

What factors will

determine whether

NEMO is here in 10 years time

NEMO Working Group Leaders

January 2020

Contents

- Initial remarks & main themes
- Dynamical core
- Physical parametrisations
- Maintaining efficient, readable, flexible, reliable code
- Interface to and use of data assimilation

Intention is to provoke thoughts / invite inputs from NDC members

Note: the sea-ice component is not discussed

Initial remarks

- Aim is to identify different types of potential issues / opportunities
- Not solve them
- 10 years is not a very long time (even though there is a lot of activity)
- Easy to raise a lot of questions that will take > 10 years to address
- Key thing is to focus on the right issues
- The NEMO Consortium agreement requires that
 - NEMO meets research & operational needs
 - any change to the scope of NEMO is agreed

Main Themes

- We need to do two types of things
 - Trail-blaze in a few areas
 - Keep up-to-date with important progress elsewhere
- To have the capacity and flexibility to respond to progress we need:
 - Strong links to the international ocean modelling community
 - Expertise to make good scientific & technical choices
 - Expertise in system integration / testing
 - to sustain a readable/maintainable/reliable code
- We need to work effectively as a team

Dynamical core

- What sort of ensembles/resolutions will we be using?
 - Computer capacity increased by factor of 10-20 (?)
 - Our codes more efficient by a factor of 8
 - So about 4 times horiz resolution or 100 member ensembles
 - Still mesoscale-permitting at high latitudes
- Which issues will be most important?
 - Better overflows or topographic steering?
 - Reduced diapycnal mixing for climate?
 - Higher resolution in coastal waters?
- What is out of scope (it would be a new model not NEMO)
 - non-hydrostatic
 - a very different horizontal grid (e.g. hexagonal cells)

Physical parametrisations

- Which sub-grid-scale processes need better representation?
 - turbulent surface boundary layer
 - absorption of internal gravity waves?
- Better incorporation/formulation of schemes
 - "scale-aware" schemes over what range?
 - dynamics compatible schemes
 - assisted by machine learning?
- Better representation of bathymetry?
 - more control of resolved scales?
 - sub-grid scale

Retaining readability / flexibility

- To deploy NEMO efficiently on diverse HPC architectures
- To develop improved dynamics or parametrisations
- To manage the code securely and efficiently

Improving quality assurance process

- To be efficient in upgrading the code
- To have reassurance that the code does what is intended

Interfacing to data assimilation

- Enable required interfaces to data assimilation systems
- Interfaces may use derived types as "containers"

Evolution of other interfaces

- Air-sea interface (e.g. surface waves)
- Dynamics / bio-geochemistry interface (e.g. "degrad")

Assessment of model errors

 Make better use of measurement data to quantify errors and uncertainties in our models – systematic use of data assimilation (or machine learning?)