Version 3 (modified by trac, 7 years ago) (diff)

Trac Ticket Queries

In addition to reports, Trac provides support for custom ticket queries, used to display lists of tickets meeting a specified set of criteria.

To configure and execute a custom query, switch to the View Tickets module from the navigation bar, and select the Custom Query link.

Filters

When you first go to the query page the default filter will display tickets relevant to you:

  • If logged in then all open tickets it will display open tickets assigned to you.
  • If not logged in but you have specified a name or email address in the preferences then it will display all open tickets where your email (or name if email not defined) is in the CC list.
  • If not logged and no name/email defined in the preferences then all open issues are displayed.

Current filters can be removed by clicking the button to the left with the minus sign on the label. New filters are added from the pulldown lists at the bottom corners of the filters box ('And' conditions on the left, 'Or' conditions on the right). Filters with either a text box or a pulldown menu of options can be added multiple times to perform an or of the criteria.

You can use the fields just below the filters box to group the results based on a field, or display the full description for each ticket.

Once you've edited your filters click the Update button to refresh your results.

Clicking on one of the query results will take you to that ticket. You can navigate through the results by clicking the Next Ticket or Previous Ticket links just below the main menu bar, or click the Back to Query link to return to the query page.

You can safely edit any of the tickets and continue to navigate through the results using the Next/Previous/Back to Query links after saving your results. When you return to the query any tickets which were edited will be displayed with italicized text. If one of the tickets was edited such that it no longer matches the query criteria the text will also be greyed. Lastly, if a new ticket matching the query criteria has been created, it will be shown in bold.

The query results can be refreshed and cleared of these status indicators by clicking the Update button again.

Saving Queries

Trac allows you to save the query as a named query accessible from the reports module. To save a query ensure that you have Updated the view and then click the Save query button displayed beneath the results. You can also save references to queries in Wiki content, as described below.

Note: one way to easily build queries like the ones below, you can build and test the queries in the Custom report module and when ready - click Save query. This will build the query string for you. All you need to do is remove the extra line breaks.

Note: you must have the REPORT_CREATE permission in order to save queries to the list of default reports. The Save query button will only appear if you are logged in as a user that has been granted this permission. If your account does not have permission to create reports, you can still use the methods below to save a query.

You may want to save some queries so that you can come back to them later. You can do this by making a link to the query from any Wiki page.

[query:status=new|assigned|reopened&version=1.0 Active tickets against 1.0]

Which is displayed as:

Active tickets against 1.0

This uses a very simple query language to specify the criteria (see Query Language).

Alternatively, you can copy the query string of a query and paste that into the Wiki link, including the leading ? character:

[query:?status=new&status=assigned&status=reopened&group=owner Assigned tickets by owner]

Which is displayed as:

Assigned tickets by owner

Using the [[TicketQuery]] Macro

The TicketQuery macro lets you display lists of tickets matching certain criteria anywhere you can use Wiki Formatting.

Example:

[[TicketQuery(version=0.6|0.7&resolution=duplicate)]]

This is displayed as:

No results

Just like the query: wiki links, the parameter of this macro expects a query string formatted according to the rules of the simple ticket query language. This also allows displaying the link and description of a single ticket:

[[TicketQuery(id=123)]]

This is displayed as:

#123
remove the explicit loop which is not necessary in the computation of [uv]_oce(:,:) arrays

A more compact representation without the ticket summaries is also available:

[[TicketQuery(version=0.6|0.7&resolution=duplicate, compact)]]

This is displayed as:

No results

Finally, if you wish to receive only the number of defects that match the query, use the count parameter.

[[TicketQuery(version=0.6|0.7&resolution=duplicate, count)]]

This is displayed as:

0

Customizing the table format

You can also customize the columns displayed in the table format (format=table) by using col≤field> - you can specify multiple fields and what order they are displayed by placing pipes (|) between the columns like below:

[[TicketQuery(max=3,status=closed,order=id,desc=1,format=table,col=resolution|summary|owner|reporter)]]

This is displayed as:

Results (1 - 3 of 2337)

1 2 3 4 5 6 7 8 9 10 11
Ticket Resolution Summary Owner Reporter
#2526 fixed bestpartition in mppini no more working smasson smasson
#2525 fixed missing comments in do loops systeam smasson
#2522 fixed sbcflx defects systeam clem
1 2 3 4 5 6 7 8 9 10 11

Full rows

In table format you can also have full rows by using rows≤field> like below:

[[TicketQuery(max=3,status=closed,order=id,desc=1,format=table,col=resolution|summary|owner|reporter,rows=description)]]

This is displayed as:

Results (1 - 3 of 2337)

1 2 3 4 5 6 7 8 9 10 11
Ticket Resolution Summary Owner Reporter
#2526 fixed bestpartition in mppini no more working smasson smasson
Description

Context

Since [13286] and [13291] bestpartition is no more finding the "best partition"

Analysis

I thought that the choice of the best partition was independent of nn_hls and that it could be done with nn_hls = 0. This is wrong! There is a quick example corresponding to the 1st zoom of AGRIF_DEMO) with Ni0glo = 48 and Nj0glo = 50 using 16 cores:

jpni = 16, jpnj = 1
nn_hls = 0 -> domain size:  3*50 = 150 => best
nn_hls = 1 -> domain size:  5*52 = 260
nn_hls = 2 -> domain size:  7*54 = 378

jpni = 8, jpnj = 2
nn_hls = 0 -> domain size:  6*25 = 150 => best
nn_hls = 1 -> domain size:  8*27 = 216
nn_hls = 2 -> domain size: 10*29 = 290

jpni = 4, jpnj = 4
nn_hls = 0 -> domain size: 12*13 = 156
nn_hls = 1 -> domain size: 14*15 = 210 => best
nn_hls = 2 -> domain size: 16*17 = 272 => best

Fix

modify mppini to use nn_hls when looking for the best partition.

#2525 fixed missing comments in do loops systeam smasson
Description

Context

comments following DO loops on ji, jj, or jk have been lost when rewriting the loops between r4.0-HEAD and the actual trunk…

Analysis

There is a tentative list of the comments that have been potentially lost base on what is existing in the r4.0-HEAD…

> cd r4.0-HEAD
> grep -ir "do j[ijk] *= .*\!"  src 2>/dev/null | grep -iv "vector opt" | grep -iv "vect. opt." | grep -v "slab" | grep -v "INNER domain" | grep -iv "interior value" | wc -l


src/ICE/icecor.F90:         DO jj = 2, jpjm1           !-----------------------------------------------------
src/ICE/icedyn_adv_pra.F90:            DO jk = 1, nlay_s                                                                           !--- snow heat content
src/ICE/icedyn_adv_pra.F90:            DO jk = 1, nlay_i                                                                           !--- ice heat content
src/ICE/icedyn_adv_pra.F90:            DO jk = 1, nlay_s                                                                           !--- snow heat content
src/ICE/icedyn_adv_pra.F90:            DO jk = 1, nlay_i                                                                           !--- ice heat content
src/ICE/icedyn_adv_pra.F90:         DO jj = 2, jpjm1                      !  Flux from i to i+1 WHEN u GT 0
src/ICE/icedyn_adv_pra.F90:         DO jj = 2, jpjm1                      !  Flux from i+1 to i when u LT 0.
src/ICE/icedyn_adv_pra.F90:         DO jj = 2, jpjm1                     !  Readjust moments remaining in the box.
src/ICE/icedyn_adv_pra.F90:         DO jj = 2, jpjm1                     !   Flux from i to i+1 IF u GT 0.
src/ICE/icedyn_adv_pra.F90:         DO jj = 2, jpjm1                      !  Flux from i+1 to i IF u LT 0.
src/ICE/icedyn_adv_pra.F90:         DO jj = 1, jpj                     !  Flux from j to j+1 WHEN v GT 0
src/ICE/icedyn_adv_pra.F90:         DO jj = 1, jpjm1                   !  Flux from j+1 to j when v LT 0.
src/ICE/icedyn_adv_pra.F90:         DO jj = 2, jpjm1                    !   Flux from j to j+1 IF v GT 0.
src/ICE/icedyn_adv_pra.F90:         DO jj = 2, jpjm1                      !  Flux from j+1 to j IF v LT 0.
src/ICE/icedyn_adv_umx.F90:         DO jj = 2, jpjm1         ! First derivative (gradient)
src/ICE/icedyn_adv_umx.F90:         DO jj = 2, jpjm1         ! Third derivative
src/ICE/icedyn_adv_umx.F90:         DO jj = 1, jpjm1         ! First derivative (gradient)
src/ICE/icedyn_adv_umx.F90:         DO jj = 2, jpjm1         ! Second derivative (Laplacian)
src/ICE/icedyn_adv_umx.F90:         DO jj = 1, jpjm1         ! First derivative
src/ICE/icedyn_adv_umx.F90:         DO jj = 2, jpjm1         ! Second derivative
src/ICE/icedyn_rhg_evp.F90:         DO jj = 1, jpjm1         ! loops start at 1 since there is no boundary condition (lbc_lnk) at i=1 and j=1 for F points
src/ICE/icedyn_rhg_evp.F90:         DO jj = 2, jpj    ! loop to jpi,jpj to avoid making a communication for zs1,zs2,zs12
src/ICE/icedyn_rhg_evp.F90:            DO ji = 2, jpi ! no vector loop
src/ICE/icedyn_rhg_evp.F90:         DO ji = 2, jpim1 ! no vector loop
src/ICE/iceistate.F90:            DO jk = 1,jpkm1                     ! adjust initial vertical scale factors
src/ICE/iceitd.F90:         DO jk = 1, nlay_s         !--- Snow heat content
src/ICE/iceitd.F90:         DO jk = 1, nlay_i         !--- Ice heat content
src/ICE/icethd_zdf_bl99.F90:         DO ji = 1, npti   ! Snow-ice interface
src/ICE/icethd_zdf_bl99.F90:         DO ji = 1, npti   ! Snow-ice interface
src/ICE/iceupdate.F90:         DO jj = 2, jpjm1                             !* update the modulus of stress at ocean surface (T-point)
src/ICE/iceupdate.F90:      DO jj = 2, jpjm1                                !* update the stress WITHOUT an ice-ocean rotation angle
src/ICE/icevar.F90:      DO jk = 1, nlay_i             ! Sea ice energy of melting
src/ICE/icevar.F90:      DO jk = 1, nlay_s             ! Snow energy of melting
src/NST/agrif_oce_interp.F90:         DO jk = 1, jpkm1              ! Mask domain edges
src/NST/agrif_oce_interp.F90:         DO jk = 1, jpkm1              ! Mask domain edges
src/NST/agrif_oce_interp.F90:            DO jk = 1, jpkm1           ! Smooth
src/NST/agrif_oce_interp.F90:         DO jk = 1, jpkm1              ! Mask domain edges
src/NST/agrif_oce_interp.F90:            DO jk = 1, jpkm1           ! Smooth
src/NST/agrif_oce_interp.F90:         DO jk = 1, jpkm1              ! Mask domain edges
src/OCE/ASM/asminc.F90:            DO jk = 1, jpkm1           ! zhdiv = e1e1 * div
src/OCE/C1D/dtauvd.F90:         DO jj = 1, jpj                   ! vertical interpolation of U & V current:
src/OCE/C1D/dtauvd.F90:            DO ji = 1, jpi                ! determines the interpolated U & V current profiles at each (i,j) point
src/OCE/C1D/dtauvd.F90:               DO jk = 1, jpkm1           ! apply mask
src/OCE/CRS/crsdom.F90:      DO jj = 1, jpj_crsm1                      ! bottom k-index of u- (v-) level
src/OCE/DIA/diaar5.F90:            DO jj = 1, jpj               ! interpolation of salinity at the last ocean level (i.e. the partial step)
src/OCE/DIA/diaar5.F90:               DO jj = 1, jpj               ! interpolation of salinity at the last ocean level (i.e. the partial step)
src/OCE/DIA/diacfl.F90:      DO jk = 1, jpk       ! calculate Courant numbers
src/OCE/DIA/diadct.F90:            DO jk = 1, mbkt(k%I,k%J)            !Sum of the transport on the vertical
src/OCE/DIA/diahsb.F90:      DO jk = 1, jpkm1           ! volume variation (calculated with scale factors)
src/OCE/DIA/diahsb.F90:      DO jk = 1, jpkm1           ! heat content variation
src/OCE/DIA/diahsb.F90:      DO jk = 1, jpkm1           ! salt content variation
src/OCE/DIA/diahsb.F90:      DO jk = 1, jpkm1           ! total ocean volume (calculated with scale factors)
src/OCE/DIA/diahth.F90:            DO jk = jpkm1, 2, -1   ! loop from bottom to 2
src/OCE/DIA/diahth.F90:            DO jk = jpkm1, nlb10, -1   ! loop from bottom to nlb10
src/OCE/DIA/diahth.F90:      DO jk = 1, jpkm1   ! beware temperature is not always decreasing with depth => loop from top to bottom
src/OCE/DIA/diawri.F90:         DO jj = 2, jpjm1                                    ! sst gradient
src/OCE/DOM/domain.F90:      DO jj = 1, jpj                   ! depth of the iceshelves
src/OCE/DOM/domain.F90:      DO ji = 1, jpi                 ! local domain indices ==> global domain indices
src/OCE/DOM/dommsk.F90:            DO ji = 1, fs_jpim1   ! vector loop
src/OCE/DOM/domvvl.F90:      DO jk = 2, jpk                               ! vertical sum
src/OCE/DOM/domvvl.F90:         DO jk = 1, jpkm1        ! a - first derivative: diffusive fluxes
src/OCE/DOM/domvvl.F90:         DO jj = 1, jpj          ! b - correction for last oceanic u-v points
src/OCE/DOM/domvvl.F90:         DO jk = 1, jpkm1        ! c - second derivative: divergence of diffusive fluxes
src/OCE/DOM/dtatsd.F90:         DO jj = 1, jpj                         ! vertical interpolation of T & S
src/OCE/DOM/dtatsd.F90:               DO jk = 1, jpk                        ! determines the intepolated T-S profiles at each (i,j) points
src/OCE/DYN/divhor.F90:      DO jk = 1, jpkm1                                      !==  Horizontal divergence  ==!
src/OCE/DYN/dynadv_cen2.F90:      DO jk = 1, jpkm1                    ! horizontal transport
src/OCE/DYN/dynadv_cen2.F90:         DO jj = 1, jpjm1                 ! horizontal momentum fluxes (at T- and F-point)
src/OCE/DYN/dynadv_cen2.F90:         DO jj = 2, jpjm1                 ! divergence of horizontal momentum fluxes
src/OCE/DYN/dynadv_cen2.F90:      DO jj = 2, jpjm1                    ! surface/bottom advective fluxes set to zero
src/OCE/DYN/dynadv_cen2.F90:      DO jk = 2, jpkm1                    ! interior advective fluxes
src/OCE/DYN/dynadv_cen2.F90:         DO jj = 2, jpj                       ! 1/4 * Vertical transport
src/OCE/DYN/dynadv_cen2.F90:      DO jk = 1, jpkm1                    ! divergence of vertical momentum flux divergence
src/OCE/DYN/dynadv_ubs.F90:      DO jk = 1, jpkm1                       !  Laplacian of the velocity  !
src/OCE/DYN/dynadv_ubs.F90:         DO jj = 2, jpjm1                          ! laplacian
src/OCE/DYN/dynadv_ubs.F90:      DO jk = 1, jpkm1                       ! ====================== !
src/OCE/DYN/dynadv_ubs.F90:         DO jj = 1, jpjm1                          ! horizontal momentum fluxes at T- and F-point
src/OCE/DYN/dynadv_ubs.F90:         DO jj = 2, jpjm1                          ! divergence of horizontal momentum fluxes
src/OCE/DYN/dynadv_ubs.F90:      DO jj = 2, jpjm1                             ! surface/bottom advective fluxes set to zero
src/OCE/DYN/dynadv_ubs.F90:      DO jk = 2, jpkm1                          ! interior fluxes
src/OCE/DYN/dynadv_ubs.F90:      DO jk = 1, jpkm1                          ! divergence of vertical momentum flux divergence
src/OCE/DYN/dynhpg.F90:         DO jk = 1, jpk                   !- compute density of the water displaced by the ice shelf
src/OCE/DYN/dynhpg.F90:         DO jj = 1, jpj                         ! (used to compute hpgi/j for all the level from 1 to miku/v)
src/OCE/DYN/dynhpg.F90:            DO ji = 1, jpi                      ! divided by 2 later
src/OCE/DYN/dynkeg.F90:      DO jk = 1, jpkm1                    !==  grad( KE ) added to the general momentum trends  ==!
src/OCE/DYN/dynldf_iso.F90:         DO jk = 1, jpk         ! set the slopes of iso-level
src/OCE/DYN/dynldf_iso.F90:            DO ji = 2, jpim1          !!gm Question vectop possible??? !!bug
src/OCE/DYN/dynldf_lap_blp.F90:         DO jj = 2, jpjm1                             ! - curl( curl) + grad( div )
src/OCE/DYN/dynspg.F90:            DO jj = 2, jpjm1                          ! gradient of Patm using inverse barometer ssh
src/OCE/DYN/dynspg.F90:            DO jj = 2, jpjm1                         ! add tide potential forcing
src/OCE/DYN/dynspg.F90:               DO jj = 2, jpjm1                    ! add scalar approximation for load potential
src/OCE/DYN/dynspg.F90:         DO jk = 1, jpkm1                    !== Add all terms to the general trend
src/OCE/DYN/dynspg_exp.F90:         DO jj = 2, jpjm1                    ! now surface pressure gradient
src/OCE/DYN/dynspg_exp.F90:         DO jk = 1, jpkm1                    ! Add it to the general trend
src/OCE/DYN/dynspg_ts.F90:      DO jk = 1, jpkm1                    !  ------------------------  !
src/OCE/DYN/dynspg_ts.F90:               DO ji = 2, jpim1                ! SPG with the application of W/D gravity filters
src/OCE/DYN/dynspg_ts.F90:      DO jj = 2, jpjm1                          ! Remove coriolis term (and possibly spg) from barotropic trend
src/OCE/DYN/dynspg_ts.F90:               DO ji = 1, jpim1   ! not jpi-column
src/OCE/DYN/dynspg_ts.F90:            DO jj = 1, jpjm1        ! not jpj-row
src/OCE/DYN/dynspg_ts.F90:         DO ji = 1, jpim1   ! not jpi-column
src/OCE/DYN/dynspg_ts.F90:      DO jj = 1, jpjm1   ! not jpj-row
src/OCE/DYN/dynvor.F90:               DO ji = 1, jpim1                          ! relative vorticity
src/OCE/DYN/dynzad.F90:      DO jk = 2, jpkm1              ! Vertical momentum advection at level w and u- and v- vertical
src/OCE/DYN/dynzad.F90:         DO jj = 2, jpj                   ! vertical fluxes
src/OCE/DYN/dynzad.F90:         DO jj = 2, jpjm1                 ! vertical momentum advection at w-point
src/OCE/DYN/dynzad.F90:      DO jk = 1, jpkm1              ! Vertical momentum advection at u- and v-points
src/OCE/DYN/dynzdf.F90:         DO jk = 1, jpkm1        ! remove barotropic velocities
src/OCE/DYN/dynzdf.F90:         DO jj = 2, jpjm1        ! Add bottom/top stress due to barotropic component only
src/OCE/DYN/dynzdf.F90:         DO jj = 2, jpjm1     !* Surface boundary conditions
src/OCE/DYN/dynzdf.F90:         DO jj = 2, jpjm1     !* Surface boundary conditions
src/OCE/DYN/dynzdf.F90:      DO jk = 2, jpkm1        !==  First recurrence : Dk = Dk - Lk * Uk-1 / Dk-1   (increasing k)  ==
src/OCE/DYN/dynzdf.F90:      DO jj = 2, jpjm1        !==  second recurrence:    SOLk = RHSk - Lk / Dk-1  Lk-1  ==!
src/OCE/DYN/dynzdf.F90:      DO jj = 2, jpjm1        !==  thrid recurrence : SOLk = ( Lk - Uk * Ek+1 ) / Dk  ==!
src/OCE/DYN/dynzdf.F90:         DO jj = 2, jpjm1     !* Surface boundary conditions
src/OCE/DYN/dynzdf.F90:         DO jj = 2, jpjm1        !* Surface boundary conditions
src/OCE/DYN/dynzdf.F90:      DO jk = 2, jpkm1        !==  First recurrence : Dk = Dk - Lk * Uk-1 / Dk-1   (increasing k)  ==
src/OCE/DYN/dynzdf.F90:      DO jj = 2, jpjm1        !==  second recurrence:    SOLk = RHSk - Lk / Dk-1  Lk-1  ==!
src/OCE/DYN/dynzdf.F90:      DO jj = 2, jpjm1        !==  third recurrence : SOLk = ( Lk - Uk * SOLk+1 ) / Dk  ==!
src/OCE/DYN/sshwzv.F90:      DO jk = 1, jpkm1                                 ! Horizontal divergence of barotropic transports
src/OCE/DYN/sshwzv.F90:         DO jk = jpkm1, 1, -1                       ! integrate from the bottom the hor. divergence
src/OCE/DYN/sshwzv.F90:         DO jk = jpkm1, 1, -1                       ! integrate from the bottom the hor. divergence
src/OCE/DYN/sshwzv.F90:         DO jk = jpkm1, 2, -1                           ! or scan Courant criterion and partition
src/OCE/DYN/sshwzv.F90:            DO jj = 1, jpj                              ! w where necessary
src/OCE/DYN/wet_dry.F90:      DO jk = 1, jpkm1     ! Horizontal Flux in u and v direction
src/OCE/DYN/wet_dry.F90:      DO jj = 2, jpj      ! Horizontal Flux in u and v direction
src/OCE/IOM/iom.F90:         DO ji = 1, nbdelay   ! save only ocean delayed global communication variables
src/OCE/IOM/iom_nf90.F90:         DO ji = 1, i_nvd                       ! dimensions size
src/OCE/LBC/mpp_nfd_generic.h90:                  DO jj = nlcj-ipj+1, nlcj             ! Scatter back to ARRAY_IN
src/OCE/LDF/ldfc1d_c2d.F90:         DO jk = jpkm1, 1, -1                ! pah1 at T-point
src/OCE/LDF/ldfc1d_c2d.F90:         DO jk = jpkm1, 1, -1                ! pah2 at F-point (zdep2 is an approximation in zps-coord.)
src/OCE/LDF/ldfdyn.F90:            DO jj = 1, jpj             ! Set local gridscale values
src/OCE/LDF/ldfdyn.F90:               DO jj = 2, jpjm1                                ! T-point value
src/OCE/LDF/ldfdyn.F90:               DO jj = 1, jpjm1                                ! F-point value
src/OCE/LDF/ldfslp.F90:      DO jk = 1, jpk             !==   i- & j-gradient of density   ==!
src/OCE/LDF/ldfslp.F90:      DO jk = 2, jpkm1                            !* Slopes at u and v points
src/OCE/LDF/ldfslp.F90:         DO jj = 2, jpjm1, MAX(1, jpj-3)                        ! rows jj=2 and =jpjm1 only
src/OCE/LDF/ldfslp.F90:         DO jj = 3, jpj-2                               ! other rows
src/OCE/LDF/ldfslp.F90:         DO jj = 2, jpjm1, MAX(1, jpj-3)                        ! rows jj=2 and =jpjm1 only
src/OCE/LDF/ldfslp.F90:         DO jj = 3, jpj-2                               ! other rows
src/OCE/LDF/ldfslp.F90:         DO jk = 1, jpkm1                     ! done each pair of triad
src/OCE/LDF/ldfslp.F90:            DO jj = 1, jpjm1                  ! NB: not masked ==>  a minimum value is set
src/OCE/LDF/ldfslp.F90:         DO jk = 1, jpkm1                     ! done each pair of triad
src/OCE/LDF/ldfslp.F90:            DO jj = 1, jpj                    ! NB: not masked ==>  a minimum value is set
src/OCE/LDF/ldfslp.F90:      DO jj = 1, jpj                          !==  Reciprocal depth of the w-point below ML base  ==!
src/OCE/LDF/ldfslp.F90:      DO jk = 1, jpk                               ! =1 inside the mixed layer, =0 otherwise
src/OCE/LDF/ldftra.F90:         DO jk = 1, jpkm1                             ! deeper value = surface value + mask for all levels
src/OCE/LDF/ldftra.F90:      DO jj = 2, jpjm1                          !== aei at u- and v-points  ==!
src/OCE/LDF/ldftra.F90:      DO jk = 2, jpkm1                          !==  deeper values equal the surface one  ==!
src/OCE/LDF/ldftra.F90:      DO jk = 1, jpkm1                                         ! e2u e3u u_eiv = -dk[psi_uw]
src/OCE/LDF/ldftra.F90:      DO jk = 1, jpkm1                                         ! e1v e3v v_eiv = -dk[psi_vw]
src/OCE/LDF/ldftra.F90:      DO jk = 1, jpkm1                                         ! e1 e2 w_eiv = dk[psix] + dk[psix]
src/OCE/SBC/fldread.F90:            DO jk = 2, jpk                               ! vertical sum
src/OCE/SBC/fldread.F90:            DO jk = 2, jpk                               ! vertical sum
src/OCE/SBC/fldread.F90:            DO jk = 1, jpk                                ! calculate transport on model grid
src/OCE/SBC/fldread.F90:            DO jk = 1, jpk                                ! make transport correction
src/OCE/SBC/fldread.F90:            DO jk = 1, jpk                                ! calculate transport on model grid
src/OCE/SBC/fldread.F90:            DO jk = 1, jpk                                ! make transport correction
src/OCE/SBC/sbcblk.F90:      DO jj = 1, jpj             ! tau module, i and j component
src/OCE/SBC/sbcblk.F90:      DO jj = 2, jpj    ! at T point
src/OCE/SBC/sbcblk.F90:      DO jj = 2, jpjm1  ! U & V-points (same as ocean).
src/OCE/SBC/sbcblk.F90:      DO jj = 2, jpjm1           ! reduced loop is necessary for reproducibility
src/OCE/SBC/sbccpl.F90:               DO jj = 2, jpjm1                                          ! T ==> (U,V)
src/OCE/SBC/sbccpl.F90:            DO jj = 2, jpjm1                                   ! T ==> (U,V)
src/OCE/SBC/sbcflx.F90:         DO jj = 1, jpj                                           ! set the ocean fluxes from read fields
src/OCE/SBC/sbcice_cice.F90:               DO jk = 1,jpkm1                     ! adjust initial vertical scale factors
src/OCE/SBC/sbcrnf.F90:            DO jj = 1, jpj                   ! update the depth over which runoffs are distributed
src/OCE/SBC/sbcrnf.F90:                  DO jk = 1, nk_rnf(ji,jj)                           ! recalculates h_rnf to be the depth in metres
src/OCE/SBC/sbcrnf.F90:         DO jj = 1, jpj                                ! set the associated depth
src/OCE/SBC/sbcrnf.F90:         DO jj = 1, jpj                     ! take in account min depth of ocean rn_hmin
src/OCE/SBC/sbcrnf.F90:         DO jj = 1, jpj                                ! set the associated depth
src/OCE/SBC/sbcwave.F90:         DO jj = 1, jpjm1              ! exp. wave number & Stokes drift velocity at u- & v-points
src/OCE/SBC/sbcwave.F90:         DO jj = 1, jpjm1              ! exp. wave number & Stokes drift velocity at u- & v-points
src/OCE/SBC/sbcwave.F90:      DO jk = 1, jpkm1               ! Horizontal e3*divergence
src/OCE/SBC/sbcwave.F90:      DO jk = jpkm1, ik, -1          ! integrate from the bottom the hor. divergence (NB: at k=jpk w is always zero)
src/OCE/SBC/sbcwave.F90:      DO jk = 1, jpkm1                                 !
src/OCE/TRA/eosbn2.F90:      DO jk = 2, jpkm1           ! interior points only (2=< jk =< jpkm1 )
src/OCE/TRA/eosbn2.F90:         DO jj = 1, jpj          ! surface and bottom value set to zero one for all in istate.F90
src/OCE/TRA/traadv.F90:         DO jk = 1, jpkm1                                                       ! eulerian transport + Stokes Drift
src/OCE/TRA/traadv_cen.F90:            DO jk = 1, jpkm1                       ! masked gradient
src/OCE/TRA/traadv_cen.F90:            DO jk = 1, jpkm1                       ! Horizontal advective fluxes
src/OCE/TRA/traadv_cen.F90:         DO jk = 1, jpkm1              !--  Divergence of advective fluxes  --!
src/OCE/TRA/traadv_fct.F90:         DO jk = 1, jpkm1     !* trend and after field with monotonic scheme
src/OCE/TRA/traadv_fct.F90:            DO jk = 1, jpkm1                 ! Laplacian
src/OCE/TRA/traadv_fct.F90:               DO jj = 1, jpjm1                    ! 1st derivative (gradient)
src/OCE/TRA/traadv_fct.F90:               DO jj = 2, jpjm1                    ! 2nd derivative * 1/ 6
src/OCE/TRA/traadv_fct.F90:            DO jk = 1, jpkm1                 ! Horizontal advective fluxes
src/OCE/TRA/traadv_fct.F90:            DO jk = 1, jpkm1                 ! 1st derivative (gradient)
src/OCE/TRA/traadv_fct.F90:            DO jk = 1, jpkm1                 ! Horizontal advective fluxes
src/OCE/TRA/traadv_fct.F90:            DO jk = 1, jpkm1     !* trend and after field with monotonic scheme
src/OCE/TRA/traadv_fct.F90:      DO jk = 3, jpkm1        !==  build the three diagonal matrix  ==!
src/OCE/TRA/traadv_fct.F90:      DO jj = 1, jpj                ! first recurrence
src/OCE/TRA/traadv_fct.F90:      DO jj = 1, jpj                ! second recurrence:    Zk = Yk - Ik / Tk-1  Zk-1
src/OCE/TRA/traadv_fct.F90:      DO jj = 1, jpj                ! third recurrence: Xk = (Zk - Sk Xk+1 ) / Tk
src/OCE/TRA/traadv_fct.F90:      DO jk = 3, jpkm1                 ! interior (from jk=3 to jpk-1)
src/OCE/TRA/traadv_fct.F90:      DO jj = 2, jpjm1                 ! 2nd order centered at top & bottom
src/OCE/TRA/traadv_fct.F90:      DO jj = 2, jpjm1              !* 1st recurrence:   Tk = Dk - Ik Sk-1 / Tk-1
src/OCE/TRA/traadv_fct.F90:      DO jj = 2, jpjm1              !* 2nd recurrence:    Zk = Yk - Ik / Tk-1  Zk-1
src/OCE/TRA/traadv_fct.F90:      DO jj = 2, jpjm1              !* 3d recurrence:    Xk = (Zk - Sk Xk+1 ) / Tk
src/OCE/TRA/traadv_fct.F90:      DO jj = 2, jpjm1              !* 1st recurrence:   Tk = Dk - Ik Sk-1 / Tk-1
src/OCE/TRA/traadv_fct.F90:      DO jj = 2, jpjm1              !* 2nd recurrence:    Zk = Yk - Ik / Tk-1  Zk-1
src/OCE/TRA/traadv_fct.F90:      DO jj = 2, jpjm1              !* 3d recurrence:    Xk = (Zk - Sk Xk+1 ) / Tk
src/OCE/TRA/traadv_mus.F90:         DO jk = 1, jpkm1                 !-- Slopes limitation
src/OCE/TRA/traadv_mus.F90:         DO jk = 1, jpkm1                 !-- MUSCL horizontal advective fluxes
src/OCE/TRA/traadv_mus.F90:         DO jk = 1, jpkm1                 !-- Tracer advective trend
src/OCE/TRA/traadv_mus.F90:         DO jk = 2, jpkm1                 !-- Slopes limitation
src/OCE/TRA/traadv_mus.F90:         DO jk = 1, jpk-2                 !-- vertical advective flux
src/OCE/TRA/traadv_mus.F90:         DO jk = 1, jpkm1                 !-- vertical advective trend
src/OCE/TRA/traadv_qck.F90:         DO jk = 1, jpkm1     !--- Computation of the ustream and downstream value of the tracer and the mask
src/OCE/TRA/traadv_qck.F90:         DO jk = 2, jpkm1                    !* Interior point   (w-masked 2nd order centered flux)
src/OCE/TRA/traadv_qck.F90:         DO jk = 1, jpkm1          !==  Tracer flux divergence added to the general trend  ==!
src/OCE/TRA/traadv_ubs.F90:         DO jk = 1, jpkm1        !==  horizontal laplacian of before tracer ==!
src/OCE/TRA/traadv_ubs.F90:            DO jj = 1, jpjm1              ! First derivative (masked gradient)
src/OCE/TRA/traadv_ubs.F90:            DO jj = 2, jpjm1              ! Second derivative (divergence)
src/OCE/TRA/traadv_ubs.F90:         DO jk = 1, jpkm1        !==  Horizontal advective fluxes  ==!     (UBS)
src/OCE/TRA/traadv_ubs.F90:         DO jk = 1, jpkm1        !==  add the horizontal advective trend  ==!
src/OCE/TRA/traadv_ubs.F90:            DO jk = 1, jpkm1           !* trend and after field with monotonic scheme
src/OCE/TRA/traadv_ubs.F90:         DO jk = 1, jpkm1        !  final trend with corrected fluxes
src/OCE/TRA/traadv_ubs.F90:            DO jk = 1, jpkm1                       ! (compute -w.dk[ptn]= -dk[w.ptn] + ptn.dk[w])
src/OCE/TRA/traadv_ubs.F90:      DO jk = 1, jpkm1     ! search maximum in neighbourhood
src/OCE/TRA/traadv_ubs.F90:      DO jk = 1, jpkm1     ! search minimum in neighbourhood
src/OCE/TRA/trabbl.F90:         DO jj = 2, jpjm1                                    ! Compute the trend
src/OCE/TRA/trabbl.F90:            DO ji = 1, jpim1            ! CAUTION start from i=1 to update i=2 when cyclic east-west
src/OCE/TRA/trabbl.F90:                  DO jk = ikus, ikud-1                            ! down-slope upper to down T-point (deep column)
src/OCE/TRA/trabbl.F90:                  DO jk = ikvs, ikvd-1                            ! down-slope upper to down T-point (deep column)
src/OCE/TRA/trabbl.F90:         DO jj = 1, jpjm1                      ! (criteria for non zero flux: grad(rho).grad(h) < 0 )
src/OCE/TRA/trabbl.F90:            DO jj = 1, jpjm1                                 ! criteria: grad(rho).grad(h)<0  and grad(rho).grad(h)<0
src/OCE/TRA/trabbl.F90:            DO jj = 1, jpjm1                            ! criteria: rho_up > rho_down
src/OCE/TRA/trabbl.F90:      DO jj = 1, jpjm1                    ! (the "shelf" bottom k-indices are mbku and mbkv)
src/OCE/TRA/trabbl.F90:      DO jj = 1, jpjm1              !* bbl thickness at u- (v-) point
src/OCE/TRA/trabbl.F90:         DO ji = 1, jpim1                 ! minimum of top & bottom e3u_0 (e3v_0)
src/OCE/TRA/traldf_iso.F90:            DO jj = 1, jpjm1              ! bottom correction (partial bottom cell)
src/OCE/TRA/traldf_iso.F90:            DO jj = 1 , jpjm1            !==  Horizontal fluxes
src/OCE/TRA/traldf_iso.F90:            DO jj = 2 , jpjm1          !== horizontal divergence and add to pta
src/OCE/TRA/traldf_iso.F90:         DO jk = 2, jpkm1           ! interior (2=<jk=<jpk-1)
src/OCE/TRA/traldf_iso.F90:         DO jk = 1, jpkm1                 !==  Divergence of vertical fluxes added to pta  ==!
src/OCE/TRA/traldf_lap_blp.F90:         DO jk = 1, jpkm1              !== First derivative (gradient)  ==!
src/OCE/TRA/traldf_lap_blp.F90:            DO jj = 1, jpjm1                    ! bottom
src/OCE/TRA/traldf_lap_blp.F90:         DO jk = 1, jpkm1              !== Second derivative (divergence) added to the general tracer trends  ==!
src/OCE/TRA/traldf_triad.F90:         DO jk = 1, jpkm1        !==  before lateral T & S gradients at T-level jk  ==!
src/OCE/TRA/traldf_triad.F90:            DO jj = 1, jpjm1                       ! bottom level
src/OCE/TRA/traldf_triad.F90:         DO jk = 1, jpkm1                 !==  Divergence of vertical fluxes added to pta  ==!
src/OCE/TRA/tramle.F90:         DO jk = jpkm1, nlb10, -1                      ! from the bottom to nlb10 (10m)
src/OCE/TRA/tramle.F90:               DO ji = 1, jpi                          ! index of the w-level at the ML based
src/OCE/TRA/tramle.F90:      DO jk = 1, ikmax                                 ! MLD and mean buoyancy and N2 over the mixed layer
src/OCE/TRA/tramle.F90:      DO jk = 2, ikmax                                ! start from 2 : surface value = 0
src/OCE/TRA/tramle.F90:         DO jj = 1, jpjm1                          ! CAUTION pu,pv must be defined at row/column i=1 / j=1
src/OCE/TRA/tramle.F90:            DO jj = 2, jpj                           ! "coriolis+ time^-1" at u- & v-points
src/OCE/TRA/tranpc.F90:         DO jj = 2, jpjm1                 ! interior column only
src/OCE/TRA/tranpc.F90:                           DO jk = ikup, ikbot      ! Inside the instable (and overlying neutral) portion of the column
src/OCE/TRA/tranpc.F90:                           DO jk = ikup, ik_low              ! we must go 1 point deeper than ikdown!
src/OCE/TRA/traqsr.F90:               DO jj = 2, jpjm1                       ! Separation in R-G-B depending of the surface Chl
src/OCE/TRA/traqsr.F90:         DO jk = 2, nksr+1                   !* interior equi-partition in R-G-B depending of vertical profile of Chl
src/OCE/TRA/traqsr.F90:         DO jk = 1, nksr                     !* now qsr induced heat content
src/OCE/TRA/traqsr.F90:         DO jk = 1, nksr                          ! solar heat absorbed at T-point in the top 400m
src/OCE/TRA/traqsr.F90:      DO jk = 1, nksr            !  update to the temp. trend  !
src/OCE/TRA/traqsr.F90:         DO jj = 2, jpjm1        !-----------------------------!
src/OCE/TRA/trasbc.F90:         DO jj = 2, jpj                         !==>> add concentration/dilution effect due to constant volume cell
src/OCE/TRA/trazdf.F90:            DO jj = 2, jpjm1        !* 1st recurrence:   Tk = Dk - Ik Sk-1 / Tk-1   (increasing k)
src/OCE/TRA/trazdf.F90:               DO ji = fs_2, fs_jpim1            ! done one for all passive tracers (so included in the IF instruction)
src/OCE/TRA/trazdf.F90:         DO jj = 2, jpjm1           !* 2nd recurrence:    Zk = Yk - Ik / Tk-1  Zk-1
src/OCE/TRA/trazdf.F90:         DO jj = 2, jpjm1           !* 3d recurrence:    Xk = (Zk - Sk Xk+1 ) / Tk   (result is the after tracer)
src/OCE/TRA/zpshde.F90:         DO jj = 1, jpjm1                 ! Gradient of density at the last level
src/OCE/TRA/zpshde.F90:         DO jj = 1, jpjm1                 ! Gradient of density at the last level
src/OCE/TRA/zpshde.F90:         DO jj = 1, jpjm1                 ! Gradient of density at the last level
src/OCE/TRD/trddyn.F90:                              DO jk = 1, jpkm1   ! no mask as un,vn are masked
src/OCE/TRD/trdglo.F90:            DO jk = 1, jpkm1       ! global sum of mask volume trend and trend*T (including interior mask)
src/OCE/TRD/trdglo.F90:         DO jk = 1, jpkm1                 ! Density flux divergence at t-point
src/OCE/TRD/trdken.F90:!            DO jj = 1, jpj    !
src/OCE/TRD/trdken.F90:!            DO jj = 1, jpj                                                  ! after velocity known (now filed at this stage)
src/OCE/TRD/trdmxl.F90:         DO jk = 1, jpktrd               ! initialize wkx with vertical scale factor in mixed-layer
src/OCE/TRD/trdmxl.F90:         DO jk = 1, jpktrd               ! integration weights
src/OCE/TRD/trdtra.F90:      DO jk = 1, jpkm1         ! advective trend
src/OCE/TRD/trdvor.F90:         DO jj = 2, jpjm1                                                             ! wind stress trends
src/OCE/USR/usrdef_istate.F90:      DO jk = 1, jpk             ! horizontally uniform T & S profiles
src/OCE/USR/usrdef_zgr.F90:      DO jk = 1, jpk          ! depth at T and W-points
src/OCE/ZDF/zdfddm.F90:         DO jj = 1, jpj                !==  R=zrau = (alpha / beta) (dk[t] / dk[s])  ==!
src/OCE/ZDF/zdfddm.F90:         DO jj = 1, jpj                !==  indicators  ==!
src/OCE/ZDF/zdfdrg.F90:            DO jj = 1, jpj                   ! pCd0 = mask (and boosted) logarithmic drag coef.
src/OCE/ZDF/zdfgls.F90:      DO jj = 2, jpjm1              !==  surface ocean friction
src/OCE/ZDF/zdfgls.F90:         DO jj = 2, jpjm1                      ! bottom friction
src/OCE/ZDF/zdfgls.F90:      DO jk = 2, jpkm1              !==  Compute dissipation rate  ==!
src/OCE/ZDF/zdfgls.F90:      DO jk = 2, jpkm1                             ! First recurrence : Dk = Dk - Lk * Uk-1 / Dk-1
src/OCE/ZDF/zdfgls.F90:      DO jk = 2, jpk                               ! Second recurrence : Lk = RHSk - Lk / Dk-1 * Lk-1
src/OCE/ZDF/zdfgls.F90:      DO jk = jpk-1, 2, -1                         ! thrid recurrence : Ek = ( Lk - Uk * Ek+1 ) / Dk
src/OCE/ZDF/zdfgls.F90:      DO jk = 2, jpkm1                             ! First recurrence : Dk = Dk - Lk * Uk-1 / Dk-1
src/OCE/ZDF/zdfgls.F90:      DO jk = 2, jpk                               ! Second recurrence : Lk = RHSk - Lk / Dk-1 * Lk-1
src/OCE/ZDF/zdfgls.F90:      DO jk = jpk-1, 2, -1                         ! Third recurrence : Ek = ( Lk - Uk * Ek+1 ) / Dk
src/OCE/ZDF/zdfgls.F90:      DO jk = 1, jpkm1 ! Note that this set boundary conditions on hmxl_n at the same time
src/OCE/ZDF/zdfgls.F90:      DO jj = 2, jpjm1                ! update bottom with good values
src/OCE/ZDF/zdfiwm.F90:      DO jj = 1, jpj                ! part independent of the level
src/OCE/ZDF/zdfiwm.F90:      DO jk = 2, jpkm1              ! complete with the level-dependent part
src/OCE/ZDF/zdfiwm.F90:         DO jk = 2, jpkm1              ! part independent of the level
src/OCE/ZDF/zdfiwm.F90:         DO jk = 2, jpkm1              ! complete with the level-dependent part
src/OCE/ZDF/zdfiwm.F90:         DO jk = 2, jpkm1              ! part independent of the level
src/OCE/ZDF/zdfiwm.F90:         DO jk = 2, jpkm1              ! complete with the level-dependent part
src/OCE/ZDF/zdfiwm.F90:      DO jk = 2, jpkm1              ! part independent of the level
src/OCE/ZDF/zdfiwm.F90:      DO jk = 2, jpkm1              ! complete with the level-dependent part
src/OCE/ZDF/zdfiwm.F90:         DO jk = 2, jpkm1              ! energetic (Reb > 480) and buoyancy-controlled (Reb <10.224 ) regimes
src/OCE/ZDF/zdfiwm.F90:      DO jk = 2, jpkm1                 ! Bound diffusivity by molecular value and 100 cm2/s
src/OCE/ZDF/zdfiwm.F90:         DO jk = 2, jpkm1              ! Calculate S/T diffusivity ratio as a function of Reb
src/OCE/ZDF/zdfiwm.F90:         DO jk = 2, jpkm1           !* update momentum & tracer diffusivity with wave-driven mixing
src/OCE/ZDF/zdfmxl.F90:         DO jj = 1, jpj                ! Mixed layer level: w-level
src/OCE/ZDF/zdfmxl.F90:      DO jk = jpkm1, nlb10, -1         ! from the bottom to nlb10
src/OCE/ZDF/zdfosm.F90:                DO jk = 2, imld(ji,jj)   ! mixed layer diffusivity
src/OCE/ZDF/zdfosm.F90:                DO jk = 2, ibld(ji,jj) ! corrected to ibld
src/OCE/ZDF/zdfosm.F90:          DO jk = 2, jpkm1           !* Shear production at uw- and vw-points (energy conserving form)
src/OCE/ZDF/zdfosm.F90:        DO jj = 1, jpj              ! Mixed layer level: w-level
src/OCE/ZDF/zdfosm.F90:      DO jk = 1, jpkm1           ! add non-local u and v fluxes
src/OCE/ZDF/zdfphy.F90:      DO jk = 1, jpk                      ! set turbulent closure Kz to the background value (avt_k, avm_k)
src/OCE/ZDF/zdfric.F90:            DO ji = 1, jpim1              ! coefficient = F(richardson number) (avm-weighted Ri)
src/OCE/ZDF/zdfric.F90:         DO jj = 2, jpjm1        !* Ekman depth
src/OCE/ZDF/zdfric.F90:         DO jk = 2, jpkm1        !* minimum mixing coeff. within the Ekman layer
src/OCE/ZDF/zdfsh2.F90:         DO jj = 1, jpjm1        !* 2 x shear production at uw- and vw-points (energy conserving form)
src/OCE/ZDF/zdfsh2.F90:         DO jj = 2, jpjm1        !* shear production at w-point
src/OCE/ZDF/zdfsh2.F90:            DO ji = 2, jpim1           ! coast mask: =2 at the coast ; =1 otherwise (NB: wmask useless as zsh2 are masked)
src/OCE/ZDF/zdftke.F90:      DO jj = 2, jpjm1            ! en(1)   = rn_ebb taum / rau0  (min value rn_emin0)
src/OCE/ZDF/zdftke.F90:         DO jj = 2, jpjm1              ! bottom friction
src/OCE/ZDF/zdftke.F90:            DO jj = 1, jpj               ! Last w-level at which zpelc>=0.5*us*us
src/OCE/ZDF/zdftke.F90:               DO ji = 1, jpi            !      with us=0.016*wind(starting from jpk-1)
src/OCE/ZDF/zdftke.F90:         DO jk = 2, jpkm1         !* TKE Langmuir circulation source term added to en
src/OCE/ZDF/zdftke.F90:      DO jk = 2, jpkm1           !* Matrix and right hand side in en
src/OCE/ZDF/zdftke.F90:      DO jk = 3, jpkm1                             ! First recurrence : Dk = Dk - Lk * Uk-1 / Dk-1
src/OCE/ZDF/zdftke.F90:      DO jj = 2, jpjm1                             ! Second recurrence : Lk = RHSk - Lk / Dk-1 * Lk-1
src/OCE/ZDF/zdftke.F90:      DO jj = 2, jpjm1                             ! thrid recurrence : Ek = ( Lk - Uk * Ek+1 ) / Dk
src/OCE/ZDF/zdftke.F90:      DO jk = 2, jpkm1                             ! set the minimum value of tke
src/OCE/ZDF/zdftke.F90:         DO jk = 2, jpkm1                       ! nn_eice=0 : ON below sea-ice ; nn_eice>0 : partly OFF
src/OCE/ZDF/zdftke.F90:         DO jj = 2, jpjm1                     ! No sea-ice
src/OCE/ZDF/zdftke.F90:         DO jk = 2, jpkm1         ! from the surface to the bottom :
src/OCE/ZDF/zdftke.F90:         DO jk = jpkm1, 2, -1     ! from the bottom to the surface :
src/OCE/ZDF/zdftke.F90:         DO jk = 2, jpkm1         ! from the surface to the bottom : lup
src/OCE/ZDF/zdftke.F90:         DO jk = jpkm1, 2, -1     ! from the bottom to the surface : ldown
src/OCE/ZDF/zdftke.F90:      DO jk = 1, jpkm1            !* vertical eddy viscosity & diffivity at w-points
src/OFF/dtadyn.F90:         DO jj = 1, jpj                                ! set the associated depth
src/OFF/dtadyn.F90:      DO jj = 1, jpj                   ! update the depth over which runoffs are distributed
src/OFF/dtadyn.F90:            DO jk = 1, nk_rnf(ji,jj)                           ! recalculates h_rnf to be the depth in metres
src/TOP/C14/trcatm_c14.F90:            DO jj = 1 , jpj                       ! from C14b package
src/TOP/CFC/trcsms_cfc.F90:         DO jj = 1, jpj                                            !  i-j loop  !
src/TOP/CFC/trcsms_cfc.F90:            DO ji = 1, jpi                                         !------------!
src/TOP/PISCES/P2Z/p2zbio.F90:      DO jk = 1, jpkbm1                      !  Upper ocean (bio-layers)  !
src/TOP/PISCES/P2Z/p2zbio.F90:      DO jk = jpkb, jpkm1                    !  Upper ocean (bio-layers)  !
src/TOP/PISCES/P2Z/p2zopt.F90:      DO jk = 2, jpk                                  ! local par at w-levels
src/TOP/PISCES/P2Z/p2zopt.F90:      DO jk = 1, jpkm1                                ! mean par at t-levels
src/TOP/PISCES/P2Z/p2zopt.F90:      DO jk = 1, jpkm1                                ! (i.e. 1rst T-level strictly below EL bottom)
src/TOP/trcdta.F90:            DO jj = 1, jpj                         ! vertical interpolation of T & S
src/TOP/trcdta.F90:                  DO jk = 1, jpk                        ! determines the intepolated T-S profiles at each (i,j) points
src/TOP/trcsub.F90:      DO jk = 1, jpkm1                                 ! Horizontal divergence of barotropic transports
src/TOP/trcsub.F90:      DO jk = jpkm1, 1, -1                             ! integrate from the bottom the hor. divergence
src/TOP/TRP/trcadv.F90:            DO jk = 1, jpkm1                                                       ! eulerian transport + Stokes Drift
src/TOP/TRP/trdmxl_trc.F90:         DO jk = 1, jpktrd_trc                                    ! initialize wkx_trc with vertical scale factor in mixed-layer
src/TOP/TRP/trdmxl_trc.F90:         DO jk = 1, jpktrd_trc                                    ! compute mixed-layer depth : rmld_trc
src/TOP/TRP/trdmxl_trc.F90:         DO jk = 1, jpktrd_trc                                    ! compute integration weights
src/TOP/TRP/trdmxl_trc.F90:      DO jk = 1, jpktrd_trc ! - 1 ???

Recommendation

put them back !

#2522 fixed sbcflx defects systeam clem
Description

Context

The flux formulation (sbcflx) has several defects:

1) The fields that are read are not masked which may end up in a model crash if the filled values on the continents are not set to zero

2) It seems (to be verified) that all the fields need a lbc_lnk otherwise the north fold is not ok. I do not understand why. This observation comes from a simulation using nemo3.6, so it may not apply to 4.0 and the trunk

3) To fully use sbcflx, one needs to read the salt flux (sfx) from the namelist and not impose it to 0

Analysis

Recommendation

Correct the above points for 4.0 and the trunk.

1 2 3 4 5 6 7 8 9 10 11

Query Language

query: Trac Links and the [[TicketQuery]] macro both use a mini “query language” for specifying query filters. Basically, the filters are separated by ampersands (&). Each filter then consists of the ticket field name, an operator, and one or more values. More than one value are separated by a pipe (|), meaning that the filter matches any of the values. To include a literal & or | in a value, escape the character with a backslash (\).

The available operators are:

= the field content exactly matches one of the values
~= the field content contains one or more of the values
^= the field content starts with one of the values
$= the field content ends with one of the values

All of these operators can also be negated:

!= the field content matches none of the values
!~= the field content does not contain any of the values
!^= the field content does not start with any of the values
!$= the field content does not end with any of the values

The date fields created and modified can be constrained by using the = operator and specifying a value containing two dates separated by two dots (..). Either end of the date range can be left empty, meaning that the corresponding end of the range is open. The date parser understands a few natural date specifications like "3 weeks ago", "last month" and "now", as well as Bugzilla-style date specifications like "1d", "2w", "3m" or "4y" for 1 day, 2 weeks, 3 months and 4 years, respectively. Spaces in date specifications can be left out to avoid having to quote the query string.

created=2007-01-01..2008-01-01 query tickets created in 2007
created=lastmonth..thismonth query tickets created during the previous month
modified=1weekago.. query tickets that have been modified in the last week
modified=..30daysago query tickets that have been inactive for the last 30 days

See also: Trac Tickets, Trac Reports, Trac Guide