            DO jj = 2, jpj                           ! "coriolis+ time^-1" at u- & v-points
src/OCE/TRA/tranpc.F90:         DO jj = 2, jpjm1                 ! interior column only
src/OCE/TRA/tranpc.F90:                           DO jk = ikup, ikbot      ! Inside the instable (and overlying neutral) portion of the column
src/OCE/TRA/tranpc.F90:                           DO jk = ikup, ik_low              ! we must go 1 point deeper than ikdown!
src/OCE/TRA/traqsr.F90:               DO jj = 2, jpjm1                       ! Separation in R-G-B depending of the surface Chl
src/OCE/TRA/traqsr.F90:         DO jk = 2, nksr+1                   !* interior equi-partition in R-G-B depending of vertical profile of Chl
src/OCE/TRA/traqsr.F90:         DO jk = 1, nksr                     !* now qsr induced heat content
src/OCE/TRA/traqsr.F90:         DO jk = 1, nksr                          ! solar heat absorbed at T-point in the top 400m
src/OCE/TRA/traqsr.F90:      DO jk = 1, nksr            !  update to the temp. trend  !
src/OCE/TRA/traqsr.F90:         DO jj = 2, jpjm1        !-----------------------------!
src/OCE/TRA/trasbc.F90:         DO jj = 2, jpj                         !==>> add concentration/dilution effect due to constant volume cell
src/OCE/TRA/trazdf.F90:            DO jj = 2, jpjm1        !* 1st recurrence:   Tk = Dk - Ik Sk-1 / Tk-1   (increasing k)
src/OCE/TRA/trazdf.F90:               DO ji = fs_2, fs_jpim1            ! done one for all passive tracers (so included in the IF instruction)
src/OCE/TRA/trazdf.F90:         DO jj = 2, jpjm1           !* 2nd recurrence:    Zk = Yk - Ik / Tk-1  Zk-1
src/OCE/TRA/trazdf.F90:         DO jj = 2, jpjm1           !* 3d recurrence:    Xk = (Zk - Sk Xk+1 ) / Tk   (result is the after tracer)
src/OCE/TRA/zpshde.F90:         DO jj = 1, jpjm1                 ! Gradient of density at the last level
src/OCE/TRA/zpshde.F90:         DO jj = 1, jpjm1                 ! Gradient of density at the last level
src/OCE/TRA/zpshde.F90:         DO jj = 1, jpjm1                 ! Gradient of density at the last level
src/OCE/TRD/trddyn.F90:                              DO jk = 1, jpkm1   ! no mask as un,vn are masked
src/OCE/TRD/trdglo.F90:            DO jk = 1, jpkm1       ! global sum of mask volume trend and trend*T (including interior mask)
src/OCE/TRD/trdglo.F90:         DO jk = 1, jpkm1                 ! Density flux divergence at t-point
src/OCE/TRD/trdken.F90:!            DO jj = 1, jpj    !
src/OCE/TRD/trdken.F90:!            DO jj = 1, jpj                                                  ! after velocity known (now filed at this stage)
src/OCE/TRD/trdmxl.F90:         DO jk = 1, jpktrd               ! initialize wkx with vertical scale factor in mixed-layer
src/OCE/TRD/trdmxl.F90:         DO jk = 1, jpktrd               ! integration weights
src/OCE/TRD/trdtra.F90:      DO jk = 1, jpkm1         ! advective trend
src/OCE/TRD/trdvor.F90:         DO jj = 2, jpjm1                                                             ! wind stress trends
src/OCE/USR/usrdef_istate.F90:      DO jk = 1, jpk             ! horizontally uniform T & S profiles
src/OCE/USR/usrdef_zgr.F90:      DO jk = 1, jpk          ! depth at T and W-points
src/OCE/ZDF/zdfddm.F90:         DO jj = 1, jpj                !==  R=zrau = (alpha / beta) (dk[t] / dk[s])  ==!
src/OCE/ZDF/zdfddm.F90:         DO jj = 1, jpj                !==  indicators  ==!
src/OCE/ZDF/zdfdrg.F90:            DO jj = 1, jpj                   ! pCd0 = mask (and boosted) logarithmic drag coef.
src/OCE/ZDF/zdfgls.F90:      DO jj = 2, jpjm1              !==  surface ocean friction
src/OCE/ZDF/zdfgls.F90:         DO jj = 2, jpjm1                      ! bottom friction
src/OCE/ZDF/zdfgls.F90:      DO jk = 2, jpkm1              !==  Compute dissipation rate  ==!
src/OCE/ZDF/zdfgls.F90:      DO jk = 2, jpkm1                             ! First recurrence : Dk = Dk - Lk * Uk-1 / Dk-1
src/OCE/ZDF/zdfgls.F90:      DO jk = 2, jpk                               ! Second recurrence : Lk = RHSk - Lk / Dk-1 * Lk-1
src/OCE/ZDF/zdfgls.F90:      DO jk = jpk-1, 2, -1                         ! thrid recurrence : Ek = ( Lk - Uk * Ek+1 ) / Dk
src/OCE/ZDF/zdfgls.F90:      DO jk = 2, jpkm1                             ! First recurrence : Dk = Dk - Lk * Uk-1 / Dk-1
src/OCE/ZDF/zdfgls.F90:      DO jk = 2, jpk                               ! Second recurrence : Lk = RHSk - Lk / Dk-1 * Lk-1
src/OCE/ZDF/zdfgls.F90:      DO jk = jpk-1, 2, -1                         ! Third recurrence : Ek = ( Lk - Uk * Ek+1 ) / Dk
src/OCE/ZDF/zdfgls.F90:      DO jk = 1, jpkm1 ! Note that this set boundary conditions on hmxl_n at the same time
src/OCE/ZDF/zdfgls.F90:      DO jj = 2, jpjm1                ! update bottom with good values
src/OCE/ZDF/zdfiwm.F90:      DO jj = 1, jpj                ! part independent of the level
src/OCE/ZDF/zdfiwm.F90:      DO jk = 2, jpkm1              ! complete with the level-dependent part
src/OCE/ZDF/zdfiwm.F90:         DO jk = 2, jpkm1              ! part independent of the level
src/OCE/ZDF/zdfiwm.F90:         DO jk = 2, jpkm1              ! complete with the level-dependent part
src/OCE/ZDF/zdfiwm.F90:         DO jk = 2, jpkm1              ! part independent of the level
src/OCE/ZDF/zdfiwm.F90:         DO jk = 2, jpkm1              ! complete with the level-dependent part
src/OCE/ZDF/zdfiwm.F90:      DO jk = 2, jpkm1              ! part independent of the level
src/OCE/ZDF/zdfiwm.F90:      DO jk = 2, jpkm1              ! complete with the level-dependent part
src/OCE/ZDF/zdfiwm.F90:         DO jk = 2, jpkm1              ! energetic (Reb > 480) and buoyancy-controlled (Reb <10.224 ) regimes
src/OCE/ZDF/zdfiwm.F90:      DO jk = 2, jpkm1                 ! Bound diffusivity by molecular value and 100 cm2/s
src/OCE/ZDF/zdfiwm.F90:         DO jk = 2, jpkm1              ! Calculate S/T diffusivity ratio as a function of Reb
src/OCE/ZDF/zdfiwm.F90:         DO jk = 2, jpkm1           !* update momentum & tracer diffusivity with wave-driven mixing
src/OCE/ZDF/zdfmxl.F90:         DO jj = 1, jpj                ! Mixed layer level: w-level
src/OCE/ZDF/zdfmxl.F90:      DO jk = jpkm1, nlb10, -1         ! from the bottom to nlb10
src/OCE/ZDF/zdfosm.F90:                DO jk = 2, imld(ji,jj)   ! mixed layer diffusivity
src/OCE/ZDF/zdfosm.F90:                DO jk = 2, ibld(ji,jj) ! corrected to ibld
src/OCE/ZDF/zdfosm.F90:          DO jk = 2, jpkm1           !* Shear production at uw- and vw-points (energy conserving form)
src/OCE/ZDF/zdfosm.F90:        DO jj = 1, jpj              ! Mixed layer level: w-level
src/OCE/ZDF/zdfosm.F90:      DO jk = 1, jpkm1           ! add non-local u and v fluxes
src/OCE/ZDF/zdfphy.F90:      DO jk = 1, jpk                      ! set turbulent closure Kz to the background value (avt_k, avm_k)
src/OCE/ZDF/zdfric.F90:            DO ji = 1, jpim1              ! coefficient = F(richardson number) (avm-weighted Ri)
src/OCE/ZDF/zdfric.F90:         DO jj = 2, jpjm1        !* Ekman depth
src/OCE/ZDF/zdfric.F90:         DO jk = 2, jpkm1        !* minimum mixing coeff. within the Ekman layer
src/OCE/ZDF/zdfsh2.F90:         DO jj = 1, jpjm1        !* 2 x shear production at uw- and vw-points (energy conserving form)
src/OCE/ZDF/zdfsh2.F90:         DO jj = 2, jpjm1        !* shear production at w-point
src/OCE/ZDF/zdfsh2.F90:            DO ji = 2, jpim1           ! coast mask: =2 at the coast ; =1 otherwise (NB: wmask useless as zsh2 are masked)
src/OCE/ZDF/zdftke.F90:      DO jj = 2, jpjm1            ! en(1)   = rn_ebb taum / rau0  (min value rn_emin0)
src/OCE/ZDF/zdftke.F90:         DO jj = 2, jpjm1              ! bottom friction
src/OCE/ZDF/zdftke.F90:            DO jj = 1, jpj               ! Last w-level at which zpelc>=0.5*us*us
src/OCE/ZDF/zdftke.F90:               DO ji = 1, jpi            !      with us=0.016*wind(starting from jpk-1)
src/OCE/ZDF/zdftke.F90:         DO jk = 2, jpkm1         !* TKE Langmuir circulation source term added to en
src/OCE/ZDF/zdftke.F90:      DO jk = 2, jpkm1           !* Matrix and right hand side in en
src/OCE/ZDF/zdftke.F90:      DO jk = 3, jpkm1                             ! First recurrence : Dk = Dk - Lk * Uk-1 / Dk-1
src/OCE/ZDF/zdftke.F90:      DO jj = 2, jpjm1                             ! Second recurrence : Lk = RHSk - Lk / Dk-1 * Lk-1
src/OCE/ZDF/zdftke.F90:      DO jj = 2, jpjm1                             ! thrid recurrence : Ek = ( Lk - Uk * Ek+1 ) / Dk
src/OCE/ZDF/zdftke.F90:      DO jk = 2, jpkm1                             ! set the minimum value of tke
src/OCE/ZDF/zdftke.F90:         DO jk = 2, jpkm1                       ! nn_eice=0 : ON below sea-ice ; nn_eice>0 : partly OFF
src/OCE/ZDF/zdftke.F90:         DO jj = 2, jpjm1                     ! No sea-ice
src/OCE/ZDF/zdftke.F90:         DO jk = 2, jpkm1         ! from the surface to the bottom :
src/OCE/ZDF/zdftke.F90:         DO jk = jpkm1, 2, -1     ! from the bottom to the surface :
src/OCE/ZDF/zdftke.F90:         DO jk = 2, jpkm1         ! from the surface to the bottom : lup
src/OCE/ZDF/zdftke.F90:         DO jk = jpkm1, 2, -1     ! from the bottom to the surface : ldown
src/OCE/ZDF/zdftke.F90:      DO jk = 1, jpkm1            !* vertical eddy viscosity & diffivity at w-points
src/OFF/dtadyn.F90:         DO jj = 1, jpj                                ! set the associated depth
src/OFF/dtadyn.F90:      DO jj = 1, jpj                   ! update the depth over which runoffs are distributed
src/OFF/dtadyn.F90:            DO jk = 1, nk_rnf(ji,jj)                           ! recalculates h_rnf to be the depth in metres
src/TOP/C14/trcatm_c14.F90:            DO jj = 1 , jpj                       ! from C14b package
src/TOP/CFC/trcsms_cfc.F90:         DO jj = 1, jpj                                            !  i-j loop  !
src/TOP/CFC/trcsms_cfc.F90:            DO ji = 1, jpi                                         !------------!
src/TOP/PISCES/P2Z/p2zbio.F90:      DO jk = 1, jpkbm1                      !  Upper ocean (bio-layers)  !
src/TOP/PISCES/P2Z/p2zbio.F90:      DO jk = jpkb, jpkm1                    !  Upper ocean (bio-layers)  !
src/TOP/PISCES/P2Z/p2zopt.F90:      DO jk = 2, jpk                                  ! local par at w-levels
src/TOP/PISCES/P2Z/p2zopt.F90:      DO jk = 1, jpkm1                                ! mean par at t-levels
src/TOP/PISCES/P2Z/p2zopt.F90:      DO jk = 1, jpkm1                                ! (i.e. 1rst T-level strictly below EL bottom)
src/TOP/trcdta.F90:            DO jj = 1, jpj                         ! vertical interpolation of T & S
src/TOP/trcdta.F90:                  DO jk = 1, jpk                        ! determines the intepolated T-S profiles at each (i,j) points
src/TOP/trcsub.F90:      DO jk = 1, jpkm1                                 ! Horizontal divergence of barotropic transports
src/TOP/trcsub.F90:      DO jk = jpkm1, 1, -1                             ! integrate from the bottom the hor. divergence
src/TOP/TRP/trcadv.F90:            DO jk = 1, jpkm1                                                       ! eulerian transport + Stokes Drift
src/TOP/TRP/trdmxl_trc.F90:         DO jk = 1, jpktrd_trc                                    ! initialize wkx_trc with vertical scale factor in mixed-layer
src/TOP/TRP/trdmxl_trc.F90:         DO jk = 1, jpktrd_trc                                    ! compute mixed-layer depth : rmld_trc
src/TOP/TRP/trdmxl_trc.F90:         DO jk = 1, jpktrd_trc                                    ! compute integration weights
src/TOP/TRP/trdmxl_trc.F90:      DO jk = 1, jpktrd_trc ! - 1 ???

Recommendation

put them back !

#2523 fixed phasing 4.0 - trunk systeam smasson
Description

Context

merge r4.0-HEAD developments in the trunk if not already done…

Analysis

Recommendation

#2522 fixed sbcflx defects systeam clem
Description

Context

The flux formulation (sbcflx) has several defects:

1) The fields that are read are not masked which may end up in a model crash if the filled values on the continents are not set to zero

2) It seems (to be verified) that all the fields need a lbc_lnk otherwise the north fold is not ok. I do not understand why. This observation comes from a simulation using nemo3.6, so it may not apply to 4.0 and the trunk

3) To fully use sbcflx, one needs to read the salt flux (sfx) from the namelist and not impose it to 0

Analysis

Recommendation

Correct the above points for 4.0 and the trunk.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Note: See TracQuery for help on using queries.