NEMO ROFI plan
Currently the NEMO code includes river runoff in the EMP (evaporation minus precipitation fluxes) fluxes, these are added at the surface, and then there is an option to increase vertical mixing (up to a specific depth) to propagate these changes down through the water column. This method allows for volume changes to be incorporated (if using vvl), and for a dilution/concentration effect to be included in the salinity equations, however it only allows for runoff of fresh water and so is not very useful for modelling outflow of low salinity water, which would cause problems for example, in modelling the Baltic outflow. It also assumes the inflow is the same temperature as the sea surface, for shelf applications in particular it would be preferable to be able to modify the ocean temperature according to the temperature of the inflowing water.
We would like to be able to specify, for each river, the temperature, salinity and the depth to which the changes will effect, and use these to modify the temperature and salinity in the appropriate regions.
In order to do this it seems necessary to separate the river runoff from the EMP fluxes.

The suggestion we have is to create netcdf files containing the salinity, temperature, and depth (that we require effects to reach), sbc_rnf will read in these values and then the temperature and salinity adjustments will be added to sa and ta in tra_sbc.

The flux of river runoff will be read into sf_rnf, as is currently done, and then the flux of river water stored into a new, publically available 2d array, riv_flux. The volume addition/sea surface height will be dealt with in the dynamics modules, added where the emp fluxes are (dynspg_ts, dynspg_flt or dynspg_exp).
New logical variables will need to be added, to determine whether to use the new system or the original NEMO method, variables of type FLD and FLD_N will be created, to read in the salinity, temperature and depth fields, in the same way as is currently done for the water flux. Public arrays will need to be used to store the depth in model levels, the depth in metres of the model level, the flux of water, and the salinity and temperature of the inflowing water:
Logical :: ln_read_riv
TYPE (FLD_N), public :: sn_dep_rnf

TYPE (FLD_N), public :: sn_sal_rnf

TYPE (FLD_N), public :: sn_tmp_rnf

TYPE (FLD), Allocatable, Dimension (:) :: sf_dep_rnf

TYPE (FLD), Allocatable, Dimension (:) :: sf_sal_rnf

TYPE (FLD), Allocatable, Dimension (:) :: sf_tmp_rnf

INTEGER, public, dimension(jpi,jpj) :: jk_rnf
REAL, public, dimension(jpi,jpj) :: rnf_depth

REAL, public, dimension(jpi,jpj) :: riv_sal
REAL, public, dimension(jpi,jpj) :: riv_tmp

REAL, public, dimension(jpi,jpj) :: riv_flux
It will be important to include if statements and error messages to ensure that if river flow is being read in according to the new method it is not also being added to emp/emps, or already included in the EMP fluxes and that increased vertical mixing is switched off, otherwise there will be excessive vertical mixing. We will also use if statements to mimic what is done for sn_rnf and sf_rnf for the salinity, depth and temperature files when needed.

The depth values will be read in as values in metres, these will be changed using the following code:
IF (ln_read_sal) then

 jk_rnf(:)=0
 DO i=1,jpi,

 DO j=1,jpj,

 IF (sf_dep_rnf(1)%fnow > 0.0) then

 k=1
 DO WHILE (k/=jpkm1 .AND. fsvdepw(ji,jj,k) < sf_dep_rnf(1)%fnow)

 k=k+1

 ENDDO

 jk_rnf(i,j) = k

 ENDIF

 ENDDO

 ENDDO

ENDIF
The depth itself will also be used, but the depth of the model layers affected, not the depth that was read in (so if the specified depth is between two levels, the code will round this and take jk_rnf to be to the deeper of the 2 levels, and the depth of the bottom of this level will be used for calculations). This can easily be worked out:

DO i=1, jpi

 DO j=j1,jpj

 rnf_depth(i,j)=0

 DO j=1,jk_rnf
 rnf_depth(i,j)=rnf_depth(i,j)+e3t(i,j,j)

 ENDDO

 ENDDO

ENDDO
To accommodate the temperature and salinity changes in trasbc we need to deal with the vvl and linear free surfaces separately. Zsa and zta are worked out separately for each, and then added to the current value of sa or ta respectively.
For the non vvl case there are two possible ways to calculate the new temperature and salinity.

We can either work the values based on a volume of river water being added, mixed with the original ocean water, and then a matching volume of the mixed water being removed to conserve the volume. The change in salinity per time step is then:

[image: image1.wmf]3

{_(,)(,,)}.{_(,)..}

_(,)

3

3{_(,)...}

_(,)

et

rivsaljijjsnjijjjkrivfluxjijjzsrau

rnfdepthjijj

zsa

et

etrivfluxjijjzsraurdt

rnfdepthjijj

-

=

+

Or we can add a volume of river water and remove the same quantity of ocean water, and then mix what is left, in effect swapping the ocean water for river water runoff:

[image: image2.wmf]3

{_(,)(,,)}.{_(,)..}

_(,)

3

et

rivsaljijjsnjijjjkrivfluxjijjzsrau

rnfdepthjijj

zsa

et

-

=

The current NEMO code uses the second option, and so for consistency we will use this also.
 The equation can be broken into an indirect flux term, which is due to the concentration/dilution effect:

[image: image3.wmf]3

(,,).{_(,)..}

_(,)

3

et

snjijjjkrivfluxjijjzsrau

rnfdepthjijj

zsa

et

-

=

And a direct flux term, due to the amount of tracer being carried with the water:

[image: image4.wmf]3

(,).{(,)..}

_(,)

3

et

rivsaljijjrivfluxjijjzsrau

rnfdepthjijj

zsa

et

=

The code will loop through all i and j points, and through k =1 to jk_rnf(i,j), adjusting the salinity according to the above equation (whichever is chosen). Zsrau is the reciprocal of the density, as currently implemented in NEMO, and e3t is the height of the relevant grid box.
Obviously neither of these equations are conservative, however neither is the original NEMO fresh water fluxes for linear free surface.
The quantity of river water added is multiplied by e3t/rnf_depth, so that the river water is spread throughout jk_rnf levels, proportionally to the depth of each level.

The temperature would be worked out in the same way using tn, and riv_tmp, in place of sn and riv_sal.

The vvl case is more complicated. The current NEMO coding causes each grid box in a vertical column to be scaled vertically, according the both the change in sea level for that vertical column, and the vertical position of the grid box. Generally the scaling affects surface levels more than deeper levels, with the bottom level receiving no scaling, however when key_sigma_vvl is used the scaling is the same for each level (this is a fix put in by the Met Office to prevent having negative height in the top box when ssh changes are large). The volume is added to each box by creating a vertical velocity, moving water from or to the box above. This begins at the bottom and works its way to the top, until all boxes are at the required new scaling, and the volume of the top box is changed due to the added or removed water.
This means there is a large concentration or dilution effect in the top box, which we would like to instead be spread throughout a specified number of model layers. We propose doing this by changing the values of temperature and salinity in the top box to negate the change due to concentration/dilution (this is in fact already done for temperature in emp fluxes, based on the assumption that emp fluxes are added at the same temperature as the surface water and so the heat content changes, and the temperature does not):

DO jj = 1, jpj

 DO ji = 1, jpi

 zse3t= 1/e3t(ji,jj,1)
 zta = tn(ji,jj,1) * riv_flux(ji,jj) * zsrau * zse3t

 zsa = sn(ji,jj,1) * riv_flux(ji,jj) * zsrau * zse3t

 ta(ji,jj,1) = ta(ji,jj,1) + zta

 sa(ji,jj,1) = sa(ji,jj,1) + zsa

 END DO

END DO

We would then modify the salinity and temperature throughout depth to replicate the river water being added to a number of levels, so that the total change to temperature and salinity is spread throughout jk_riv levels.
For the indirect flux (dilution or concentration effect) the general idea is that we add a volume of fresh water to the top box, which causes the code to change the level spacing and causes a dilution effect in the top box. We then ‘swap’ the fresh water from the top box for water of the same temperature and salinity as the initial surface conditions. Then finally we ‘swap’ a bit of water in each model level (down to the specified depth) for the fresh/river water.

To ensure conservation of temperature and salinity we deal with it slightly differently. We add fresh water to the top box, and the model levels change. We then increase the temperature/salinity of the top box, and subtract the value of this increment proportionally over jk_riv levels, thereby ensuring that the sum of the decrements equals the increment in surface temperature/salinity. This ensures conservation of heat and salt, there should be no net addition or subtraction, merely movement.

The direct flux due to any salt/heat content in the river water is not automatically adjusted or added anywhere due to the water addition. Instead we add this to the surface temperature/salinity change (the amount by which temperature/salinity is changed in the first level) to work out the total temperature/salinity change needed. This is then shared between the levels, weighted according to the height of each level.

DO ji=1,jpi

 DO jj=1,jpj

 zse3t_top = 1/e3t(ji,jj,1)

 zse3t_full = 1/rnf_depth(ji,jj)
 dtemp = riv_tmp(ji,jj)*riv_flux(ji,jj)*zsrau*zse3t_full - tn(ji,jj,1)*riv_flux(ji,jj)*zsrau*zse3t_top
 dsal = riv_sal(ji,jj)*riv_flux(ji,jj)*zsrau*zse3t_full - sn(ji,jj,1)*riv_flux(ji,jj)*zsrau*zse3t_top
 ENDDO

ENDDO

DO jj = 1, jpj

 DO ji = 1, jpi

 DO jk=1, jk_rnf
 zta = dtemp*e3t(ji,jj,jk)/rnf_depth(ji,jj)
 zsa = dsal*e3t(ji,jj,jk)/rnf_depth(ji,jj)
 ta(ji,jj,jk) = ta(ji,jj,jk) + zta

 sa(ji,jj,jk) = sa(ji,jj,jk) + zsa

 END DO

 END DO

END DO

_1297160353.unknown

_1297160375.unknown

_1297160394.unknown

_1297160326.unknown

