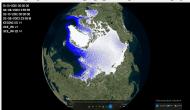
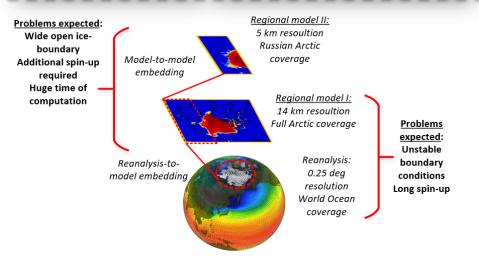
ITMO UNIVERSITY

Saint Petersburg, Russia

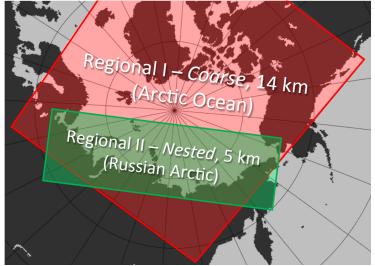
Spin-up technique for long-term Arctic ice simulation


Nikolay Nikitin¹, Anna Kalyuzhnaya¹, Denis Demchev² *E-mail address:* nikolay.o.nikitin@gmail.com

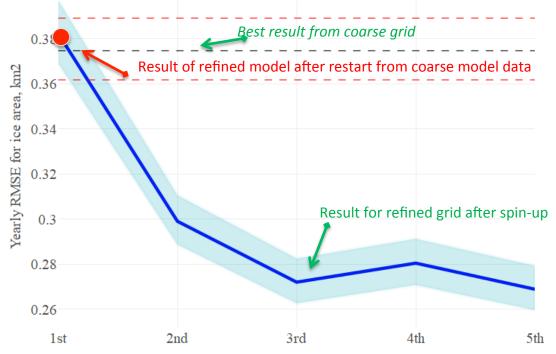
2. Arctic and Antarctic Research Institute (AARI), Saint Petersburg, Russia


NEMO Users Meeting, 2018, Toulouse, France

Task overview and problem statement


The aim: 1965-2017 hourly dataset with 12 variables*

The modelling strategy for 2-stage NEMO/LIM3 model used in long-term Arctic simulation



Target areas spatial location

Models: NEMO 3.6 + LIM3 Expected simulation time with 80-cores HPC: 48 days (*coarse*) + 140 days (*refined*) Total time before deadline: 1 year The volume of datasets: 50Tb

*Self-developed TerraXT GIS is used to visualize the ice concentration, drift, sea currents and surface height (as an example)

"Offline" grid-to-grid transfer issue

Spin-up year

Secondary spin-up for nested grid model

Main issues and constraints:

 We need to run coarse and nested NEMO configurations separately (due to the computational limitations)

- Spin up of coarse model takes about 10 model years
- One of the main problems is stable ice annual dynamics
- Interpolation of restart files causes problems and requires additional spin-up for refined grid
- We want to provide many experiments
 "from scratch" to calibrate parameters and increase the quality of final dataset

Found	lation	Pro and	Conclusion	
Code	Data	Possible benefits	Possible problems	Research question
<i>sbc_ssr</i> restoration subroutine already exists in NEMO and can be used as base for modification	The satellite observations are available for the most part of the simulation period	Accelerated spin- up of model Better quality of results	Instability of model (no convergence) – additional experiments required	The research question is «Can specific ice state restoration methods help us to intensify the initial spin-up of complex 2-stage model?»

sbcssr_ice: heat flux based ice restoration method

Baseline: surface temparature/salinity restoring implemented in NEMO (sbc_ssr)

$$Q_{ns} = Q_{ns}^o + \frac{dQ}{dT} \left(T \right|_{k=1} - SST_{Obs} \right)$$

where SST is a sea surface temperature field (observed or climatological), T is the model surface layer temperature and dQ/dT is a negative feedback coefficient usually taken equal to -40 W/m2/K.

(from **NEMO ocean engine** (G. Madec), Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, 2008)

<u>Alternative solution</u>: the under-ice temperature correction (experiment was conducted, but the model become **unstable**)

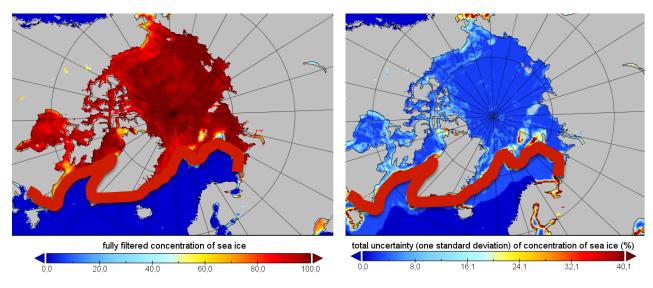
From concept to implementation I. Explore data (coverage, uncertainty, artefacts)

II. Implement a more robust approachIII. Calibrate melt/freeze coefficientsIV. Validate the developed methods

Proposed flux-based ice restoration concept:

 $Q = \begin{cases} Q + C_{melt} \cdot \widetilde{Q}, & \text{if there is too much ice} \\ Q - C_{freez} \cdot \widetilde{Q}, & \text{if there is not enough ice.} \end{cases}$ $Q - \text{heat flux}, \quad Q - \text{damping term}, \quad C_{melt} \lor C_{freez} - \text{coefficients}$

Normal ice Normal ice Nater Ice lack Ice-to-water heat flux Ice freezing


Visual representation of flux-based restoration

Heat fluxes to correct: **qsr_ice** (solar heat flux over ice , increase to melt), **qsr_oce** (non solar heat flux over ocean , increase to freeze)

Datasets and observations: Concentration

ITMO UNIVERSITY

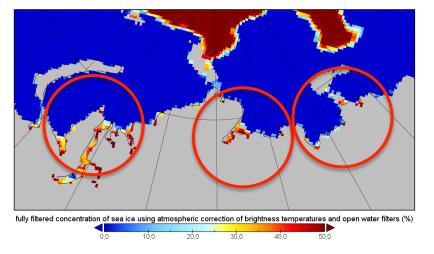
Dataset: **OSISAF v2.0*** Time coverage: daily, 1979-2015

<u>Details</u>:

- Daily OSI-SAF data interpolated to grid
- NEMO in-fly time interpolation enabled

Possible issues:

- High uncertainty near the edge
- Strange values near the coast (concentration too high for summer)


*Eastwood S. et al. Global sea ice concentration reprocessing: product user manual //Product OSI-409, Version. – 2010. – T. 1.

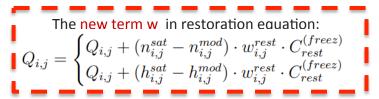
We can try to pre-process the data and catch the artifacts but may be it's better to adapt the algorithm to it?

Weighted restoration approach

ITMO UNIVERSITY

OSISAF concentration data for 2015.09.26

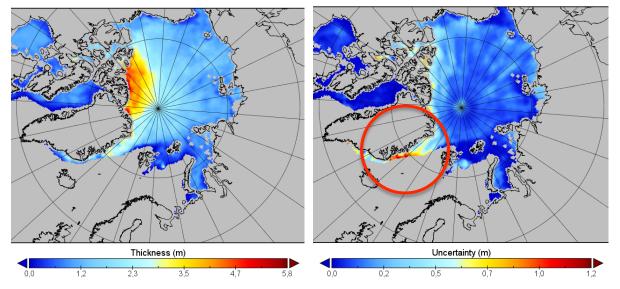
Restoration mask Coastal artifacts² 800 8 400


2. Compared with AARI ice charts (http://www.aari.ru/odata/ d0015.php?lang=1)

Wrong values (induced by anomalies in brightness temperature¹) can decrease the quality of model data with

1. Maslanik J. A., Serreze M. C., Barry R. G. Recent decreases in Arctic summer ice cover and linkages to atmospheric circulation anomalies // Geophysical Research Letters. – 1996. – T. 23. – №. 13. – C. 1677-1680.

applied restoration


Restoration weights mask generated based at coastal proximity and saved in restoration mask.nc file

Datasets and observations: Thickness

Dataset: CryoSat 2 + SMOS*

Time coverage: weekly, 2010-2016 (no data between March and October)

ITMO UNIVERSITY

Details:

- Weekly CR2SMOS data interpolated to daily grid
- No-data summer range set to 0
- NEMO in-fly time interpolation disabled

Possible issues:

- High uncertainty near the edge
- No values in cells near the coast
- Only cell averaged values are available (instead ice categories of LIM3)

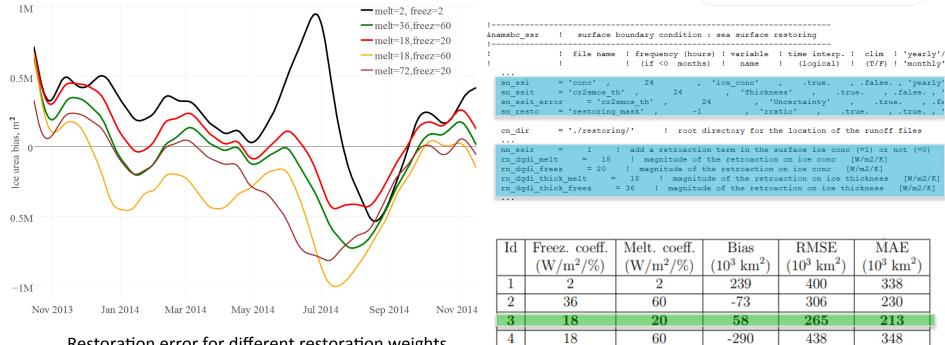
^{*}Ricker R. et al. A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data //Cryosphere. – 2017. – T. 11. – №. 4. – C. 1607-1623.

The knowledge about uncertainty of observations can be used too

The final version of ice restoration algorithm

Balance of fluxes: Forced melting Atmosphere-to-ice Restoration mask if ice excess heat flux (solar heat flux over ice) NEMO qsr ice Ice concentration/ OPA Surface increasing thickness satellite (Arctic (non solar heat flux over ocean) restoring configur data module Ice-to-ocean ation) heat flux Ice concentration/ qsr oce thickness model Forced freezing if ice lack increasing fields Ice restoration workflow $Q_{i,j} = \begin{cases} Q_{i,j} + (n_{i,j}^{sat} - n_{i,j}^{mod}) & w_{i,j}^{rest} \\ Q_{i,j} + (n_{i,j}^{sat} - n_{i,j}^{rest}) & W_{i,j}^{rest} \\ Q_{i,j} + (n_{i,j}^{sat} - n_{i,j}^{rest}) & W_{i,j}^{rest} \\ Q_{i,j} + (n_{i,j$

For the ice melting case, Q is gsr oce, for ice freezing - qsr ice. In the equation, n^{sat} and n^{mod} represent the ice concentration in satellite data and in the model respectively, σ is the confidence interval, taken from satellite total error and dispersion, h^{sat} and h^{mod} are the corresponding ice thicknesses and w^{rest}_{ii} is the restoration correction weighted mask.


If ice should be significantly decreased – more heat to **qsr** ice If ice should be significantly increased – more heat to **qsr oce**

Error	metrics	for	model	runs	with	different	ice	restoration t	ypes
-------	---------	-----	-------	------	------	-----------	-----	---------------	------

Type	RMSE (th. of km^2)	MAE (th. of km^2)
No restoration	511	416
Concentration rest.	275	223
Concentration+Thickness rest.	261	208

The new namelist parameters and its calibration

ITMO UNIVERSITY

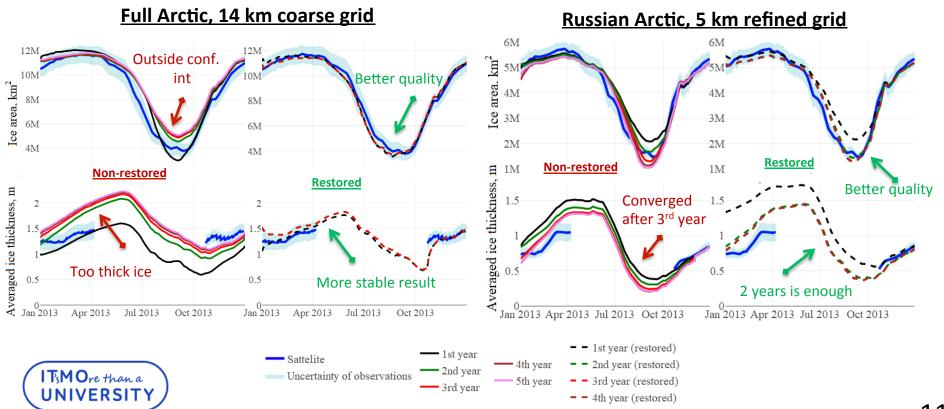
5

72

Restoration error for different restoration weights set

Error metrics for different restoration weights rn_ddqi_melt and rn_ddqi_freez

-195


368

20

267

The validation of the restoration technique

The results of validation

		Non-restored model				Restored model			
Year	Area RMSE, km²*10 ⁶	Thickness RMSE [*] , m	Area MAE, km²*10 ⁶	Thickness MAE [*] , m	Area RMSE, km²*10 ⁶	Thickness RMSE [*] , m	Area MAE, km²*10 ⁶	Thickness MAE [*] , m	
Coarse (14km) grid									
1	0.69	0.34	0.57	0.28	0.34	0.09	0.27	0.06	
2	0.76	0.28	0.59	0.26	0.33	0.13	0.27	0.11	
3	0.89	0.31	0.70	0.29	0.33	0.13	0.28	0.11	
4	0.94	0.33	0.76	0.30	0.33	0.13	0.28	0.11	
Nested (5km) grid									
1	0.38	0.26	0.28	0.20	0.43	0.48	0.30	0.37	
2	0.29	0.19	0.23	0.16	0.26	0.19	0.20	0.16	
3	0.27	0.13	0.23	0.11	0.25	0.17	0.20	0.14	
4	0.28	0.12	0.24	0.10	0.25	0.17	0.20	0.14	
[*] Only for time r	ange with observation	ons available	The	nested model sti	Il requires additior	al calibration of th	ickness restoratio	n coefficients 1	

*Only for time range with observations available

Conclusions and details

Conclusions:

- The transition from a coarse grid to refined requires a secondary spin-up for ice state.
- The developed algorithm can be applied even for non-ideal real-world datasets with missing values and artifacts.
- The methods for "soft" assimilation of ice observations allows to accelerate the convergence of the model and increase the quality.
- The positive effect of restoration is higher for coarse grid model .

The details of research:

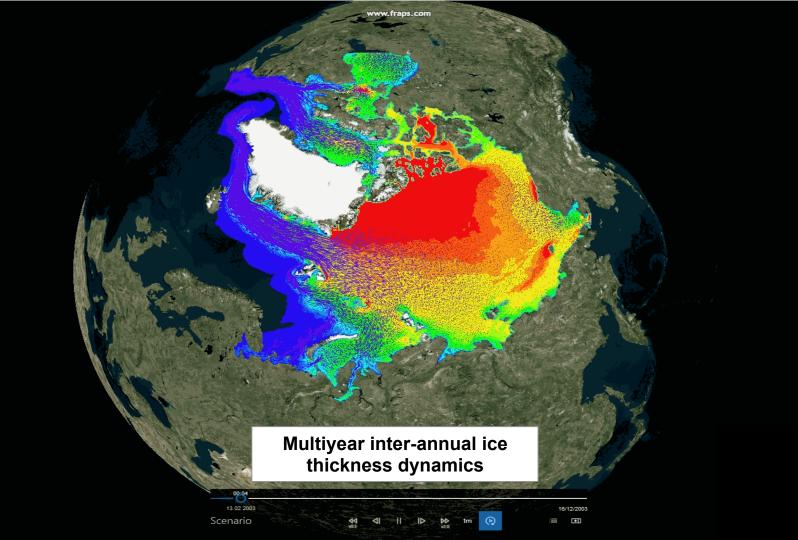
- The additional details of the project's technical part is discussed in paper "Adaptation of NEMO-LIM3 model for multigrid high resolution Arctic simulation" (pre-print in available in *https://arxiv.org/abs/1810.03657*) [Alexander Hvatov will present details in next section].
- The project's results overview, analysis and validation of 50-years simulation results of Arctic Seas will be presented in separate paper (work in progress).

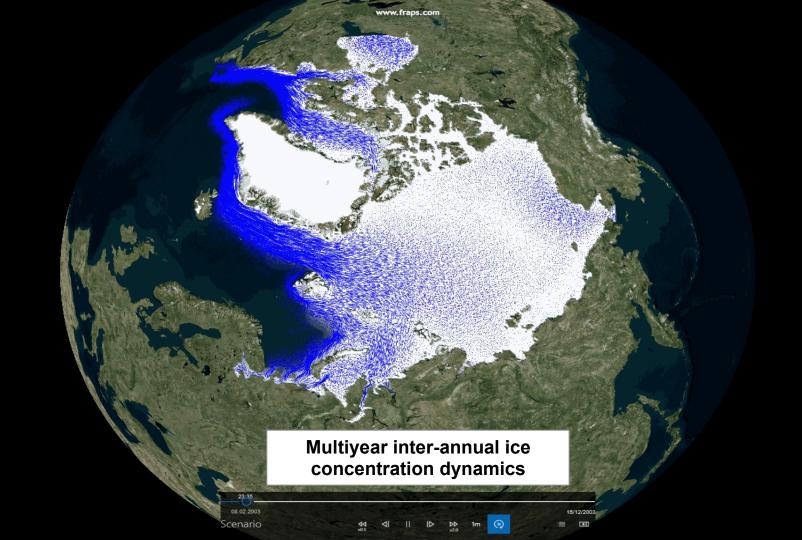
Modified source codes:

Available in https://github.com/nicl-nno/nemo-multigrid-adaptation under CeCILL license

Thank you!

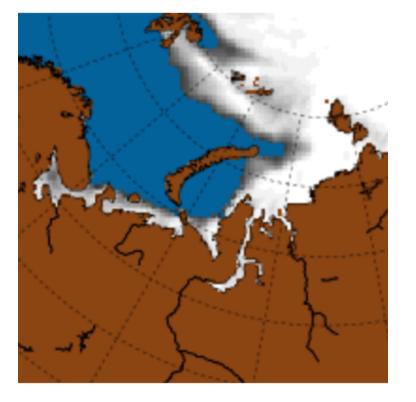
www.ifmo.ru

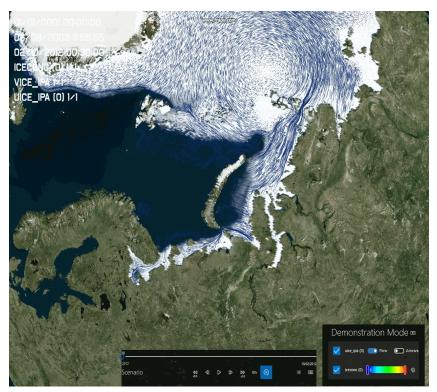

Nikolay Nikitin nikolay.o.nikitin@gmail.com



Additional slides

(animations generated with self-developed *TerraXT GIS* software)



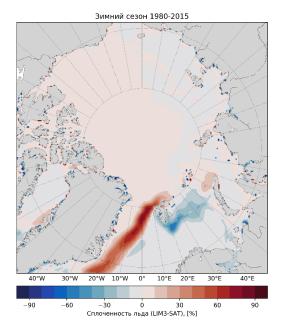


The results of validation

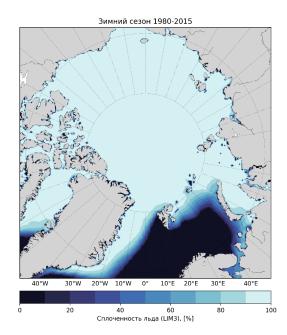
ITMO UNIVERSITY

Kara Sea in Feb. 2012 by satellite observations Kara Sea in Feb. 2012 by NEMO results with restoration enabled

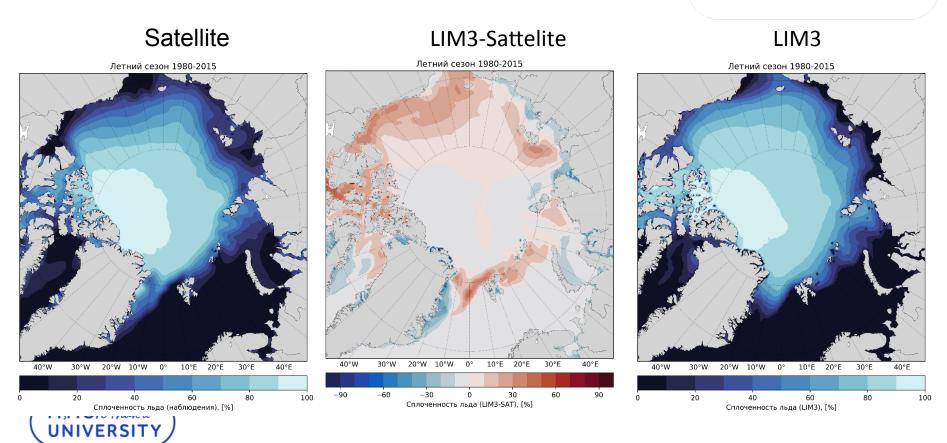
The results of validation - winter



Satellite


Зимний сезон 1980-2015 20°E 30°E 40°E 40°W 30°W 20°W 10°W 0° 10°E 20 40 60 80 100 Сплоченность льда (наблюдения), [%]

IT_SMOre than a UNIVERSIT


LIM3-Sattelite

LIM3

The results of validation - summer

