Changeset 174 for altifloat/doc


Ignore:
Timestamp:
09/21/15 10:31:16 (9 years ago)
Author:
leila_ocean
Message:

method 80%

Location:
altifloat/doc/ocean_modelling
Files:
3 edited

Legend:

Unmodified
Added
Removed
  • altifloat/doc/ocean_modelling/Draft1.tex

    r173 r174  
    155155 
    156156\section{Data} 
    157 \subsection {altimetric data} 
     157\subsection {Altimetry data} 
    158158\subsection{Drifter data} 
    159159\subsection {Model data} 
     
    166166\subsection{Statement of the problem} 
    167167 
    168 We consider $N_f$ Lagrangian drifters released at the time $t=0$ at various locations. These drifters provide their positions each $\Delta t$, over a period $[0,t_f]$, where $t_f=N \Delta t.$  
    169 Our objective is to determine an estimate of the Eulerian two-dimensional velocity field  \begin{equation}\notag 
     168We consider $N_f$ Lagrangian drifters released at time $t=0$ at various locations. These drifters provide their positions each $\Delta t$, over a period $[0,t_f]$. 
     169Our objective is to determine an estimate of the two-dimensional Eulerian velocity field  \begin{equation}\notag 
    170170\mathbf{u}(x,y,t)=(u(x,y,t),v(x,y,t))  
    171171\end{equation} 
    172 on a specified grid, in a time frame $[0, t_f],$ given the observations  
     172characterized by a length scale $R$ [Refs], given observations of the drifters' positions  
    173173\begin{equation} 
    174 \bo{r}^{obs}_i(n\Delta t), \,\,\, i=1,2, \cdots, N_f, \,\,\, n=1, 2, \cdots N 
     174\bo{r}^{obs}_i(n\Delta t), \,\,\, i=1,2, \cdots, N_f, \,\,\, n=1, 2, \cdots N, \,\,\, \text{where}\,\,\, N \Delta t= t_f. 
    175175\end{equation} 
    176 Based on a variational assimilation approach (REFS), where we  
    177 match observations   
    178 to a model $\mathbf{r}(t)=(x(t),y(t))=\mathcal{M} (\bo{u}, \bo{r}$ that simulates drifters' trajectories.  
    179 The proposed improvements are: 
    180  \begin{enumerate} 
    181  \item Accounting for the wind: we shall consider that $\bo{u}=\bo{u_{geo}}+\bo{u_{wind}}$  
    182  \item Physical constraint of the geostrophic part to be divergence free. 
    183  using a first guess or background made of AVISO and wind fields. details in section. 
    184 different is: all at once, ,moving window, time varying, wind and divergence. added to the objective function 
    185 \item smoothed correction with the moving window. 
    186  \end{enumerate} 
    187  
    188  
    189  
    190 \subsection{Model for Lagrangian data} 
    191  
    192  
    193 The position of a specific drifter is the solution of the non-linear advection equation 
     176The velocity shall be estimated on a specified grid with resolution $\Delta x,$ in the time frame $[0, T_f].$  
     177 
     178The estimation is done following a variational assimilation approach [Refs], whereby the first guessed velocity, or background $\bo{u_b}$, is corrected by matching the observations with a model that simulates the drifters' trajectories. This correction is done using a sliding time window of size $T_w$, where we assume $\Delta t<T_w<T_L,$ and where $T_L$ is the Lagrangian time scale associated with the drifters in the concerned region [Refs]. The background field is considered to be the sum of a geostrophic component (provided by altimetry) on which we impose a divergence free constraint, and a velocity due the wind () [Refs]. The details of this procedure are given in Section 3.5. 
     179 
     180 
     181 
     182 
     183\subsection{Linearized model for Lagrangian data} 
     184 
     185 
     186 
     187The position of a specific drifter $\mathbf{r}(t)=(x(t),y(t))$ is the solution of the non-linear advection equation 
    194188\begin{equation} \label{advection} 
    195189 \odif{\mathbf{r}}{t}=\mathbf{u}(\mathbf{r}(t),t), \,\,\,\,\bo{r}(0)=\bo{r}_0, \mathbf{u}(x,y,0)=\bo{u}_0. 
    196190 \end{equation} 
    197 This equation \eqref{advection} is integrated numerically using an Euler scheme for example. Also, since the drifters may not coincide the Eulerian velocity's grid, a spatial interpolation of $\mathbf{u}$ to these positions is needed. The numerical model is therefore: 
    198  
     191This equation is integrated numerically using an Euler scheme for example. Since the drifters positions may not coincide with the Eulerian velocity's grid points, a spatial interpolation of $\mathbf{u}$ to these positions is also needed.  
     192 
     193 
     194The observation operator, denoted it schematically by  $\bo{r}=\mathcal{M} (\bo{u}, \bo{r}),$ consists then of numerical advection and interpolation, and it is given by   
    199195\begin{equation} \label{euler_advection} 
    200 \bo{r}(k\delta t)=\bo{r}((k-1)\delta t)+2\delta t \, interp(\bo{u}, \bo{r}((k-1)\delta t)), \,\,\,\,\, k=1,2, \cdots 
     196\bo{r}(k\delta t)=\bo{r}((k-1)\delta t)+\delta t \, interp(\bo{u}((k-1)\delta t), \bo{r}((k-1)\delta t)), \,\,\,\,\, k=1,2, \cdots 
    201197\end{equation} 
    202198%Let us denote by $\bo{r}_k = (x_k ,y_k)$ the position of the drifter at time $t_k=k\delta t$ , $\mathbf{u}_k$ the Eulerian velocity at position $\mathbf{r}_k$ and time $t_k$, and 
    203 where $\delta t$ the time step of the scheme, typically a fraction of $\Delta t$. We can choose bilinear interpolation  
     199where $\delta t$ the time step of the scheme, typically a fraction of $\Delta t$. We choose bilinear interpolation  
    204200\begin{align} 
    205201interp(\mathbf{u}, (x , y )) &= \mathbf{u}_1 + (\mathbf{u}_2 -\mathbf{u}_1 )\frac{(x - x_1)}{\Delta x} + (\mathbf{u}_3 -\mathbf{u}_1 )\frac{(y -y_1 )}{ \Delta y} \\ \notag 
    206 &+ (\mathbf{u}_1-\mathbf{u}_2-\mathbf{u}_3 + \mathbf{u}_4 )\frac{(x-x_1 )(y -y_1 )}{\Delta x \, \Delta y}  
     202&+ (\mathbf{u}_1-\mathbf{u}_2-\mathbf{u}_3 + \mathbf{u}_4 )\frac{(x-x_1 )(y -y_1 )}{\Delta x \, \Delta y},  
    207203\end{align} 
    208  
     204where 
    209205\begin{align} \notag 
    210206\mathbf{u}_1 &= \mathbf{u} (x_1 , y_1 ), \\  \notag 
     
    213209 \mathbf{u}_4 &= \mathbf{u}(x_1 + 1, y_1 + 1). \notag 
    214210\end{align} 
    215  
    216  
    217 \subsection{The Linear tangent model} 
    218 %We write $\mathbf{r}=\mathbf{r}^b+\delta \bo{r}$ and $\mathbf{u}=\mathbf{u}^b+\delta \mathbf{u}$ and obtain 
    219 %\begin{align} \label{Evolve} 
    220 %\bo{r}^b_k&=\bo{r}^b_{k-2}+2\delta t \, interp(\mathbf{u}^b, \bo{r}^b_{k-1})  \\  
    221 %\delta \bo{r}_k &= \delta \bo{r}_{k-2} + 2 \delta t \, \{ interp(\delta \bo{u},\bo{r}^b_{k-1})+ \delta \bo{r}_{k-1} \cdot \partial _{(x,y)} interp (\bo{u}^b,\bo{r}^b_{k-1})\} \notag 
    222 %\end{align} 
    223 %where $  \partial _{(x,y)} interp$ is the derivative of the ÔinterpÕ function with respect to $(x,y)$ (not differentiable at $(x_1,y_1)$).  
    224 %We initialize this with $\bo{r}^b_{0,1}=\bo{r}^{obs}_{0,1}$ and $\delta \bo{r}_{0,1}=\bo{0}.$ 
    225 % 
    226 % 
    227 %\textbf{Remark}: Technically here, $\delta \bo{u}$ and $\bo{u}^b$ are time independent.  
    228 %If we were to include the full physical model (denote it by $\mathcal{M}$), we would have \[\mathcal{M}(t_i,t_0)(\bo{u_0})=\mathcal{M}(t_i,t_0)(\bo{u^b+\delta \bo{u}})=\bo{u}_i\approx \mathcal{M}(t_i,t_0)(\bo{u}^b)+\mathcal{M}'(t_i,t_o) \delta \bo{u},\]   that is we would have time dependent $\bo{u}^b$ and  $\delta \bo{u}$. 
    229 % 
     211Here, $x_1=\left \lfloor{x}\right \rfloor $ is the floor function and $(x_1, y_1), (x_1 + 1, y_1), (x_1, y_1 + 1)$ and $(x_1 + 1, y_1 + 1)$ are the grid points which are nearest to $(x, y)$.  
     212 
     213 
     214 
     215%This has the advantage that the cost function becomes quadratical; it has a unique minimum and this minimum is assumed to be close to that of the full non-quadratical cost function (below).  
     216 
     217Using the incremental approach [Refs], the nonlinear observation operator $\mathcal{M}$ is linearized around a reference state. In a specific time window, we consider time independent perturbations $\delta \bo{u}$ on top of the background velocity field, that is 
     218\begin{align}\label{totalR} 
     219\bo{r}&=\bo{r^b}+\delta \bo{r} \\ \notag 
     220\bo{u}&=\bo{u^b}+\delta \bo{u}.  
     221\end{align} 
     222The linearized equations become  
     223\begin{align} \label{REquations} 
     224&\bo{r^b}(k\delta t)=\bo{r^b}((k-1)\delta t)+\delta t \, interp\bigl(   \bo{u^b}((k-1)\delta t)), \bo{r^b}((k-1)\delta t     \bigr) ,\,\,\,\,\, \text{background}  \\  \notag 
     225&\bo{\delta r}(k\delta t) = \bo{\delta r}((k-1)\delta t) + \delta t \, \{ interp(\bo{\delta u},\bo{r^b}((k-1)\delta t)) \\ \notag  
     226&+ \bo{\delta r}((k-1)\delta t) \cdot \partial _{(x,y)} interp \bigl(\bo{u^b}((k-1)\delta t),\bo{r^b}((k-1)\delta t)\bigr)\},  \,\,\, \text{tangent}  
     227\end{align} 
     228where the drifters' positions are initialized with observations, and where $k=1,2,3, \cdots    \left \lfloor{T_w/\delta t}\right \rfloor .$  
     229Here, $ \partial _{(x,y)} interp$ is the derivative of the interpolation function with respect to $(x,y)$.  
     230 
     231 
     232The background velocity used in the advection of the drifters is the aggregate of a geostrophic component $\bo{u}_{geo}$ provided by altimetry and a component driven by the wind $\bo{u}_{wind}$, which is parametrized by two parameters as described in PPM. So we have   
     233\[\bo{u}^b=\bo{u}_{geo}+\bo{u}_{wind} 
     234\] 
     235The data for both velocities are provided daily as described in the Data Section. This means that an interpolation in time of these velocities may be needed. 
     236 
     237 
     238 
    230239%\subsection{Discussion on the choice of $\delta t$ } 
    231240%The observations $\bo{r}^{obs}$ are available to us for each $\Delta t$, that is we have $\bo{r}^{obs}(i \Delta t), \,\,  i=0,1,2, \cdots $. Let us denote by $\Delta x$ the typical distance traveled by a buoys during $\Delta t$ and let $\Delta s$ denote the spatial resolution of the correction $\delta \bo{u}$. We have two scenarios:  
     
    234243%\item If $\Delta s << \Delta x$, we need to iterate many $\delta t$ to arrive at an observation. We take $N \delta t=\Delta t$ 
    235244%\end{enumerate} 
    236 % 
    237 % 
    238 %\subsection{Transformation} 
    239 %We can transform the state vector using $\delta \bo{v}=\bo{B}^{-1/2}\delta \bo{u}$. We can define this matrix directly using smoothing operators \cite{weaver2006correlation}. This formulation has the advantage that $\delta \bo{v}$ has now the identity matrix as a covariance matrix.  
    240 % 
    241 % 
    242 %\subsection{SLIDES} 
    243 %Minimize objective function with respect to the state $\vec{U_0}$  
    244 %\[ 
    245 %\mathcal{J}(\vec{U_0})= \frac{1}{2} 
    246 % \left \{ 
    247 % \sum_{i,m} 
    248 % \vectornorm{ \mathcal{G} \mathcal{M}(\vec{U_0})-\vec{r}_i^{\,o}(m\Delta t) } ^2+ \vectornorm{ \vec{U_0}-\vec{U}_b}^2_{\mathbf{B}} 
    249 % \right \}\] 
    250 %\vspace{2mm} 
    251 %where $\vectornorm{\psi}^2_{\bo{B}} \equiv \psi^T \mathbf{B}^{-1} \psi.$ 
    252 % 
    253 %\begin{itemize} 
    254 %\item $\vec{U}^b$ is background state of  $\vec{U_0}$, with error covariance matrix $\mathbf{B}^{-1}$ 
    255 %\small{ 
    256 %\begin{itemize} 
    257 %\item  dual purpose: regularization and information spreading (smoothing) 
    258 %%\item in extremely idealized assimilation contexts, for example with floaters "everywhere", can use identity 
    259 %\item use the diffusion filter method [Weaver and Courtier, 2001] 
    260 %%need R  
    261 %\end{itemize} 
    262 %} 
    263 %\item If $\mathcal{J}$ is not quadratic in $\vec{U}_0$, optimization is very costly and may not converge: work with linear tangents (around the background) of model and advection  
    264 %\item  Incremental approach takes into account weak nonlinearities, as models are updated several times. 
    265 %\end{itemize} 
    266 % 
    267 % 
    268 %%%%%%--- 
    269 % 
    270 % 
    271 % 
    272  
    273 \subsection{Optimization} 
    274  
    275 \begin{itemize}  
    276  
    277 \item $\vec{U_0}=\vec{U}_{b}+\vec{\delta U},$ $\vec{U}_b=\vec{U}_{geo}+\vec{U}_{wind}$ and $\vec{r}=\vec{r}^{\,b}+\vec{\delta r}$ 
    278 \item Model and Linear tangent (forward Euler for the numerical integration, and bilinear Lagrange interpolation in space for instance):   
    279 \small{ 
    280 \begin{align} \notag 
    281 &\vec{r}^{\,b}_i(k\delta t)=\vec{r}^{\,b}_i((k-1)\delta t)+2\delta t \, interp(\vec{U}^b, \vec{r}^{\,b}_i((k-1)\delta t)),\,\,\,\,\, \text{model}  \\  \notag 
    282 &\vec{\delta r}_i(k\delta t) = \vec{\delta r}_i((k-1)\delta t) + 2 \delta t \, \{ interp(\vec{\delta U},\vec{r}^{\,b}_i((k-1)\delta t)) \\ \notag  
    283 &+ \vec{\delta {r}}_i((k-1)\delta t) \cdot \partial _{(x,y)} interp (\vec{U}^b,\vec{r}^{\,b}_i((k-1)\delta t))\}  \,\,\, \text{tangent} \notag 
    284 \end{align} 
    285 initialized with observations, for $k=1,2,3, \cdots $ and $i=1, \cdots N_{drift}$  
    286 } 
    287 %\vec{r}(0)= \vec{r}^{o}(0)$ 
    288 \item Perform sequences of optimization 
    289 \[\mathcal{J}(\delta \vec{U})=  \sum _i \sum_{m=1}^{P} \vectornorm{\vec{r}^{\,b}_i+\delta \vec{r}_i(\delta \vec{U}) -\vec{r}_i^{\,o}(m\Delta t) }^2 +\alpha_1 \,\vectornorm{ \vec{\delta U} }^2_{\bo{B}} +\alpha_2 \,div (\vec{U}_{geo}) \] 
    290 $P$ depends on $T_{L}/\Delta t$. $T_L$ characteristic of autocorrelation of drifters (typical 1-3 days)  
    291  
    292 %+\sum_{i,m=1}^{m=P} \vectornorm{\vec{r}^{\,b}+\delta \vec{r}(\textcolor{green}{\delta \vec{u}}) -\vec{r}_i^{\,o}(m\Delta t) }^2   \right]   \] 
    293 \end{itemize} 
    294  
    295  
    296  
    297  
    298  
    299  
    300  
    301  
     245 
     246\subsection{Algorithm for assimilation} 
     247 
     248 
     249 
     250We perform sequences of optimizations, where we minimize the following objective function with respect to the time independent control correction $\delta \bo{u},$ in a specific time window $[0,T_w].$ 
     251\begin{equation} 
     252\mathcal{J}(\delta \bo{u})=  \sum _{i=1}^{N_f} \sum_{m=1}^{\left \lfloor{T_w/\Delta t}\right \rfloor} \vectornorm{\bo{r}^{\,b}_{i}(\bo{u^b})+\delta \bo{r}_i(\delta \bo{u}) -\bo{r}_i^{\,obs}(m\Delta t) }^2 +\alpha_1 \vectornorm{ \bo{\delta u} }^2_{\bo{B}} +\alpha_2 \,div (\bo{u}_{geo})  
     253\end{equation} 
     254 
     255The first component of the objective function quantifies the misfit between the model  
     256obtained by iterations of \eqref{REquations}, to observations $\bo{r}^{\,obs}(m\Delta t)$.  
     257We highlight the dependence of $\bo{r}^b$ on the background velocity only, whereas $\bo{\delta r}$ depends on both background and correction. 
     258The second component states that the corrected field is required to stay close to the background velocity. Here the $B$-norm is defined as $\vectornorm{\psi}^2_{\bo{B}} \equiv \psi^T \mathbf{B}^{-1} \psi,$ where the error covariance matrix  is $\mathbf{B}^{-1}.$ This term serves the dual purpose of regularization and information spreading or smoothing. We use the diffusion filter method of [Weaver and Courtier, 2001], where the Eulerian scale $R$ enters in .. 
     259The parameter $\alpha_1$ represents the relative weight of this regularization term with respect to the other terms, and it must be chosen carefully. 
     260The last component is a constraint on the geostrophic part of the velocity, required to stay divergence free. More here?.The total velocity may have a divergent component due to the wind.  
     261 
     262 
     263Inside a time window $[0, T_w]$, we assimilate a whole trajectory of drifters, which gives one fixed correction $\bo{\delta u}.$ We want to reconstruct a smooth time dependent velocity inside $[0, T_f]$: we achieve this by sliding the window by a time shift $\sigma$ to obtain other corrections $\bo{\delta u}_k$ in $[k\sigma, k\sigma +T_w], \, \, k=0, 1, 2 \cdots$. The reconstructed velocity is then \[\bo{u_{corrected}}(t_i)=\bo{u^{b}}(t_i)+\sum_{k=0} w_k \bo{\delta u}_k.\]  A correction at at specific instant $t_i$ only takes into accounts windows sliding through $t_i$ and weight $w_i$ given to correction $\bo{\delta u}_i$ is inversely proportional to the ``distance" between time $t_i$ and the window's position. Here $i=1,2, \cdots T_f/\delta t$ 
     264 
     265 
     266 
     267 
     268DIAGRAM IS USEFUL! 
     269 
     270\subsection{Implementation of the assimilation method in YAO} 
    302271 
    303272\section{Twin Experiments} 
Note: See TracChangeset for help on using the changeset viewer.