Changes for river runoff

In the current NEMO setup river runoff is added to emp fluxes, these are then applied at just the sea surface as a volume change (in the variable volume case this is a literal volume change, and in the linear free surface case the free surface is moved) and a salt flux due to the concentration/dilution effect. There is also an option to increase vertical mixing near river mouths; this gives the effect of having a 3d river. All river runoff and emp fluxes are assumed to be fresh water (zero salinity) and at the same temperature as the sea surface.

Our aim was to code the option to specify the temperature and salinity of river runoff, (as well as the amount), along with the depth that the river water will affect. This would make it possible to model low salinity outflow, such as the Baltic, and would allow the ocean temperature to be affected by river runoff. The depth option makes it possible to have the river water affecting just the surface layer, throughout depth, or some specified depth between.

To do this we need to treat evaporation/precipitation fluxes and river runoff differently in the tra_sbc module. We have separated them throughout the code, so that the variables emp and emps represent the evaporation minus precipitation fluxes, and a new 2d variable rnf was added which represents the volume flux of river runoff (in kg/m2s to remain consistent with emp). This meant many uses of emp and emps needed to be changed, a list of all modules which use emp or emps and the changes made are below:
SBC/sbcana.F90
SBC/sbcblk_clio.F90

SBC/sbcblk_core.F90

SBC/sbccpl.F90
SBC/sbcflx.F90

SBC/sbcice_lim.F90

These modules remain unchanged because they are called before sbcrnf (the module which adds river runoff) and so were emp/emps is referenced it represents only evaporation minus precipitation fluxes.

In other modules changes were needed:

SBC/sbc_oce.F90

Here the new variable, rnf, is defined after emp and emps, it is also a public variable, with dimensions jpi, jpj.

cla.F90
cla_div.F90

cla_dynspg.F90

BDY/bdyvol.F90

DIA/diawri.F90
DIA/diawri_dimg.h90

DYN/dynspg_ts.F90
DYN/sshwzv.F90
OBC/obcvol.F90

SBC/sbcmod.F90

ZDF/zdfkpp.F90

In these modules ‘emp’ was replaced with ‘emp – rnf’, and ‘emps’ with ‘emps – rnf’, to ensure the equations are doing the same as they were before. (Previously rnf was subtracted from emp and emps in the sbcrnf module; instead this is now done each time emp or emps is used.)

DIA/diafwb.F90

In all calculations ‘emp’ was replaced with ‘emp – rnf’, and the variable a_emp was renamed a_fwf as it represents the fresh water flux, not just emp, similarly the variable zempnew, was changed to zfwfnew.

DOM/closea.F90

Here the variable zemp was renamed zfwf to emphasise that it represents the sum of fresh water fluxes, not just emp fluxes. In all calculations ‘emp’ is replaced by ‘emp – rnf’ (and ‘emps’ by ‘emps – rnf’) and then the excess water/evaporation is added to emp and emps fluxes (it should be noted if comparing rnf and emp/emps near the end of the time step, that emp/emps has been adjusted whereas rnf has not). Also two new local variables, fwf and fwfs, are added, these are ‘emp – rnf’ and ‘emps – rnf’ respectively, and are added so that in the call to lbc_lnk emp/emps can be replaced fwf/fwfs (the code does not allow direct substitution of ‘emp/emps – rnf’ in the call to lbc_lnk).
SBC/sbcfwb.F90
This module applies a fresh water budget correction. There are two ways in which it does this, the first case is to set the global mean to zero, and the second is to adjust it based on the previous year. For the first case, z_emp, which represents the sum of the fresh water flux, is renamed z_fwf, and in the calculation ‘emp’ is replaced with ‘emp – rnf’. The correction is then subtracted from emp and emps fluxes (again, if comparing rnf and emp/emps at the end of the time step be aware of this adjustment to emp which is not applied to rnf).

For the second case the data is initially read from a file, EMPave_old.dat, this is renamed FWFave_old.dat for clarity. The variable empold has also been renamed fwfold to signify that it is fresh water fluxes, not just evaporation/precipitation fluxes. Where the previous years fresh water fluxes are calculated the change in ssh is used, not emp, and so no change has been made. The variable fwfold is then added to emp and emps, as before. Finally the value of fwfold is saved to a file, which was named EMPav.dat, this has been renamed FWFav.dat, again for clarity.
SBC/sbcssr.F90

This is unchanged. The purpose of the module is to add a restoring term, towards observed sst/sss, to the heat and fresh water fluxes. The restoring term is worked out independently of emp/emps and then added to emp and emps, but it is not added in the vicinity of river mouths. As such rnf should not affect it and no changes have been made.
TRA/trasbc.F90 and SBC/sbcrnf.F90 were changed considerably, with some small changes due to the separation of rnf and emp fluxes, and some larger changes to allow the user to specify the temperature, salinity and depth or river outflow:
In SBC/sbcrnf.F90 new variables sn_sal_rnf, sn_tmp_rnf and sn_dep_rnf were added, which contain information about the files containing the salinity, temperature and depth data, similarly to sn_rnf. Variables sf_sal_rnf, sf_tmp_rnf have also been added, which define the structure of the input files and fields for salinity and temperature (as sf_rnf does for the flow).

Four 2D public variables have also been added, rnf_dep, rnf_mod_dep, rnf_sal and rnf_tmp. These contain the depth in metres, depth in model levels, salinity and temperature of runoff respectively and are used in trasbc.
A logical namelist variable has been added, ln_rnf_att. If this is set to true the runoff attributes (temp, sal, and depth) are read from files, if false, salinity is taken to be 0, temperature is taken to be -999 (the missing data value) and the depth that the runoff effects is taken to be -1, a missing data value which causes river runoff to be added to the surface level only. This mimics the original coding; fresh water inputted at the surface only, with no temperature specified (in trasbc the runoff temperature is forced to equal sst, as before).

After sf_rnf(1) is allocated (only for the first time step) sf_sal_rnf and sf_tmp_rnf are also allocated. sbc_rnf_init is then called, with added arguments sf_tmp_rnf and sf_sal_rnf.

In sbc_rnf_init, sn_sal_rnf, sn_tmp_rnf and sn_dep_rnf are defined to their default values, and are included in the namelist read along with ln_rnf_att.
If ln_rnf_att is set to true, fld_fill is called with sf_sal_rnf and sf_tmp_rnf as is done for sf_rnf.

The depth data is read using iom calls, the depth is converted to a model level, by looping through all i and j points, and for each grid point looping through the k points until the depth in metres is less than the depth of that model level. If the depth file contains -1 the code forces the runoff to be added only at the surface, and if the depth is set as -999 the code adds the river runoff through all model levels. The value of the depth is then adjusted to be the depth in metres of the model level instead of the user specified depth, to avoid any errors with the discretisation.

If ln_rnf is set as false the code assumes river runoff is added to the surface level only, and the depth of this level is calculated.
Two warning messages have been added to sbc_rnf_init, one appears if ln_rnf_emp and ln_rnf_att are true, as if runoffs are included in the precipitations (ln_rnf_emp) then any attributes will not be included, the other is used if ln_rnf_mouth and ln_rnf_att are both true, to warn the user increased mixing is being used but the river runoff may have already been spread through depth by ln_rnf_att.

No changes were made to rnf_mouth.

After the call to sbc_rnf_init, fld_read is called with sf_sal_rnf and sf_tmp_rnf as is done for sf_rnf, this reads in and stores the temperature and salinity data.
Finally if MOD(kt-1, nn_fsbc) = 0, then rnf(:,:) is set to be rn_rfact*sf_rnf(1)%fnow(:,:), and if ln_rnf_att=true rnf_sal(:,:)and rnf_tmp(:,:) are set as sf_sal_rnf(1)%fnow(:,:) and sf_tmp_rnf(1)%fnow(:,:) respectively. If ln_rnf_att=false, rnf_sal(:,:)=0 and rnf_tmp(:,:)=-999, the water is assumed fresh, and missing data is allocated for temperature.

In TRA/trasbc.F90 the section changing temperature and salinity due to the concentration/dilution effect of emp fluxes is left unchanged, but it should be noted that here emp now refers only to evaporation minus precipitation, and runoff is not included. The concentration/dilution effect due to river runoff is dealt with separately after.

If rnf_tmp=-999 it is set equal to the sea surface temperature at the ji,jj point in question, this replicates the original code.

The temperature and salinity is then changed if the rnf is greater than 0, this is because if modelling the Baltic as a low salinity river, there will be times when the flow is out of the north sea, into the Baltic, and in this case we would not want the salinity and temperature to be affected, just for the ssh/volume to be changed.

The change in temperature/salinity per time step (zta and zsa) is calculated by averaging the temperature/salinity of the original water and the temperature/salinity of the river runoff, weighted by the volume of each. The density of fresh water is used when calculating the volume of added water from the given mass flux, this is not entirely accurate and will cause small errors if dealing with saline water. The amount of river water added to each box is proportional to the height (or volume) of each box.
The averaging calculation used comes from ‘swapping’ a volume of ocean water for a volume of river water. (This is not exactly correct, really the river water should be added, mixed with the ocean water, and then a quantity of the mixed water, equal to the amount of river runoff which was added, should be removed, it is really an issue of whether the equation involves dividing by the original volume, or dividing by the original volume added to the volume of runoff. The discrepancy between the 2 is very small, and it was decided to continue with the ‘swapping’ method for continuity, as this is what was originally used for emp fluxes and river fluxes.)
The volume of swapped water for each grid box is:

[image: image1.wmf](,)*1(,,)*2(,,)*3(,,)

*

_(,)

rnfjijjetjijjjketjijjjkrdtetjijjjk

densityrnfdepjijj

The new salinity in each grid box is
[image: image2.wmf]_*(__)_*_

_

originalsalinityoriginalvolumeaddedvolum

eriversalinityaddedvolume

originalvolume

-+

Therefore, for each grid box the change in salinity(or temperature) per time step, zsa is
[image: image3.wmf](

)

1

_

__*

timestep

newsalinityorigsalinity

-

:

[image: image4.wmf]*1*2**3*1*2**3

*_*_

*(1*2*3)_*

1

*

1*2*3

rnfetetrdtetrnfetetrdtet

densityrnfdepdensityrnfdep

saetetetrnfsal

zsasa

etetetrdt

ìü

-+

ïï

=-

íý

ïï

îþ

which cancels down to:

[image: image5.wmf](

)

(,)

_(,)(,,)*

*_(,)

rnfjijj

zsarnfsaljijjsajijjjk

densityrnfdepjijj

=-

The code then adds the temperature and salinity adjustment to ta and sa for each grid box.

The variable volume case is more complicated. The variable volume code causes each model level to increase slightly when water is added. It does this by taking each grid box starting from the bottom and moving water from the above grid box into the box in question until it reaches the necessary volume. Starting from the bottom means that the fresh water is added as a surface flux (in that the concentration/dilution effect of the added water is not shared between the levels, but added to the surface). To allow the user to spread the effect of the river runoff throughout depth we add a heat and salt flux to the top box, to remove the dilution effect from that box, and add a dilution to each of the boxes we want to affect. To avoid any numerical errors, and ensure conservation of salt and heat, we calculate the dilution effect for each of the boxes we want to change. We then sum all these changes and apply the opposite to the top box, thus removing the dilution effect that the vvl automatically applies (the sum of the changes in all boxes should be equal and opposite to the automatic change in the top box).

We then calculate the direct flux (flux due to salt/heat being added by the river) for each box and modify the temperature and salinity accordingly.
Testing

The code was tested to ensure it did not interfere with the original code by running with ln_rnf_att=false, (for both the linear free surface and the vvl case) and running the original code. An ncdiff showed the output to be identical. It was also run with ln_rnf_att=true, but specifying river conditions which should give the same result as the original code, again they were identical.

The new code was run with initial conditions of 0oC and 0psu everywhere adding one river also of 0oC and 0psu, and as expected there was a change in ssh only.

The change in ssh is exactly the same as in the original coding, and shows that the new code has not caused any problems in the ssh calculation. The total change in volume over the whole domain (running without bdy) for each time step was also calculated, and this equalled the amount of water being added by the river at each time step.
When running with fresh water the new code gives exactly the same output as the original, showing the dilution effect works as it should.
To test the linear free surface case the difference in salinity and temperature from before and after the river runoff is included was outputted. This was run using both fresh water rivers, with no temperature specified, to check the dilution effect, and with low salinity river, with a temperature specified, to asses the direct tracer flux. The depth to which the river water is added was also varied, the river was added into the surface box only, throughout the water depth and to a specified depth in between (50m, where the bathymetry was ~91m). For each run the code gave changes in only the grid boxes we expected and of the correct amount, showing the code only affects the correct amount of boxes, and changes the temperature and salinity in them as expected.
To test the non linear free surface case we ran with a fresh river, without any temperature changes, adding the river only at the surface, this gave exactly the same distribution of salinity and temperature as the original code, so it can be assumed the code works fine for the dilution effect. The model was run with initial conditions of 10oC and 35.5psu everywhere, with one river of 10oC and 35.5psu. We would expect to see a change in ssh only, as the direct flux should be exactly equal and opposite to the dilution effect. A run of just over 22 days with one river shows absolutely no change in salinity or temperature, implying the direct flux also works as expected.
_1302689938.unknown

_1302690177.unknown

_1302690394.unknown

_1302690030.unknown

_1302688831.unknown

