MODULE sbcana !!====================================================================== !! *** MODULE sbcana *** !! Ocean forcing: analytical momentum, heat and freshwater forcings !!===================================================================== !! History : 3.0 ! 2006-06 (G. Madec) Original code !! 3.2 ! 2009-07 (G. Madec) Style only !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! sbc_ana : set an analytical ocean forcing !! sbc_gyre : set the GYRE configuration analytical forcing !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE sbc_oce ! Surface boundary condition: ocean fields USE phycst ! physical constants USE in_out_manager ! I/O manager USE lib_mpp ! distribued memory computing library USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE lib_fortran IMPLICIT NONE PRIVATE PUBLIC sbc_ana ! routine called in sbcmod module PUBLIC sbc_gyre ! routine called in sbcmod module ! !!* Namelist namsbc_ana * INTEGER :: nn_tau000 = 1 ! nb of time-step during which the surface stress ! ! increase from 0 to its nominal value REAL(wp) :: rn_utau0 = 0._wp ! constant wind stress value in i-direction REAL(wp) :: rn_vtau0 = 0._wp ! constant wind stress value in j-direction REAL(wp) :: rn_qns0 = 0._wp ! non solar heat flux REAL(wp) :: rn_qsr0 = 0._wp ! solar heat flux REAL(wp) :: rn_emp0 = 0._wp ! net freshwater flux !! * Substitutions # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO Consortium (2010) !! $Id: sbcana.F90 2977 2011-10-22 13:46:41Z cetlod $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE sbc_ana( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_ana *** !! !! ** Purpose : provide at each time-step the ocean surface boundary !! condition, i.e. the momentum, heat and freshwater fluxes. !! !! ** Method : Constant and uniform surface forcing specified from !! namsbc_ana namelist parameters. All the fluxes are time !! independant except the stresses which increase from zero !! during the first nn_tau000 time-step !! CAUTION : never mask the surface stress field ! !! !! ** Action : - set the ocean surface boundary condition, i.e. !! utau, vtau, taum, wndm, qns, qsr, emp, emps !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time step ! REAL(wp) :: zfacto ! local scalar REAL(wp) :: zrhoa = 1.22_wp ! Air density kg/m3 REAL(wp) :: zcdrag = 1.5e-3_wp ! drag coefficient REAL(wp) :: ztx, zty, zmod, zcoef ! temporary variables !! NAMELIST/namsbc_ana/ nn_tau000, rn_utau0, rn_vtau0, rn_qns0, rn_qsr0, rn_emp0 !!--------------------------------------------------------------------- ! IF( kt == nit000 ) THEN ! REWIND( numnam ) ! Read Namelist namsbc : surface fluxes READ ( numnam, namsbc_ana ) ! IF(lwp) WRITE(numout,*)' ' IF(lwp) WRITE(numout,*)' sbc_ana : Constant surface fluxes read in namsbc_ana namelist' IF(lwp) WRITE(numout,*)' ~~~~~~~ ' IF(lwp) WRITE(numout,*)' spin up of the stress nn_tau000 = ', nn_tau000, ' time-steps' IF(lwp) WRITE(numout,*)' constant i-stress rn_utau0 = ', rn_utau0 , ' N/m2' IF(lwp) WRITE(numout,*)' constant j-stress rn_vtau0 = ', rn_vtau0 , ' N/m2' IF(lwp) WRITE(numout,*)' non solar heat flux rn_qns0 = ', rn_qns0 , ' W/m2' IF(lwp) WRITE(numout,*)' solar heat flux rn_qsr0 = ', rn_qsr0 , ' W/m2' IF(lwp) WRITE(numout,*)' net heat flux rn_emp0 = ', rn_emp0 , ' Kg/m2/s' ! nn_tau000 = MAX( nn_tau000, 1 ) ! must be >= 1 ! qns (:,:) = rn_qns0 qsr (:,:) = rn_qsr0 emp (:,:) = rn_emp0 emps(:,:) = rn_emp0 ! utau(:,:) = rn_utau0 vtau(:,:) = rn_vtau0 taum(:,:) = SQRT ( rn_utau0 * rn_utau0 + rn_vtau0 *rn_vtau0 ) wndm(:,:) = SQRT ( taum(1,1) / ( zrhoa * zcdrag ) ) ENDIF ! Increase the surface stress to its nominal value during the first nn_tau000 time-steps IF( kt <= nn_tau000 ) THEN zfacto = 0.5 * ( 1. - COS( rpi * FLOAT( kt ) / FLOAT( nn_tau000 ) ) ) zcoef = 1. / ( zrhoa * zcdrag ) ztx = zfacto * rn_utau0 zty = zfacto * rn_vtau0 zmod = SQRT( ztx * ztx + zty * zty ) utau(:,:) = ztx vtau(:,:) = zty taum(:,:) = zmod zmod = SQRT( zmod * zcoef ) wndm(:,:) = zmod ENDIF ! END SUBROUTINE sbc_ana SUBROUTINE sbc_gyre( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_ana *** !! !! ** Purpose : provide at each time-step the GYRE surface boundary !! condition, i.e. the momentum, heat and freshwater fluxes. !! !! ** Method : analytical seasonal cycle for GYRE configuration. !! CAUTION : never mask the surface stress field ! !! !! ** Action : - set the ocean surface boundary condition, i.e. !! utau, vtau, taum, wndm, qns, qsr, emp, emps !! !! Reference : Hazeleger, W., and S. Drijfhout, JPO, 30, 677-695, 2000. !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time step !! INTEGER :: ji, jj ! dummy loop indices INTEGER :: zyear0 ! initial year INTEGER :: zmonth0 ! initial month INTEGER :: zday0 ! initial day INTEGER :: zday_year0 ! initial day since january 1st REAL(wp) :: ztau , ztau_sais ! wind intensity and of the seasonal cycle REAL(wp) :: ztime ! time in hour REAL(wp) :: ztimemax , ztimemin ! 21th June, and 21th decem. if date0 = 1st january REAL(wp) :: ztimemax1, ztimemin1 ! 21th June, and 21th decem. if date0 = 1st january REAL(wp) :: ztimemax2, ztimemin2 ! 21th June, and 21th decem. if date0 = 1st january REAL(wp) :: ztaun ! intensity REAL(wp) :: zemp_s, zemp_n, zemp_sais, ztstar REAL(wp) :: zcos_sais1, zcos_sais2, ztrp, zconv, t_star REAL(wp) :: zsumemp, zsurf REAL(wp) :: zrhoa = 1.22 ! Air density kg/m3 REAL(wp) :: zcdrag = 1.5e-3 ! drag coefficient REAL(wp) :: ztx, zty, zmod, zcoef ! temporary variables REAL(wp) :: zyydd ! number of days in one year !!--------------------------------------------------------------------- zyydd = REAL(nyear_len(1),wp) ! ---------------------------- ! ! heat and freshwater fluxes ! ! ---------------------------- ! !same temperature, E-P as in HAZELEGER 2000 zyear0 = ndate0 / 10000 ! initial year zmonth0 = ( ndate0 - zyear0 * 10000 ) / 100 ! initial month zday0 = ndate0 - zyear0 * 10000 - zmonth0 * 100 ! initial day betwen 1 and 30 zday_year0 = ( zmonth0 - 1 ) * 30.+zday0 ! initial day betwen 1 and 360 ! current day (in hours) since january the 1st of the current year ztime = REAL( kt ) * rdt / (rmmss * rhhmm) & ! total incrementation (in hours) & - (nyear - 1) * rjjhh * zyydd ! minus years since beginning of experiment (in hours) ztimemax1 = ((5.*30.)+21.)* 24. ! 21th june at 24h in hours ztimemin1 = ztimemax1 + rjjhh * zyydd / 2 ! 21th december in hours ztimemax2 = ((6.*30.)+21.)* 24. ! 21th july at 24h in hours ztimemin2 = ztimemax2 - rjjhh * zyydd / 2 ! 21th january in hours ! ! NB: rjjhh * zyydd / 4 = one seasonal cycle in hours ! amplitudes zemp_S = 0.7 ! intensity of COS in the South zemp_N = 0.8 ! intensity of COS in the North zemp_sais = 0.1 zTstar = 28.3 ! intemsity from 28.3 a -5 deg ! 1/2 period between 21th June and 21th December and between 21th July and 21th January zcos_sais1 = COS( (ztime - ztimemax1) / (ztimemin1 - ztimemax1) * rpi ) zcos_sais2 = COS( (ztime - ztimemax2) / (ztimemax2 - ztimemin2) * rpi ) ztrp= - 40.e0 ! retroaction term on heat fluxes (W/m2/K) zconv = 3.16e-5 ! convertion factor: 1 m/yr => 3.16e-5 mm/s DO jj = 1, jpj DO ji = 1, jpi ! domain from 15 deg to 50 deg between 27 and 28 degC at 15N, -3 ! and 13 degC at 50N 53.5 + or - 11 = 1/4 period : ! 64.5 in summer, 42.5 in winter t_star = zTstar * ( 1 + 1. / 50. * zcos_sais2 ) & & * COS( rpi * (gphit(ji,jj) - 5.) & & / ( 53.5 * ( 1 + 11 / 53.5 * zcos_sais2 ) * 2.) ) ! 23.5 deg : tropics qsr (ji,jj) = 230 * COS( 3.1415 * ( gphit(ji,jj) - 23.5 * zcos_sais1 ) / ( 0.9 * 180 ) ) qns (ji,jj) = ztrp * ( tsb(ji,jj,1,jp_tem) - t_star ) - qsr(ji,jj) IF( gphit(ji,jj) >= 14.845 .AND. 37.2 >= gphit(ji,jj) ) THEN ! zero at 37.8 deg, max at 24.6 deg emp (ji,jj) = zemp_S * zconv & & * SIN( rpi / 2 * (gphit(ji,jj) - 37.2) / (24.6 - 37.2) ) & & * ( 1 - zemp_sais / zemp_S * zcos_sais1) ELSE emp (ji,jj) = - zemp_N * zconv & & * SIN( rpi / 2 * (gphit(ji,jj) - 37.2) / (46.8 - 37.2) ) & & * ( 1 - zemp_sais / zemp_N * zcos_sais1 ) ENDIF END DO END DO emps(:,:) = emp(:,:) ! Compute the emp flux such as its integration on the whole domain at each time is zero IF( nbench /= 1 ) THEN zsumemp = GLOB_SUM( emp(:,:) ) zsurf = GLOB_SUM( tmask(:,:,1) ) ! Default GYRE configuration zsumemp = zsumemp / zsurf ELSE ! Benchmark GYRE configuration (to allow the bit to bit comparison between Mpp/Mono case) zsumemp = 0.e0 ; zsurf = 0.e0 ENDIF !salinity terms emp (:,:) = emp(:,:) - zsumemp * tmask(:,:,1) emps(:,:) = emp(:,:) ! ---------------------------- ! ! momentum fluxes ! ! ---------------------------- ! ! same wind as in Wico !test date0 : ndate0 = 010203 zyear0 = ndate0 / 10000 zmonth0 = ( ndate0 - zyear0 * 10000 ) / 100 zday0 = ndate0 - zyear0 * 10000 - zmonth0 * 100 !Calculates nday_year, day since january 1st zday_year0 = (zmonth0-1)*30.+zday0 !accumulates days of previous months of this year ! day (in hours) since january the 1st ztime = FLOAT( kt ) * rdt / (rmmss * rhhmm) & ! incrementation in hour & - (nyear - 1) * rjjhh * zyydd ! - nber of hours the precedent years ztimemax = ((5.*30.)+21.)* 24. ! 21th june in hours ztimemin = ztimemax + rjjhh * zyydd / 2 ! 21th december in hours ! ! NB: rjjhh * zyydd / 4 = 1 seasonal cycle in hours ! mean intensity at 0.105 ; srqt(2) because projected with 45deg angle ztau = 0.105 / SQRT( 2. ) ! seasonal oscillation intensity ztau_sais = 0.015 ztaun = ztau - ztau_sais * COS( (ztime - ztimemax) / (ztimemin - ztimemax) * rpi ) DO jj = 1, jpj DO ji = 1, jpi ! domain from 15deg to 50deg and 1/2 period along 14deg ! so 5/4 of half period with seasonal cycle utau(ji,jj) = - ztaun * SIN( rpi * (gphiu(ji,jj) - 15.) / (29.-15.) ) vtau(ji,jj) = ztaun * SIN( rpi * (gphiv(ji,jj) - 15.) / (29.-15.) ) END DO END DO ! module of wind stress and wind speed at T-point zcoef = 1. / ( zrhoa * zcdrag ) !CDIR NOVERRCHK DO jj = 2, jpjm1 !CDIR NOVERRCHK DO ji = fs_2, fs_jpim1 ! vect. opt. ztx = utau(ji-1,jj ) + utau(ji,jj) zty = vtau(ji ,jj-1) + vtau(ji,jj) zmod = 0.5 * SQRT( ztx * ztx + zty * zty ) taum(ji,jj) = zmod wndm(ji,jj) = SQRT( zmod * zcoef ) END DO END DO CALL lbc_lnk( taum(:,:), 'T', 1. ) ; CALL lbc_lnk( wndm(:,:), 'T', 1. ) ! ---------------------------------- ! ! control print at first time-step ! ! ---------------------------------- ! IF( kt == nit000 .AND. lwp ) THEN WRITE(numout,*) WRITE(numout,*)'sbc_gyre : analytical surface fluxes for GYRE configuration' WRITE(numout,*)'~~~~~~~~ ' WRITE(numout,*)' nyear = ', nyear WRITE(numout,*)' nmonth = ', nmonth WRITE(numout,*)' nday = ', nday WRITE(numout,*)' nday_year = ', nday_year WRITE(numout,*)' ztime = ', ztime WRITE(numout,*)' ztimemax = ', ztimemax WRITE(numout,*)' ztimemin = ', ztimemin WRITE(numout,*)' ztimemax1 = ', ztimemax1 WRITE(numout,*)' ztimemin1 = ', ztimemin1 WRITE(numout,*)' ztimemax2 = ', ztimemax2 WRITE(numout,*)' ztimemin2 = ', ztimemin2 WRITE(numout,*)' zyear0 = ', zyear0 WRITE(numout,*)' zmonth0 = ', zmonth0 WRITE(numout,*)' zday0 = ', zday0 WRITE(numout,*)' zday_year0 = ', zday_year0 WRITE(numout,*)' zyydd = ', zyydd WRITE(numout,*)' zemp_S = ', zemp_S WRITE(numout,*)' zemp_N = ', zemp_N WRITE(numout,*)' zemp_sais = ', zemp_sais WRITE(numout,*)' zTstar = ', zTstar WRITE(numout,*)' zsumemp = ', zsumemp WRITE(numout,*)' zsurf = ', zsurf WRITE(numout,*)' ztrp = ', ztrp WRITE(numout,*)' zconv = ', zconv WRITE(numout,*)' ndastp = ', ndastp WRITE(numout,*)' adatrj = ', adatrj ENDIF ! END SUBROUTINE sbc_gyre !!====================================================================== END MODULE sbcana