[[PageOutline]] Last edited [[Timestamp]] [[BR]] '''Author''' : acc (on behalf of agn) '''ticket''' : #680 '''Branch''' : [https://forge.ipsl.jussieu.fr/nemo/browser/branches/DEV_r1924_nocs_latphys DEV_r1924_nocs_latphys] ---- === Description === This branch will contain the latest version of Griffies's implementation of the Gent and McWilliams eddy transport as a skew flux. This has the advantage that its numerical discretization can be written in terms of contributions from quarter cells – ‘triads’. This gives a tighter stencil, disallowing 2-gridpoint numerical noise that is permitted by the advective discretization. A working prototype code for the iso-neutral and skew-flux operator was carefully reviewed in 2009. Considerable care has been taken in the formulation to ensure the tensorial representation is consistent with the variable volume layers (s-coordinate/z* representation). This has been documented and will be provided with the release.[[BR]] '''Method'''[[BR]] (1) Discretise Isopycnal diffusion in terms of these triads. This will obviate the need to smooth isopycnal slopes horizontally with a Shapiro filter (as currently implemented in NEMO), or to apply a background horizontal diffusivity that mixes diapycnally.[[BR]] (2) Implement Visbeck et al.'s formulation of spatially varying diffusivities as an alternative to the current formulation based on the Held and Larichev timescale and the Rossby radius as a lengthscale (done).[[BR]] (3) Add a slope limiting algorithm (mixed-layer depth is sensitive to the slope limiting that is employed) that behaves satisfactorily within and immediately below the mixed layer.[[BR]] (4) Implementation in the trunk+ NVTK + documentation[[BR]] ---- === Testing === Testing could consider (where appropriate) other configurations in addition to NVTK]. ||NVTK Tested||!'''YES/NO!'''|| ||Other model configurations||!'''YES/NO!'''|| ||Processor configurations tested||[ Enter processor configs tested here ]|| ||If adding new functionality please confirm that the [[BR]]New code doesn't change results when it is switched off [[BR]]and !''works!'' when switched on||!'''YES/NO/NA!'''|| (Answering UNSURE is likely to generate further questions from reviewers.) 'Please add further summary details here' * Processor configurations tested * etc---- === Bit Comparability === ||Does this change preserve answers in your tested standard configurations (to the last bit) ?||!'''YES/NO !'''|| ||Does this change bit compare across various processor configurations. (1xM, Nx1 and MxN are recommended)||!'''YES/NO!'''|| ||Is this change expected to preserve answers in all possible model configurations?||!'''YES/NO!'''|| ||Is this change expected to preserve all diagnostics? [[BR]]!,,!''Preserving answers in model runs does not necessarily imply preserved diagnostics. !''||!'''YES/NO!'''|| If you answered !'''NO!''' to any of the above, please provide further details: * Which routine(s) are causing the difference? * Why the changes are not protected by a logical switch or new section-version * What is needed to achieve regression with the previous model release (e.g. a regression branch, hand-edits etc). If this is not possible, explain why not. * What do you expect to see occur in the test harness jobs? * Which diagnostics have you altered and why have they changed?Please add details here........ ---- === System Changes === ||Does your change alter namelists?||!'''YES/NO !'''|| ||Does your change require a change in compiler options?||!'''YES/NO !'''|| If any of these apply, please document the changes required here....... ---- === Resources === !''Please !''summarize!'' any changes in runtime or memory use caused by this change......!'' ---- === IPR issues === ||Has the code been wholly (100%) produced by NEMO developers staff working exclusively on NEMO?||!'''YES/ NO !'''|| If No: * Identify the collaboration agreement details * Ensure the code routine header is in accordance with the agreement, (Copyright/Redistribution etc).Add further details here if required..........