source: altifloat/doc/ocean_modelling/Draft1.tex @ 175

Last change on this file since 175 was 175, checked in by leila_ocean, 9 years ago

method 90%

File size: 21.2 KB
Line 
1%%
2%% Copyright 2007, 2008, 2009 Elsevier Ltd
3%%
4%% This file is part of the 'Elsarticle Bundle'.
5%% ---------------------------------------------
6%%
7%% It may be distributed under the conditions of the LaTeX Project Public
8%% License, either version 1.2 of this license or (at your option) any
9%% later version.  The latest version of this license is in
10%%    http://www.latex-project.org/lppl.txt
11%% and version 1.2 or later is part of all distributions of LaTeX
12%% version 1999/12/01 or later.
13%%
14%% The list of all files belonging to the 'Elsarticle Bundle' is
15%% given in the file `manifest.txt'.
16%%
17%% Template article for Elsevier's document class `elsarticle'
18%% with harvard style bibliographic references
19%% SP 2008/03/01
20
21\documentclass[preprint,12pt,authoryear]{elsarticle}
22
23%% Use the option review to obtain double line spacing
24%% \documentclass[authoryear,preprint,review,12pt]{elsarticle}
25
26%% Use the options 1p,twocolumn; 3p; 3p,twocolumn; 5p; or 5p,twocolumn
27%% for a journal layout:
28%% \documentclass[final,1p,times,authoryear]{elsarticle}
29%% \documentclass[final,1p,times,twocolumn,authoryear]{elsarticle}
30%% \documentclass[final,3p,times,authoryear]{elsarticle}
31%% \documentclass[final,3p,times,twocolumn,authoryear]{elsarticle}
32%% \documentclass[final,5p,times,authoryear]{elsarticle}
33%% \documentclass[final,5p,times,twocolumn,authoryear]{elsarticle}
34
35%% For including figures, graphicx.sty has been loaded in
36%% elsarticle.cls. If you prefer to use the old commands
37%% please give \usepackage{epsfig}
38
39%% The amssymb package provides various useful mathematical symbols
40\usepackage{amssymb}
41\usepackage{multimedia}
42\usepackage{amsfonts}
43\usepackage{amsmath}
44\usepackage{multimedia}
45\usepackage{graphics}
46\usepackage{bbm}
47\usepackage{pstricks}
48\usepackage{amsthm}
49 \usepackage{graphics}
50 \usepackage{pgf}
51 \usepackage{wrapfig} 
52 \usepackage{mathtools} 
53\usepackage{caption}
54\usepackage{subcaption}
55
56
57
58 
59 
60 
61 
62 
63 \newcommand{\vectornorm}[1]{\left|\left|#1\right|\right|}
64 \newcommand{\bo}[1]{\mathbf{#1}}
65%\newcommand{\vectornorm}[1]{\left|\left|#1\right|\right|}
66\newcommand{\dif}[2]{\frac{\partial #1}{\partial #2}}
67\newcommand{\diff}[2]{\frac{\partial^2 #1}{\partial {#2}^2}}
68\newcommand{\odif}[2]{\frac{d #1}{d #2}} 
69\newcommand{\odiff}[2]{\frac{d^2 #1}{d #2^2}}
70
71%% The amsthm package provides extended theorem environments
72%% \usepackage{amsthm}
73
74%% The lineno packages adds line numbers. Start line numbering with
75%% \begin{linenumbers}, end it with \end{linenumbers}. Or switch it on
76%% for the whole article with \linenumbers.
77%% \usepackage{lineno}
78
79\journal{Ocean Modellling}
80
81\begin{document}
82
83\begin{frontmatter}
84
85%% Title, authors and addresses
86
87%% use the tnoteref command within \title for footnotes;
88%% use the tnotetext command for theassociated footnote;
89%% use the fnref command within \author or \address for footnotes;
90%% use the fntext command for theassociated footnote;
91%% use the corref command within \author for corresponding author footnotes;
92%% use the cortext command for theassociated footnote;
93%% use the ead command for the email address,
94%% and the form \ead[url] for the home page:
95%% \title{Title\tnoteref{label1}}
96%% \tnotetext[label1]{}
97%% \author{Name\corref{cor1}\fnref{label2}}
98%% \ead{email address}
99%% \ead[url]{home page}
100%% \fntext[label2]{}
101%% \cortext[cor1]{}
102%% \address{Address\fnref{label3}}
103%% \fntext[label3]{}
104
105\title{Modeling Surface Currents in the Eastern Levantine Mediterranenan Using Surface Drifters and Satellite Altimetry Data}
106
107%% use optional labels to link authors explicitly to addresses:
108%% \author[label1,label2]{}
109%% \address[label1]{}
110%% \address[label2]{}
111
112\author{Leila Issa, Julien Brajard, Pierre-Marie Poulain, Laurent Mortier, Dan Hayes, Milad Fakhri}
113
114\address{}
115
116\begin{abstract}
117%% Text of abstract
118
119\end{abstract}
120
121\begin{keyword}
122%% keywords here, in the form: keyword \sep keyword
123
124%% PACS codes here, in the form: \PACS code \sep code
125
126%% MSC codes here, in the form: \MSC code \sep code
127%% or \MSC[2008] code \sep code (2000 is the default)
128
129\end{keyword}
130
131\end{frontmatter}
132
133%% \linenumbers
134
135%% main text
136\section{Introduction}
137\label{}
138Recurrent marine pollution like the ones observed near the coastal regions of Lebanon is a major threat to the marine environment and halieutic resources. Polluting agents do not only have a immediate local effect but they are also transported through ocean currents to deep waters far away from the coast thereby having a long term, large scale effect. Modeling ocean currents is thus a major topic that mobilizes multidisciplinary researchers. 
139
140The objective of this project is to combine two types of observations (drifters and satellite data) in order to reconstruct mesoscale features of the surface currents in the Levantine Mediterranean including coastal regions. The figure below shows positions of drifters and altimetry data in the Eastern Mediterranean from the 27th to the 29th of November 2009: the altimetric data gives the velocity field in the whole basin with a resolution of $10$ km smoothing considerably some mesoscale features with errors especially near the coastal regions. The buoys on the other hand allow a better reconstruction of the velocity field but only along their trajectories. These two types of data are therefore complimentary and we can then formulate the problem as follows: find the optimal velocity field from these two sources of information.   
141
142The mathematical problem consists of ``inverting'' the Lagrangian trajectories (Drifters positions) to correct the Eulerian velocity field given my the altimetric data. The literature on the subject is abundant: ranging from optimal interpolation  \cite{ozgokmen2003assimilation}, to statistical approaches based on extended Kalman filter methods \cite{salman2006method}, to variational techniques \cite{kamachi1995continuous}, \cite{nodet2006variational}, \cite{taillandier2006variational}.
143We propose to use a variational assimilation technique where we correct the Eulerian velocity field by minimizing the distance between a model solution and observations of the buoys. We use the incremental approach described in \cite{courtier1994strategy}, \cite{dimet2010variational}. The advantage of this method is that while being midway in complexity between OI (lower) and Kalman filter (higher), it permits a simple mathematical formulation of the dynamical constraints we wish to impose.
144
145
146\begin{figure}[htbp]
147\begin{center}
148\includegraphics[scale=0.5]{./fig/RealvsSimulatedTraj.pdf}
149\vspace{-30mm}
150\caption{Real CNRS observations of 3 drifters starting Aug 28 2013 -x , vs simulated -- with aviso same date. On top of averaged Aviso for 6 days starting aug 28  }
151\end{center}
152\end{figure}
153
154
155
156\section{Data}
157\subsection {Altimetry data}
158\subsection{Drifter data}
159\subsection {Model data}
160%Wind + Dan
161
162
163\section{\label{sec:method}Method}
164
165%%%%%%%%%%%%%%%%
166\subsection{Statement of the problem}
167
168We consider $N_f$ Lagrangian drifters released at time $t=0$ at various locations. These drifters provide their positions each $\Delta t$, over a period $[0,T_f]$.
169Our objective is to determine an estimate of the two-dimensional Eulerian velocity field  \begin{equation}\notag
170\mathbf{u}(x,y,t)=(u(x,y,t),v(x,y,t))
171\end{equation}
172characterized by a length scale $R$ [Refs], given observations of the drifters' positions
173\begin{equation}
174\bo{r}^{obs}_i(n\Delta t), \,\,\, i=1,2, \cdots, N_f, \,\,\, n=1, 2, \cdots N, \,\,\, \text{where}\,\,\, N \Delta t= T_f.
175\end{equation}
176The velocity shall be estimated on a specified grid with resolution $\Delta x,$ in the time frame $[0, T_f].$ 
177
178The estimation is done following a variational assimilation approach [Refs], whereby the first guessed velocity, or background $\bo{u_b}$, is corrected by matching the observations with a model that simulates the drifters' trajectories. This correction is done using a sliding time window of size $T_w$, where we assume $\Delta t<T_w<T_L,$ and where $T_L$ is the Lagrangian time scale associated with the drifters in the concerned region [Refs]. The background field is considered to be the sum of a geostrophic component (provided by altimetry) on which we impose a divergence free constraint, and a velocity due the wind [Refs]. The details of this procedure are given in Section 3.3.
179
180
181
182
183\subsection{Linearized model for Lagrangian data}
184
185
186
187The position of a specific drifter $\mathbf{r}(t)=(x(t),y(t))$ is the solution of the non-linear advection equation
188\begin{equation} \label{advection}
189 \odif{\mathbf{r}}{t}=\mathbf{u}(\mathbf{r}(t),t), \,\,\,\,\bo{r}(0)=\bo{r}_0, \mathbf{u}(x,y,0)=\bo{u}_0.
190 \end{equation}
191This equation is integrated numerically using an Euler scheme for example. Since the drifters positions may not coincide with the Eulerian velocity's grid points, a spatial interpolation of $\mathbf{u}$ to these positions is also needed.
192
193
194The observation operator, denoted it schematically by  $\bo{r}=\mathcal{M} (\bo{u}, \bo{r}),$ consists then of numerical advection and interpolation, and it is given by 
195\begin{equation} \label{euler_advection}
196\bo{r}(k\delta t)=\bo{r}((k-1)\delta t)+\delta t \, interp(\bo{u}((k-1)\delta t), \bo{r}((k-1)\delta t)), \,\,\,\,\, k=1,2, \cdots
197\end{equation}
198%Let us denote by $\bo{r}_k = (x_k ,y_k)$ the position of the drifter at time $t_k=k\delta t$ , $\mathbf{u}_k$ the Eulerian velocity at position $\mathbf{r}_k$ and time $t_k$, and
199where $\delta t$ the time step of the scheme, typically a fraction of $\Delta t$. We choose bilinear interpolation
200\begin{align}
201interp(\mathbf{u}, (x , y )) &= \mathbf{u}_1 + (\mathbf{u}_2 -\mathbf{u}_1 )\frac{(x - x_1)}{\Delta x} + (\mathbf{u}_3 -\mathbf{u}_1 )\frac{(y -y_1 )}{ \Delta y} \\ \notag
202&+ (\mathbf{u}_1-\mathbf{u}_2-\mathbf{u}_3 + \mathbf{u}_4 )\frac{(x-x_1 )(y -y_1 )}{\Delta x \, \Delta y},
203\end{align}
204where
205\begin{align} \notag
206\mathbf{u}_1 &= \mathbf{u} (x_1 , y_1 ), \\  \notag
207\mathbf{u}_2 &= \mathbf{u} (x_1 + 1, y_1 ), \\ \notag
208\mathbf{u}_3 &=\mathbf{u}(x_1 , y_1 + 1), \\  \notag
209 \mathbf{u}_4 &= \mathbf{u}(x_1 + 1, y_1 + 1). \notag
210\end{align}
211Here, $x_1=\left \lfloor{x}\right \rfloor $ is the floor function and $(x_1, y_1), (x_1 + 1, y_1), (x_1, y_1 + 1)$ and $(x_1 + 1, y_1 + 1)$ are the grid points which are nearest to $(x, y)$.
212
213
214
215%This has the advantage that the cost function becomes quadratical; it has a unique minimum and this minimum is assumed to be close to that of the full non-quadratical cost function (below).
216
217Using the incremental approach [Refs], the nonlinear observation operator $\mathcal{M}$ is linearized around a reference state. In a specific time window, we consider time independent perturbations $\delta \bo{u}$ on top of the background velocity field, that is
218\begin{align}\label{totalR}
219\bo{r}&=\bo{r^b}+\delta \bo{r} \\ \notag
220\bo{u}&=\bo{u^b}+\delta \bo{u}.
221\end{align}
222The linearized equations become
223\begin{align} \label{REquations}
224&\bo{r^b}(k\delta t)=\bo{r^b}((k-1)\delta t)+\delta t \, interp\bigl(   \bo{u^b}((k-1)\delta t)), \bo{r^b}((k-1)\delta t     \bigr) ,\,\,\,\,\, \text{background}  \\  \notag
225&\bo{\delta r}(k\delta t) = \bo{\delta r}((k-1)\delta t) + \delta t \, \{ interp(\bo{\delta u},\bo{r^b}((k-1)\delta t)) \\ \notag 
226&+ \bo{\delta r}((k-1)\delta t) \cdot \partial _{(x,y)} interp \bigl(\bo{u^b}((k-1)\delta t),\bo{r^b}((k-1)\delta t)\bigr)\}\,\,\, \text{tangent} 
227\end{align}
228where the drifters' positions are initialized with observations, and where $k=1,2,3, \cdots    \left \lfloor{T_w/\delta t}\right \rfloor .$ 
229Here, $ \partial _{(x,y)} interp$ is the derivative of the interpolation function with respect to $(x,y)$.
230
231
232The background velocity used in the advection of the drifters is the aggregate of a geostrophic component $\bo{u}_{geo}$ provided by altimetry and a component driven by the wind $\bo{u}_{wind}$, which is parametrized by two parameters as described in PPM. So we have 
233\[\bo{u}^b=\bo{u}_{geo}+\bo{u}_{wind}
234\]
235The data for both velocities are provided daily as described in the Data Section. This means that an interpolation in time of these velocities may be needed.
236
237
238
239%\subsection{Discussion on the choice of $\delta t$ }
240%The observations $\bo{r}^{obs}$ are available to us for each $\Delta t$, that is we have $\bo{r}^{obs}(i \Delta t), \,\,  i=0,1,2, \cdots $. Let us denote by $\Delta x$ the typical distance traveled by a buoys during $\Delta t$ and let $\Delta s$ denote the spatial resolution of the correction $\delta \bo{u}$. We have two scenarios:
241%\begin{enumerate}[(i)]
242%\item If $\Delta s >> \Delta x$, then we can take $\delta t \sim \Delta t$ (that should simplify equation \eqref{Evolve})
243%\item If $\Delta s << \Delta x$, we need to iterate many $\delta t$ to arrive at an observation. We take $N \delta t=\Delta t$
244%\end{enumerate}
245
246\subsection{Algorithm for assimilation}
247
248We perform sequences of optimizations, where we minimize the following objective function with respect to the time independent correction $\delta \bo{u},$ in a specific time window $[0,T_w].$
249\begin{equation}
250\mathcal{J}(\delta \bo{u})=  \sum _{i=1}^{N_f} \sum_{m=1}^{\left \lfloor{T_w/\Delta t}\right \rfloor} \vectornorm{\bo{r}^{\,b}_{i}(\bo{u^b})+\delta \bo{r}_i(\delta \bo{u}) -\bo{r}_i^{\,obs}(m\Delta t) }^2 +\alpha_1 \vectornorm{ \bo{\delta u} }^2_{\bo{B}} +\alpha_2 \,div (\bo{u}_{geo})
251\end{equation}
252
253The first component of the objective function quantifies the misfit between the model
254obtained by iterations of \eqref{REquations}, and observations $\bo{r}^{\,obs}(m\Delta t)$.
255We highlight the dependence of $\bo{r}^b$ on the background velocity only, whereas $\bo{\delta r}$ depends on both background and correction.
256The second component states that the corrected field is required to stay close to the background velocity.
257Here, the $B$-norm is defined as $\vectornorm{\psi}^2_{\bo{B}} \equiv \psi^T \mathbf{B}^{-1} \psi,$ where $\bo{B}$ is the error covariance matrix.  This term serves the dual purpose of regularization and information spreading or smoothing. To obtain $\bo{B}$. we use the diffusion filter method of [Weaver and Courtier, 2001], where a priori information on the typical length scale $R$ of the Eulerian velocity can be inserted.
258The parameter $\alpha_1$ represents the relative weight of this regularization term with respect to the other terms.
259The last component is a constraint on the geostrophic part of the velocity, required to stay divergence free. More here?.We note here that the total velocity may have a divergent component due to the wind.
260
261
262Inside a time window $[0, T_w]$, we assimilate a whole trajectory of drifters, which gives a constant correction $\bo{\delta u}.$ We refine the method by reconstructing a smooth time dependent velocity inside $[0, T_f]$: we achieve this by sliding the window by a time shift $\sigma$ to obtain other corrections $\bo{\delta u}_k$ in $[k\sigma, k\sigma +T_w], \, \, k=0, 1, 2 \cdots$. The reconstructed velocity is then obtained as \[\bo{u}_{corrected}(t_i)=\bo{u^{b}}(t_i)+\sum_{k=0}^{N^i_w} w_k \bo{\delta u}_k.\]  A correction at at specific instant $t_i$ only takes into accounts $N^i_w$ windows sliding through $t_i$ and weight $w_k$ given to correction $\bo{\delta u}_k$ is inversely proportional to the ``distance" between time $t_i$ and the window's position.
263%Here $i=1,2, \cdots T_f/\delta t$
264
265
266
267
268DIAGRAM IS USEFUL!
269
270\subsection{Implementation of the assimilation method in YAO}
271
272\section{Twin Experiment}
273In the twin experiment approach, the observations are simulated using a known velocity field referred to as the true velocity $\bo{u}_{true}.$ In this context, we are able to assess the validity of our approach by comparing the corrected $\bo{u}_{corrected}$ and the true fields. This will be based on the time-dependent RMS error
274\begin{equation} \label {RMSError}
275error (u, t)=\bigg(    \frac{\sum_{i,j} |\bo{u}_{true} (i,j,t)-\bo{u} (i,j,t)|^2}{\sum_{i,j} |\bo{u}_{true} (i,j,t)|^2 } \bigg),
276\end{equation}
277where $\bo{u}$ could be $\bo{u}_b$, giving the error before assimilation or $\bo{u}_{corrected}$, giving the error after assimilation. We shall also compare the trajectories of the drifters obtained by simulation with the corrected velocity field and the observed trajectories.
278
279
280
281In our experiment, we obtain the true velocity field from a dynamic model \textcolor{red}{Need details from Dan}. We start the optimisation with the background velocity field as described in the method section. The region we study is located off the shore of Beirut Explain that CNRS drifters were launched south of Beirut, so we put drifters close to there. As shown in Fig. 2, we compute the error in a box between 33.7 and 34.25 North and 34.9 E and the coast. There we ``deploy" a maximum of 14 drifters. The duration of the experiment is 3 days (nothing forbids of going longer, but some drifters hit the coast). We shall study the density with respect to the number of drifters (respecting coverage), to the time sampling $\Delta t,$ to the window size $T_w$ and to the moving parameter $\sigma.$
282
283
284
285\begin{figure}[htbp]
286\begin{center}
287\includegraphics[scale=0.5]{./fig/RegionErroronAviso.pdf}
288\vspace{-30mm}
289\caption{Region for RMS Error Computation surrounding the observations generated by Dan's model of Sept 1st 2013. on top of the average over 3 days Aviso Field starting  Sept 1st 2013, }
290\end{center}
291\end{figure}
292
293
294
295\begin{figure}[htbp]
296\begin{center}
297\includegraphics[scale=0.5]{./fig/Shifts_win24_dt1_f14_tf72.pdf}
298\vspace{-30mm}
299\caption{The effect of the moving window for a window of size $24$hs with 14 drifters and $dt=2hs$ }
300\end{center}
301\end{figure}
302
303
304\begin{figure}[htbp]
305\begin{center}
306\includegraphics[scale=0.5]{./fig/Wins_optshift_dt1_f14_tf72.pdf}
307\vspace{-30mm}
308\caption{The effect of the window size for 14 drifters and $dt=2$hs}
309\end{center}
310\end{figure}
311
312\begin{figure}[htbp]
313\begin{center}
314\includegraphics[scale=0.5]{./fig/Nfs_win24_dt1_tf72.pdf}
315\vspace{-30mm}
316\caption{The effect of the number of drifters}
317\end{center}
318\end{figure}
319
320\begin{figure}[htbp]
321\begin{center}
322\includegraphics[scale=0.5]{./fig/Dts_win24_f14_tf72.pdf}
323\vspace{-30mm}
324\caption{The effect of the time sampling}
325\end{center}
326\end{figure}
327
328
329
330
331
332\begin{figure}[htdp]
333%\centering
334\begin{subfigure}{0.55\textwidth}
335 % \entering
336  \includegraphics[width=1.2\linewidth]{./fig/Before_L2pointw_win24_MEAN_color.pdf}
337%  \caption{Pressure drop.}
338  \label{bla}
339\end{subfigure}%
340\hspace{-10mm}
341\begin{subfigure}{0.55\textwidth}
342 % \centering
343  \includegraphics[width=1.2\linewidth]{./fig/After_L2pointw_win24_MEAN_color.pdf}
344%  \caption{Mass flowrate.}
345  \label{blo}
346\end{subfigure}
347\vspace{-30mm}
348\caption{the point-wise L2 error before and after in m/s}
349\label{fblo}
350\end{figure}
351
352
353\begin{figure}[htdp]
354%\centering
355\begin{subfigure}{0.55\textwidth}
356 % \entering
357  \includegraphics[width=1.2\linewidth]{./fig/Before_CORRANGLEpointw_win24_MEAN_color.pdf}
358%  \caption{Pressure drop.}
359  \label{bla}
360\end{subfigure}%
361\hspace{-10mm}
362\begin{subfigure}{0.55\textwidth}
363 % \centering
364  \includegraphics[width=1.2\linewidth]{./fig/After_CORRANGLEpointw_win24_MEAN_color.pdf}
365%  \caption{Mass flowrate.}
366  \label{blo}
367\end{subfigure}
368\vspace{-30mm}
369\caption{the point angle correlation error before and after in m/s}
370\label{fblo}
371\end{figure}
372
373
374
375
376\section{Experiment with Real Data}
377
378
379
380
381
382
383
384The methodology described in section~\ref{sec:method} was applied to two case studies : one along the lebanese coast and one in an eddy south-east of Cyprus.
385\subsection{Improvement of velocity field near the coast}
386%lebanese drifters
387\begin{figure}[htbp]
388\begin{center}
389\includegraphics[scale=0.5]{./fig/ReconstructedCNRSExp_6days_average.pdf}
390\vspace{-30mm}
391\caption{Real Exp starting Aug 28 for 6 days, window=24h, move=6hs, }
392\end{center}
393\end{figure}
394
395
396\begin{figure}[htbp]
397\begin{center}
398\includegraphics[scale=0.5]{./fig/ReconstructedCNRSExp_bmtogreen_2days_average_zoom.pdf}
399\vspace{-30mm}
400\caption{Real 2-1 Exp starting Aug 28 for 2 days, window=24h, move=24hs, }
401\end{center}
402\end{figure}
403
404\subsection{Improvement of velocity field in an eddy}
405In the context of the Nemed deployment (see section ~\ref{sec:drifters}), we selected two drifters trajectories from 25 August 2009 to 3 September 2009. Assimilating the successive positions of the drifters every six hours, the AVISO velocity field was corrected.
406
407In Fig.~\ref{fig:eddy-velocity}, the trajectory of the drifters were represented in gray, the AVISO surface geostrophic velocity field in blue and the corrected geostrophic field in red. In this case, it can be seen that the drifter trajectories were situated in an eddy. The AVISO field is produced by an interpolation method which tends to overestimate the spatial extent of the eddy and underestimate the intensity.
408\begin{figure}[h]
409\centering
410\includegraphics[scale =0.6]{./fig/Eddy_velocity.png}
411\caption{\label{fig:eddy-velocity} Corrected field (in red) compared to AVISO background fields (in blue). The assimilated drifter trajectories are represented in gray. The North-West coast in the figure is Cyprus.}
412\end{figure}
413
414%% The Appendices part is started with the command \appendix;
415%% appendix sections are then done as normal sections
416%% \appendix
417
418%% \section{}
419%% \label{}
420
421%% If you have bibdatabase file and want bibtex to generate the
422%% bibitems, please use
423%%
424%%  \bibliographystyle{elsarticle-harv}
425%%  \bibliography{<your bibdatabase>}
426
427%% else use the following coding to input the bibitems directly in the
428%% TeX file.
429
430\begin{thebibliography}{00}
431
432%% \bibitem[Author(year)]{label}
433%% Text of bibliographic item
434
435\bibitem[ ()]{}
436
437\end{thebibliography}
438\end{document}
439
440\endinput
441%%
442%% End of file `elsarticle-template-harv.tex'.
Note: See TracBrowser for help on using the repository browser.