

3. High Performance Computing constraints :
This chapter will include an analysis of the behaviour of NEMO applications on target machine architectures, of the actual performances / bottlenecks, as well as the definition of relevant performance metrics and of the proposed ways forward by 2021. Contributions are expected from the HPC working group. This chapter must emphasise the importance of this work. NEMO will not be a viable model in the mid to late 2020s unless this work is done.
Are the standard NEMO configurations (e.g. ORCA025) making effective use of the existing HPCs ? If not what are the main limitations ? What are the limits for higher resolution (e.g. ORCA12, ORCA16, ORCA36, NATL60)
ORCA12 can run at ~1 year/day on O(6000 cores) with land suppression. This would be O(10000) without land suppression.
Time to solution is limited by :
Communication
Efficient exploitation of hardware architecture
Memory/Cache usage and access
How do we expect NEMO performance to scale in future ?
NEMO currently only scales to local domain sizes of ~40x40. We are already close to this scaling limit and it would prevent us running ORCA12 at an acceptable speed (2 years/day) even if we had a bigger supercomputer.
10x10 has been suggested as a target. Would 8x8 be better for improved memory access and vectorisation which supports multiples of 4 and 8.
Table below gives an idea of how many cores would be used by ORCA at different resolution and domain sizes.
	Domain Size
	Configuration
	Approx. Number of domains (not using land suppression)

	40 x 40
	eORCA025
	1000

	10 x 10
	eORCA025
	16000

	40 x 40
	eORCA12
	10000

	10 x 10
	eORCA12
	156000

	40 x 40
	eORCA36 (1/36º)
	87804

	10 x 10
	eORCA36 (1/36º)
	1400000

What performance do we need for the future. PLEASE ADD YOUR OWN TARGETS HERE
E.g. Met Office require ORCA12 at 2 years/day by 2020. Next Met Office HPC upgrade is also due at this time. What about 2025 and beyond?
What are the proposed strategies to improve NEMO’s HPC performance ?
The NEMO code has a flat performance profile. This means, that there are no particular areas that can be optimised alone to gain significant performance improvements. First, a detailed analysis of runtime performance of code to find general issues (e.g. wrong data storage format).
TG comment : Hopefully we will already have some information on this by the Dev Comm meeting and by the time we write the final document.
Haloes :
Latency hiding by processing halo relevant cells first and doing updates in parallel to rest of loop calculation. Do all architectures have this capability? Will all machines have this capability in future?
Increase size to reduce communications
Should be no more than 1 update per variable per timestep
Hybrid parallelization (OpenMP/MPI)
At loop level
Could we go further and run parts of physics on separate threads (e.g. diffusive & advective contributions to tracer trends)
Improvements to single node performance
Change of array order to z-x-y and loop order could provide a factor of 2 improvement in the code. This is a major change to the code and will take a lot of time (see resourcing below). A detailed performance analysis has to be made first to see the potential improvements of this.
Could TOP_SRC be run in parallel and coupled via oasis (or using openMP as above)
Could some or all of NEMO be run at lower precision for certain applications?
Can the domain decomposition algorithm be optimized?
Can the land suppression process be improved (easier to use and more efficient?)
Should new numerical methods be considered for Exascale (covered in chapter on dynamical core?)
Running of NEMO on GPU architectures. What needs to be done to achieve this. Can we learn from other models where this has been done e.g. POP?
Use of XIOS2 for reading files one time step ahead of the model run.
Can we make use of other 3rd party libraries (similar to XIOS) to help with other parts of the code. E.g. Is maintaining our own halo swapping code the right thing to do?
Separation of Concerns approach (GOcean):
CMCC have funding for 3 months effort on this to test in a 3D NEMO routine
Code generator can be used to implement OpenMP, halo swapping, cache blocking meaning scientists don’t need to worry about it but…
It still requires a lot of maintenance to keep it working for all architectures in future.
Scientists have to get used to writing the code in a new way.
It can’t do everything for us!
What are the main obstacles to exploitation of heterogeneous architectures?
How do we expect to use future HPC resources?
More ensembles of current resolutions? If this is the case we don’t have much to do.
More complexity/tracers.
Higher resolution
Multi-grid (e.g. AGRIF). We need to look at how the AGRIF preprocessor affects model performance. How will it work with OpenMP? [Martin’s comment: Do we need a linear solver? How about using an algebraic multigrid such as PetSc?]
Parallel in time? NB: This is a long way off for now (more like 2030s for use in an operational model).
Do we expect to need flexibility to organize the code differently for different applications on HPC machines? How can we improve model portability?
This is where the separation of concerns approach could help as it could apply different optimizations on different machines.
Where will the resource for this come from?
Most of these tasks are difficult and require a major effort
Martin Schreiber (U. of Exeter) has submitted a grant request for Intel Parallel Computing Centre. If successful will provide 2 PDRAs for 2 years to work on NEMO (note they will only be able to look at Intel architectures).
If IPCC isn’t funded there probably isn’t enough effort within the systems team.
BSC – Miguel as PhD student will continue for next 2-3 years.
EuroExa – STFC request for 36 months FTE to work on PsyClone (would include some work on NEMO).

