# # # WARNING !!! # DO NOT MODIFY THIS FILE. # THIS FILE IS ONLY PROVIDING INFORMATION ABOUT DEFAULT PARAMETER SETTINGS IN ORCHIDEE. # #******************************************************************************************* # Namelist for ORCHIDEE #******************************************************************************************* # # For more details, see : http://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/OrchideeParameters # # Note : [m] : meters; [K] : Kelvin degrees; [C] : Celsius degrees # #******************************************************************************************* # ORCHIDEE driver parameters (read in Off-line mode only) #******************************************************************************************* # LWDOWN_CONS ([FLAG]) : Conserve longwave downwelling radiation in the forcing {} LWDOWN_CONS = n # SWDOWN_CONS ([FLAG]) : Conserve shortwave downwelling radiation in the forcing {} SWDOWN_CONS = LWDOWN_CONS # FORCING_FILE ([FILE] ) : Name of file containing the forcing data {[-]} FORCING_FILE = forcing_file.nc # DT_SECHIBA ([seconds]) : Time-step of the SECHIBA component {NOT(WEATHERGEN)} DT_SECHIBA = 1800. # RESTART_FILEIN ([FILE]) : Name of restart to READ for initial conditions {[-]} RESTART_FILEIN = NONE # RESTART_FILEOUT ([FILE]) : Name of restart files to be created by the driver {[-]} RESTART_FILEOUT = driver_rest_out.nc # DRIVER_reset_time ([FLAG]) : Overwrite time values from the driver restart file {[-]} DRIVER_reset_time = n # TIME_SKIP ([seconds, days, months, years]) : Time in the forcing file at which the model is started. {[-]} TIME_SKIP = 0 # TIME_LENGTH ([seconds, days, months, years]) : Length of the integration in time. {[-]} TIME_LENGTH = Full length of the forcing file # RELAXATION ([FLAG]) : method of forcing {[-]} RELAXATION = n # RELAX_A ([days?]) : Time constant of the relaxation layer {RELAXATION} RELAX_A = 1.0 # SPRED_PREC ([-]) : Spread the precipitation. {[-]} SPRED_PREC = Half of the forcing time step or uniform, depending on dt_force and dt_sechiba # ATM_CO2 ([ppm]) : Value for atm CO2 {[-]} ATM_CO2 = 350. # ALLOW_WEATHERGEN ([FLAG]) : Allow weather generator to create data {[-]} ALLOW_WEATHERGEN = n # DT_WEATHGEN ([seconds]) : Calling frequency of weather generator {ALLOW_WEATHERGEN} DT_WEATHGEN = 1800. # LIMIT_WEST ([Degrees] ) : Western limit of region {[-]} LIMIT_WEST = -180. # LIMIT_EAST ([Degrees] ) : Eastern limit of region {[-]} LIMIT_EAST = 180. # LIMIT_NORTH ([Degrees]) : Northern limit of region {[-]} LIMIT_NORTH = 90. # LIMIT_SOUTH ([Degrees]) : Southern limit of region {[-]} LIMIT_SOUTH = -90. # MERID_RES ([Degrees]) : North-South Resolution {ALLOW_WEATHERGEN} MERID_RES = 2. # ZONAL_RES ([Degrees] ) : East-West Resolution {ALLOW_WEATHERGEN} ZONAL_RES = 2. # HEIGHT_LEV1 ([m]) : Height at which T and Q are given {offline mode} HEIGHT_LEV1 = 2.0 # HEIGHT_LEVW ([m]) : Height at which the wind is given {offline mode} HEIGHT_LEVW = 10.0 # NBUFF (-) : Number of time steps of data to buffer between each reading of the forcing file {OFF_LINE} NBUFF = 15 # IPPREC ([-] ) : Use prescribed values {ALLOW_WEATHERGEN} IPPREC = 0 # WEATHGEN_PRECIP_EXACT ([FLAG]) : Exact monthly precipitation {ALLOW_WEATHERGEN} WEATHGEN_PRECIP_EXACT = n # DUMP_WEATHER ([FLAG]) : Write weather from generator into a forcing file {ALLOW_WEATHERGEN } DUMP_WEATHER = n # DUMP_WEATHER_FILE ([FILE]) : Name of the file that contains the weather from generator {DUMP_WEATHER} DUMP_WEATHER_FILE = weather_dump.nc # DUMP_WEATHER_GATHERED ([FLAG]) : Dump weather data on gathered grid {DUMP_WEATHER} DUMP_WEATHER_GATHERED = y # HEIGHT_LEV1_DUMP ([m]) : {DUMP_WEATHER} HEIGHT_LEV1_DUMP = 10. #******************************************************************************************* # ORCHIDEE parameters #******************************************************************************************* # SOILTYPE_CLASSIF ([-]) : Type of classification used for the map of soil types {!IMPOSE_VEG} SOILTYPE_CLASSIF = zobler # RIVER_ROUTING ([FLAG]) : Decides if we route the water or not {OK_SECHIBA} RIVER_ROUTING = n # HYDROL_CWRR ([FLAG]) : Allows to switch on the multilayer hydrology of CWRR {OK_SECHIBA} HYDROL_CWRR = n # DO_IRRIGATION ([FLAG]) : Should we compute an irrigation flux {RIVER_ROUTING } DO_IRRIGATION = n # DO_FLOODPLAINS ([FLAG] ) : Should we include floodplains {RIVER_ROUTING } DO_FLOODPLAINS = n # CHECK_WATERBAL ([FLAG] ) : Should we check the global water balance {OK_SECHIBA} CHECK_WATERBAL = n # OK_EXPLICITSNOW ([FLAG]) : Activate explict snow scheme {OK_SECHIBA} OK_EXPLICITSNOW = FALSE # STOMATE_OK_STOMATE ([FLAG]) : Activate STOMATE? {OK_SECHIBA} STOMATE_OK_STOMATE = n # STOMATE_OK_CO2 ([FLAG]) : Activate CO2? {OK_SECHIBA } STOMATE_OK_CO2 = y if OK_STOMATE else n # DO_WOOD_HARVEST ([FLAG]) : Activate Wood Harvest ? {OK_STOMATE} DO_WOOD_HARVEST = n # STOMATE_OK_DGVM ([FLAG]) : Activate DGVM? {OK_STOMATE} STOMATE_OK_DGVM = n # CHEMISTRY_BVOC ([FLAG]) : Activate calculations for BVOC {OK_SECHIBA} CHEMISTRY_BVOC = n # CHEMISTRY_LEAFAGE ([FLAG]) : Activate LEAFAGE? {CHEMISTRY_BVOC} CHEMISTRY_LEAFAGE = n # CANOPY_EXTINCTION ([FLAG]) : Use canopy radiative transfer model? {CHEMISTRY_BVOC } CANOPY_EXTINCTION = n # CANOPY_MULTILAYER ([FLAG]) : Use canopy radiative transfer model with multi-layers {CANOPY_EXTINCTION } CANOPY_MULTILAYER = n # NOx_RAIN_PULSE ([FLAG]) : Calculate NOx emissions with pulse? {CHEMISTRY_BVOC } NOx_RAIN_PULSE = n # NOx_BBG_FERTIL ([FLAG]) : Calculate NOx emissions with bbg fertilizing effect? {CHEMISTRY_BVOC } NOx_BBG_FERTIL = n # NOx_FERTILIZERS_USE ([FLAG] ) : Calculate NOx emissions with fertilizers use? {CHEMISTRY_BVOC } NOx_FERTILIZERS_USE = n # NVM ([-]) : number of PFTs {OK_SECHIBA or OK_STOMATE} NVM = 13 # IMPOSE_PARAM ([FLAG]) : Do you impose the values of the parameters? {OK_SECHIBA or OK_STOMATE} IMPOSE_PARAM = y # THERMOSOIL_NBLEV (m) : Number of soil level {HDYROL_CWRR=FALSE} THERMOSOIL_NBLEV = Number of soil level # DEPTH_MAX_T (m) : Maximum depth of the soil thermodynamics {} DEPTH_MAX_T = 10.0 # DEPTH_MAX_H (m) : Maximum depth of soil moisture {} DEPTH_MAX_H = 2.0 or 4.0 depending on hydrol_cwrr # DEPTH_TOPTHICK (m) : Thickness of upper most Layer {} DEPTH_TOPTHICK = 9.77517107e-04 # DEPTH_CSTTHICK (m) : Depth at which constant layer thickness start {} DEPTH_CSTTHICK = DEPTH_MAX_H # REFINEBOTTOM (-) : Depth at which the hydrology layers will be refined towards the bottom. {} REFINEBOTTOM = .FALSE. # DEPTH_GEOM (m) : Depth at which we resume geometrical increases for temperature {} DEPTH_GEOM = DEPTH_MAX_H # RATIO_GEOM_BELOW (-) : Ratio of the geometrical series defining the thickness below DEPTH_GEOM {} RATIO_GEOM_BELOW = 2 # ALMA_OUTPUT ([FLAG]) : Should the output follow the ALMA convention {OK_SECHIBA} ALMA_OUTPUT = n # OUTPUT_FILE ([FILE]) : Name of file in which the output is going to be written {OK_SECHIBA} OUTPUT_FILE = sechiba_history.nc # WRITE_STEP ([seconds]) : Frequency in seconds for sechiba_history.nc file with IOIPSL {OK_SECHIBA, NOT XIOS_ORCHIDEE_OK} WRITE_STEP = 86400. # SECHIBA_HISTLEVEL ([-]) : SECHIBA history output level (0..10) {OK_SECHIBA and HF} SECHIBA_HISTLEVEL = 5 # SECHIBA_HISTFILE2 ([FLAG]) : Flag to switch on histfile 2 for SECHIBA (hi-frequency ?) {OK_SECHIBA} SECHIBA_HISTFILE2 = n # WRITE_STEP2 ([seconds]) : Frequency in seconds at which to WRITE output {SECHIBA_HISTFILE2} WRITE_STEP2 = 1800.0 # SECHIBA_OUTPUT_FILE2 ([FILE]) : Name of file in which the output number 2 is going to be written {SECHIBA_HISTFILE2} SECHIBA_OUTPUT_FILE2 = sechiba_out_2.nc # SECHIBA_HISTLEVEL2 ([-] ) : SECHIBA history 2 output level (0..10) {SECHIBA_HISTFILE2} SECHIBA_HISTLEVEL2 = 1 # STOMATE_OUTPUT_FILE ([FILE]) : Name of file in which STOMATE's output is going to be written {OK_STOMATE} STOMATE_OUTPUT_FILE = stomate_history.nc # STOMATE_HIST_DT ([days]) : STOMATE history time step {OK_STOMATE} STOMATE_HIST_DT = 10. # STOMATE_IPCC_OUTPUT_FILE ([FILE]) : Name of file in which STOMATE's output is going to be written {OK_STOMATE} STOMATE_IPCC_OUTPUT_FILE = stomate_ipcc_history.nc # STOMATE_IPCC_HIST_DT ([days]) : STOMATE IPCC history time step {OK_STOMATE} STOMATE_IPCC_HIST_DT = 0. # OK_HISTSYNC ([FLAG]) : Syncronize and write IOIPSL output files at each time step {} OK_HISTSYNC = FALSE # STOMATE_HISTLEVEL ([-]) : STOMATE history output level (0..10) {OK_STOMATE} STOMATE_HISTLEVEL = 10 # SECHIBA_restart_in ([FILE]) : Name of restart to READ for initial conditions {OK_SECHIBA } SECHIBA_restart_in = NONE # SECHIBA_rest_out ([FILE]) : Name of restart files to be created by SECHIBA {OK_SECHIBA} SECHIBA_rest_out = sechiba_rest_out.nc # STOMATE_RESTART_FILEIN ([FILE]) : Name of restart to READ for initial conditions of STOMATE {STOMATE_OK_STOMATE} STOMATE_RESTART_FILEIN = NONE # STOMATE_RESTART_FILEOUT ([FILE]) : Name of restart files to be created by STOMATE {STOMATE_OK_STOMATE} STOMATE_RESTART_FILEOUT = stomate_rest_out.nc # FORCE_CO2_VEG ([FLAG]) : Flag to force the value of atmospheric CO2 for vegetation. {Only in coupled mode} FORCE_CO2_VEG = FALSE # ATM_CO2 ([ppm]) : Value for atm CO2 {FORCE_CO2_VEG (only in coupled mode)} ATM_CO2 = 350. # TAU_OUTFLOW ([days]) : Number of days over which the coastal- and riverflow will be distributed {Only in coupled mode} TAU_OUTFLOW = 0 # ECCENTRICITY ([-]) : Use prescribed values {ALLOW_WEATHERGEN} ECCENTRICITY = 0.016724 # PERIHELIE ([-]) : Use prescribed values {ALLOW_WEATHERGEN} PERIHELIE = 102.04 # OBLIQUITY ([Degrees]) : Use prescribed values {ALLOW_WEATHERGEN} OBLIQUITY = 23.446 # PFT_TO_MTC ([-]) : correspondance array linking a PFT to MTC {OK_SECHIBA or OK_STOMATE} PFT_TO_MTC = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 # PFT_NAME ([-]) : Name of a PFT {OK_SECHIBA or OK_STOMATE} PFT_NAME = bare ground, tropical broad-leaved evergreen, tropical broad-leaved raingreen, temperate needleleaf evergreen, temperate broad-leaved evergreen, temperate broad-leaved summergreen, boreal needleleaf evergreen, boreal broad-leaved summergreen, boreal needleleaf summergreen, C3 grass, C4 grass, C3 agriculture, C4 agriculture # LEAF_TAB ([-] ) : leaf type : 1 {OK_STOMATE} LEAF_TAB = 4, 1, 1, 2, 1, 1, 2, 1, 2, 3, 3, 3, 3 # PHENO_MODEL ([-] ) : which phenology model is used? (tabulated) {OK_STOMATE} PHENO_MODEL = none, none, moi, none, none, ncdgdd, none, ncdgdd, ngd, moigdd, moigdd, moigdd, moigdd # SECHIBA_LAI ([m^2/m^2]) : laimax for maximum lai(see also type of lai interpolation) {OK_SECHIBA or IMPOSE_VEG} SECHIBA_LAI = 0., 8., 8., 4., 4.5, 4.5, 4., 4.5, 4., 2., 2., 2., 2. # LLAIMIN ([m^2/m^2]) : laimin for minimum lai(see also type of lai interpolation) {OK_SECHIBA or IMPOSE_VEG} LLAIMIN = 0., 8., 0., 4., 4.5, 0., 4., 0., 0., 0., 0., 0., 0. # SLOWPROC_HEIGHT ([m] ) : prescribed height of vegetation {OK_SECHIBA} SLOWPROC_HEIGHT = 0., 30., 30., 20., 20., 20., 15., 15., 15., .5, .6, 1., 1. # Z0_OVER_HEIGHT ([-] ) : factor to calculate roughness height from height of canopy {OK_SECHIBA} Z0_OVER_HEIGHT = 0., 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625 # RATIO_Z0M_Z0H ([-]) : Ratio between z0m and z0h {OK_SECHIBA} RATIO_Z0M_Z0H = 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 # TYPE_OF_LAI ([-]) : Type of behaviour of the LAI evolution algorithm {OK_SECHIBA} TYPE_OF_LAI = inter, inter, inter, inter, inter, inter, inter, inter, inter, inter, inter, inter, inter # NATURAL ([BOOLEAN]) : natural? {OK_SECHIBA, OK_STOMATE} NATURAL = y, y, y, y, y, y, y, y, y, y, y, n, n # IS_C4 ([BOOLEAN]) : flag for C4 vegetation types {OK_SECHIBA or OK_STOMATE} IS_C4 = n, n, n, n, n, n, n, n, n, n, n, y, n, y # VCMAX_FIX ([micromol/m^2/s] ) : values used for vcmax when STOMATE is not activated {OK_SECHIBA and NOT(OK_STOMATE)} VCMAX_FIX = 0., 40., 50., 30., 35., 40.,30., 40., 35., 60., 60., 70., 70. # DOWNREG_CO2 ([-]) : coefficient for CO2 downregulation (unitless) {OK_CO2} DOWNREG_CO2 = 0., 0.38, 0.38, 0.28, 0.28, 0.28, 0.22, 0.22, 0.22, 0.26, 0.26, 0.26, 0.26 # E_KmC ([J mol-1]) : Energy of activation for KmC {OK_CO2} E_KmC = -9999., 79430., 79430., 79430., 79430., 79430., 79430., 79430., 79430., 79430., 79430., 79430., 79430. # E_KmO ([J mol-1]) : Energy of activation for KmO {OK_CO2} E_KmO = -9999., 36380., 36380., 36380., 36380., 36380., 36380., 36380., 36380., 36380., 36380., 36380., 36380. # E_Sco ([J mol-1]) : Energy of activation for Sco {OK_CO2} E_Sco = -9999., -24460., -24460., -24460., -24460., -24460., -24460., -24460., -24460., -24460., -24460., -24460., -24460. # E_gamma_star ([J mol-1]) : Energy of activation for gamma_star {OK_CO2} E_gamma_star = -9999., 37830., 37830., 37830., 37830., 37830., 37830., 37830., 37830., 37830., 37830., 37830., 37830. # E_Vcmax ([J mol-1]) : Energy of activation for Vcmax {OK_CO2} E_Vcmax = -9999., 71513., 71513., 71513., 71513., 71513., 71513., 71513., 71513., 71513., 67300., 71513., 67300. # E_Jmax ([J mol-1]) : Energy of activation for Jmax {OK_CO2} E_Jmax = -9999., 49884., 49884., 49884., 49884., 49884., 49884., 49884., 49884., 49884., 77900., 49884., 77900. # aSV ([J K-1 mol-1]) : a coefficient of the linear regression (a+bT) defining the Entropy term for Vcmax {OK_CO2} aSV = -9999., 668.39, 668.39, 668.39, 668.39, 668.39, 668.39, 668.39, 668.39, 668.39, 641.64, 668.39, 641.64 # bSV ([J K-1 mol-1 °C-1]) : b coefficient of the linear regression (a+bT) defining the Entropy term for Vcmax {OK_CO2} bSV = -9999., -1.07, -1.07, -1.07, -1.07, -1.07, -1.07, -1.07, -1.07, -1.07, 0., -1.07, 0. # TPHOTO_MIN ([-]) : minimum photosynthesis temperature (deg C) {OK_STOMATE} TPHOTO_MIN = -9999., -4., -4., -4., -4.,-4.,-4., -4., -4., -4., -4., -4., -4. # TPHOTO_MAX ([-]) : maximum photosynthesis temperature (deg C) {OK_STOMATE} TPHOTO_MAX = -9999., 55., 55., 55., 55., 55., 55., 55., 55., 55., 55., 55., 55. # aSJ ([J K-1 mol-1]) : a coefficient of the linear regression (a+bT) defining the Entropy term for Jmax {OK_CO2} aSJ = -9999., 659.70, 659.70, 659.70, 659.70, 659.70, 659.70, 659.70, 659.70, 659.70, 630., 659.70, 630. # bSJ ([J K-1 mol-1 °C-1]) : b coefficient of the linear regression (a+bT) defining the Entropy term for Jmax {OK_CO2} bSJ = -9999., -0.75, -0.75, -0.75, -0.75, -0.75, -0.75, -0.75, -0.75, -0.75, 0., -0.75, 0. # D_Vcmax ([J mol-1]) : Energy of deactivation for Vcmax {OK_CO2} D_Vcmax = -9999., 200000., 200000., 200000., 200000., 200000., 200000., 200000., 200000., 200000., 192000., 200000., 192000. # D_Jmax ([J mol-1]) : Energy of deactivation for Jmax {OK_CO2} D_Jmax = -9999., 200000., 200000., 200000., 200000., 200000., 200000., 200000., 200000., 200000., 192000., 200000., 192000. # E_gm ([J mol-1] ) : Energy of activation for gm {OK_CO2 } E_gm = -9999., 49600., 49600., 49600., 49600., 49600., 49600., 49600., 49600., 49600., -9999., 49600., -9999. # S_gm ([J K-1 mol-1] ) : Entropy term for gm {OK_CO2 } S_gm = -9999., 1400., 1400., 1400., 1400., 1400., 1400., 1400., 1400., 1400., -9999., 1400., -9999. # D_gm ([J mol-1] ) : Energy of deactivation for gm {OK_CO2 } D_gm = -9999., 437400., 437400., 437400., 437400., 437400., 437400., 437400., 437400., 437400., -9999., 437400., -9999. # E_Rd ([J mol-1]) : Energy of activation for Rd {OK_CO2} E_Rd = -9999., 46390., 46390., 46390., 46390., 46390., 46390., 46390., 46390., 46390., 46390., 46390., 46390. # VCMAX25 ([micromol/m^2/s]) : Maximum rate of Rubisco activity-limited carboxylation at 25°C {OK_STOMATE} VCMAX25 = -9999., 65., 65., 35., 45., 55., 35., 45., 35., 70., 70., 70., 70. # ARJV ([mu mol e- (mu mol CO2)-1]) : a coefficient of the linear regression (a+bT) defining the Jmax25/Vcmax25 ratio {OK_STOMATE} ARJV = -9999., 2.59, 2.59, 2.59, 2.59, 2.59, 2.59, 2.59, 2.59, 2.59, 1.715, 2.59, 1.715 # BRJV ([(mu mol e- (mu mol CO2)-1) (°C)-1]) : b coefficient of the linear regression (a+bT) defining the Jmax25/Vcmax25 ratio {OK_STOMATE} BRJV = -9999., -0.035, -0.035, -0.035, -0.035, -0.035, -0.035, -0.035, -0.035, -0.035, 0., -0.035, 0. # KmC25 ([ubar]) : Michaelis–Menten constant of Rubisco for CO2 at 25°C {OK_CO2} KmC25 = -9999., 404.9, 404.9, 404.9, 404.9, 404.9, 404.9, 404.9, 404.9, 404.9, 650., 404.9, 650. # KmO25 ([ubar]) : Michaelis–Menten constant of Rubisco for O2 at 25°C {OK_CO2} KmO25 = -9999., 278400., 278400., 278400., 278400., 278400., 278400., 278400., 278400., 278400., 450000., 278400., 450000. # Sco25 ([bar bar-1]) : Relative CO2 /O2 specificity factor for Rubisco at 25°C {OK_CO2} Sco25 = -9999., 2800., 2800., 2800., 2800., 2800., 2800., 2800., 2800., 2800., 2590., 2800., 2590. # gm25 ([mol m-2 s-1 bar-1] ) : Mesophyll diffusion conductance at 25°C {OK_CO2 } gm25 = -9999., 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, -9999., 0.4, -9999. # gamma_star25 ([ubar]) : Ci-based CO2 compensation point in the absence of Rd at 25°C (ubar) {OK_CO2} gamma_star25 = -9999., 42.75, 42.75, 42.75, 42.75, 42.75, 42.75, 42.75, 42.75, 42.75, 42.75, 42.75, 42.75 # a1 ([-]) : Empirical factor involved in the calculation of fvpd {OK_CO2} a1 = -9999., 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.72, 0.85, 0.72 # b1 ([-]) : Empirical factor involved in the calculation of fvpd {OK_CO2} b1 = -9999., 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.20, 0.14, 0.20 # g0 ([mol m−2 s−1 bar−1]) : Residual stomatal conductance when irradiance approaches zero {OK_CO2} g0 = -9999., 0.00625, 0.00625, 0.00625, 0.00625, 0.00625, 0.00625, 0.00625, 0.00625, 0.00625, 0.01875, 0.00625, 0.01875 # h_protons ([mol mol-1]) : Number of protons required to produce one ATP {OK_CO2} h_protons = -9999., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4. # fpsir ([-]) : Fraction of PSII e− transport rate partitioned to the C4 cycle {OK_CO2} fpsir = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 0.4, -9999., 0.4 # fQ ([-]) : Fraction of electrons at reduced plastoquinone that follow the Q-cycle {OK_CO2} fQ = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 1., -9999., 1. # fpseudo ([-]) : Fraction of electrons at PSI that follow pseudocyclic transport {OK_CO2} fpseudo = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 0.1, -9999., 0.1 # kp ([mol m−2 s−1 bar−1]) : Initial carboxylation efficiency of the PEP carboxylase {OK_CO2} kp = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 0.7, -9999., 0.7 # alpha ([-]) : Fraction of PSII activity in the bundle sheath {OK_CO2} alpha = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 0.1, -9999., 0.1 # gbs ([mol m−2 s−1 bar−1]) : Bundle-sheath conductance {OK_CO2} gbs = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 0.003, -9999., 0.003 # theta ([−]) : Convexity factor for response of J to irradiance {OK_CO2} theta = -9999., 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7 # alpha_LL ([mol e− (mol photon)−1]) : Conversion efficiency of absorbed light into J at strictly limiting light {OK_CO2} alpha_LL = -9999., 0.372, 0.372, 0.372, 0.372, 0.372, 0.372, 0.372, 0.372, 0.372, 0.372, 0.372, 0.372 # STRESS_VCMAX ([-]) : Stress on vcmax {OK_SECHIBA or OK_STOMATE} STRESS_VCMAX = 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1. # STRESS_GS ([-]) : Stress on gs {OK_SECHIBA or OK_STOMATE} STRESS_GS = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. # STRESS_GM ([-]) : Stress on gm {OK_SECHIBA or OK_STOMATE} STRESS_GM = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. # EXT_COEFF ([-]) : extinction coefficient of the Monsi&Seaki relationship (1953) {OK_SECHIBA or OK_STOMATE} EXT_COEFF = .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5 # EXT_COEFF_VEGETFRAC ([-]) : extinction coefficient used for the calculation of the bare soil fraction {OK_SECHIBA or OK_STOMATE} EXT_COEFF_VEGETFRAC = 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1. # HYDROL_HUMCSTE ([m]) : Root profile {OK_SECHIBA} HYDROL_HUMCSTE = humcste_ref2m or humcste_ref4m depending on zmaxh # PREF_SOIL_VEG ([-] ) : The soil tile number for each vegetation {OK_SECHIBA or OK_STOMATE} PREF_SOIL_VEG = 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3 # RSTRUCT_CONST ([s/m]) : Structural resistance {OK_SECHIBA} RSTRUCT_CONST = 0.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 2.5, 2.0, 2.0, 2.0 # KZERO ([kg/m^2/s]) : A vegetation dependent constant used in the calculation of the surface resistance. {OK_SECHIBA} KZERO = 0.0, 12.E-5, 12.E-5, 12.e-5, 12.e-5, 25.e-5, 12.e-5,25.e-5, 25.e-5, 30.e-5, 30.e-5, 30.e-5, 30.e-5 # RVEG_PFT ([-]) : Artificial parameter to increase or decrease canopy resistance. {OK_SECHIBA} RVEG_PFT = 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1. # WMAX_VEG ([kg/m^3]) : Maximum field capacity for each of the vegetations (Temporary): max quantity of water {OK_SECHIBA} WMAX_VEG = 150., 150., 150., 150., 150., 150., 150.,150., 150., 150., 150., 150., 150. # PERCENT_THROUGHFALL_PFT ([%]) : Percent by PFT of precip that is not intercepted by the canopy. Default value depend on run mode. {OK_SECHIBA} PERCENT_THROUGHFALL_PFT = Case offline+CWRR [0. 0. 0....] else [30. 30. 30.....] # SNOWA_AGED_VIS ([-]) : Minimum snow albedo value for each vegetation type after aging (dirty old snow), visible albedo {OK_SECHIBA} SNOWA_AGED_VIS = 0.5, 0., 0., 0.15, 0.14, 0.14, 0.15, 0.14, 0.22, 0.35, 0.35, 0.35, 0.35 # SNOWA_AGED_NIR ([-]) : Minimum snow albedo value for each vegetation type after aging (dirty old snow), near infrared albedo {OK_SECHIBA} SNOWA_AGED_NIR = 0.35, 0., 0., 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.18, 0.18, 0.18, 0.18 # SNOWA_DEC_VIS ([-]) : Decay rate of snow albedo value for each vegetation type as it will be used in condveg_snow, visible albedo {OK_SECHIBA} SNOWA_DEC_VIS = 0.45, 0., 0., 0.1, 0.06, 0.11, 0.10, 0.11, 0.18, 0.60, 0.60, 0.60, 0.60 # SNOWA_DEC_NIR ([-]) : Decay rate of snow albedo value for each vegetation type as it will be used in condveg_snow, near infrared albedo {OK_SECHIBA} SNOWA_DEC_NIR = 0.45, 0., 0., 0.06, 0.06, 0.11, 0.06, 0.11, 0.11, 0.52 ,0.52, 0.52, 0.52 # ALB_LEAF_VIS ([-]) : leaf albedo of vegetation type, visible albedo {OK_SECHIBA} ALB_LEAF_VIS = .0, .0397, .0474, .0386, .0484, .0411, .041, .0541, .0435, .0524, .0508, .0509, .0606 # ALB_LEAF_NIR ([-]) : leaf albedo of vegetation type, near infrared albedo {OK_SECHIBA} ALB_LEAF_NIR = .0, .227, .214, .193, .208, .244, .177, .218, .213, .252, .265, .272, .244 # ISO_ACTIVITY ([-]) : Biogenic activity for each age class : isoprene {CHEMISTRY_BVOC} ISO_ACTIVITY = 0.5, 1.5, 1.5, 0.5 # METHANOL_ACTIVITY ([-]) : Isoprene emission factor for each age class : methanol {CHEMISTRY_BVOC} METHANOL_ACTIVITY = 1., 1., 0.5, 0.5 # EM_FACTOR_ISOPRENE ([ugC/g/h] ) : Isoprene emission factor {CHEMISTRY_BVOC} EM_FACTOR_ISOPRENE = 0., 24., 24., 8., 16., 45., 8., 18., 0.5, 12., 18., 5., 5. # EM_FACTOR_MONOTERPENE ([ugC/g/h] ) : Monoterpene emission factor {CHEMISTRY_BVOC } EM_FACTOR_MONOTERPENE = 0., 2.0, 2.0, 1.8, 1.4, 1.6, 1.8, 1.4, 1.8, 0.8, 0.8, 0.22, 0.22 # C_LDF_MONO ([]) : Monoterpenes fraction dependancy to light {CHEMISTRY_BVOC} C_LDF_MONO = 0.6 # C_LDF_SESQ ([]) : Sesquiterpenes fraction dependancy to light {CHEMISTRY_BVOC} C_LDF_SESQ = 0.5 # C_LDF_METH ([]) : Methanol fraction dependancy to light {CHEMISTRY_BVOC} C_LDF_METH = 0.8 # C_LDF_ACET ([]) : Acetone fraction dependancy to light {CHEMISTRY_BVOC} C_LDF_ACET = 0.2 # EM_FACTOR_APINENE ([ugC/g/h] ) : Alfa pinene emission factor {CHEMISTRY_BVOC } EM_FACTOR_APINENE = 0., 1.35, 1.35, 0.85, 0.95, 0.75, 0.85, 0.60, 1.98, 0.30, 0.30, 0.09, 0.09 # EM_FACTOR_BPINENE ([ugC/g/h] ) : Beta pinene emission factor {CHEMISTRY_BVOC } EM_FACTOR_BPINENE = 0., 0.30, 0.30, 0.35, 0.25, 0.20, 0.35, 0.12, 0.45, 0.16, 0.12, 0.05, 0.05 # EM_FACTOR_LIMONENE ([ugC/g/h] ) : Limonene emission factor {CHEMISTRY_BVOC} EM_FACTOR_LIMONENE = 0., 0.25, 0.25, 0.20, 0.25, 0.14, 0.20, 0.135, 0.11, 0.19, 0.42, 0.03, 0.03 # EM_FACTOR_MYRCENE ([ugC/g/h] ) : Myrcene emission factor {CHEMISTRY_BVOC} EM_FACTOR_MYRCENE = 0., 0.20, 0.20, 0.12, 0.11, 0.065, 0.12, 0.036, 0.075, 0.08, 0.085, 0.015, 0.015 # EM_FACTOR_SABINENE ([ugC/g/h] ) : Sabinene emission factor {CHEMISTRY_BVOC} EM_FACTOR_SABINENE = 0., 0.20, 0.20, 0.12, 0.17, 0.70, 0.12, 0.50, 0.09, 0.085, 0.075, 0.02, 0.02 # EM_FACTOR_CAMPHENE ([ugC/g/h] ) : Camphene emission factor {CHEMISTRY_BVOC} EM_FACTOR_CAMPHENE = 0., 0.15, 0.15, 0.10, 0.10, 0.01, 0.10, 0.01, 0.07, 0.07, 0.08, 0.01, 0.01 # EM_FACTOR_3CARENE ([ugC/g/h] ) : 3-Carene emission factor {CHEMISTRY_BVOC} EM_FACTOR_3CARENE = 0., 0.13, 0.13, 0.42, 0.02, 0.055, 0.42,0.025, 0.125, 0.085, 0.085, 0.065, 0.065 # EM_FACTOR_TBOCIMENE ([ugC/g/h] ) : T-beta-ocimene emission factor {CHEMISTRY_BVOC} EM_FACTOR_TBOCIMENE = 0., 0.25, 0.25, 0.13, 0.09, 0.26, 0.13, 0.20, 0.085, 0.18, 0.18, 0.01, 0.01 # EM_FACTOR_OTHERMONOT ([ugC/g/h] ) : Other monoterpenes emission factor {CHEMISTRY_BVOC} EM_FACTOR_OTHERMONOT = 0., 0.17, 0.17, 0.11, 0.11, 0.125, 0.11, 0.274, 0.01, 0.15, 0.155, 0.035, 0.035 # EM_FACTOR_SESQUITERP ([ugC/g/h] ) : Sesquiterpenes emission factor {CHEMISTRY_BVOC} EM_FACTOR_SESQUITERP = 0., 0.45, 0.45, 0.13, 0.3, 0.36, 0.15, 0.3, 0.25, 0.6, 0.6, 0.08, 0.08 # C_BETA_MONO ([]) : Monoterpenes temperature dependency coefficient {CHEMISTRY_BVOC} C_BETA_MONO = 0.1 # C_BETA_SESQ ([]) : Sesquiterpenes temperature dependency coefficient {CHEMISTRY_BVOC} C_BETA_SESQ = 0.17 # C_BETA_METH ([]) : Methanol temperature dependency coefficient {CHEMISTRY_BVOC} C_BETA_METH = 0.08 # C_BETA_ACET ([]) : Acetone temperature dependency coefficient {CHEMISTRY_BVOC} C_BETA_ACET = 0.1 # C_BETA_OXYVOC ([]) : Other oxygenated BVOC temperature dependency coefficient {CHEMISTRY_BVOC} C_BETA_OXYVOC = 0.13 # EM_FACTOR_ORVOC ([ugC/g/h] ) : ORVOC emissions factor {CHEMISTRY_BVOC } EM_FACTOR_ORVOC = 0., 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5 # EM_FACTOR_OVOC ([ugC/g/h] ) : OVOC emissions factor {CHEMISTRY_BVOC} EM_FACTOR_OVOC = 0., 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5 # EM_FACTOR_MBO ([ugC/g/h] ) : MBO emissions factor {CHEMISTRY_BVOC } EM_FACTOR_MBO = 0., 2.e-5, 2.e-5, 1.4, 2.e-5, 2.e-5, 0.14, 2.e-5, 2.e-5, 2.e-5, 2.e-5, 2.e-5, 2.e-5 # EM_FACTOR_METHANOL ([ugC/g/h] ) : Methanol emissions factor {CHEMISTRY_BVOC } EM_FACTOR_METHANOL = 0., 0.8, 0.8, 1.8, 0.9, 1.9, 1.8, 1.8, 1.8, 0.7, 0.9, 2., 2. # EM_FACTOR_ACETONE ([ugC/g/h] ) : Acetone emissions factor {CHEMISTRY_BVOC } EM_FACTOR_ACETONE = 0., 0.25, 0.25, 0.3, 0.2, 0.33, 0.3, 0.25, 0.25, 0.2, 0.2, 0.08, 0.08 # EM_FACTOR_ACETAL ([ugC/g/h] ) : Acetaldehyde emissions factor {CHEMISTRY_BVOC} EM_FACTOR_ACETAL = 0., 0.2, 0.2, 0.2, 0.2, 0.25, 0.25, 0.16, 0.16, 0.12, 0.12, 0.035, 0.02 # EM_FACTOR_FORMAL ([ugC/g/h] ) : Formaldehyde emissions factor {CHEMISTRY_BVOC } EM_FACTOR_FORMAL = 0., 0.04, 0.04, 0.08, 0.04, 0.04, 0.04, 0.04, 0.04, 0.025, 0.025, 0.013, 0.013 # EM_FACTOR_ACETIC ([ugC/g/h] ) : Acetic Acid emissions factor {CHEMISTRY_BVOC } EM_FACTOR_ACETIC = 0., 0.025, 0.025,0.025,0.022,0.08,0.025,0.022,0.013,0.012,0.012,0.008,0.008 # EM_FACTOR_FORMIC ([ugC/g/h] ) : Formic Acid emissions factor {CHEMISTRY_BVOC} EM_FACTOR_FORMIC = 0., 0.015, 0.015, 0.02, 0.02, 0.025, 0.025, 0.015, 0.015,0.010,0.010,0.008,0.008 # EM_FACTOR_NO_WET ([ngN/m^2/s]) : NOx emissions factor wet soil emissions and exponential dependancy factor {CHEMISTRY_BVOC} EM_FACTOR_NO_WET = 0., 2.6, 0.06, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.36, 0.36, 0.36, 0.36 # EM_FACTOR_NO_DRY ([ngN/m^2/s] ) : NOx emissions factor dry soil emissions and exponential dependancy factor {CHEMISTRY_BVOC} EM_FACTOR_NO_DRY = 0., 8.60, 0.40, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 2.65, 2.65, 2.65, 2.65 # LARCH ([-] ) : Larcher 1991 SAI/LAI ratio {CHEMISTRY_BVOC } LARCH = 0., 0.015, 0.015, 0.003, 0.005, 0.005, 0.003, 0.005, 0.003, 0.005, 0.005, 0.008, 0.008 # SLA ([m^2/gC]) : specif leaf area {OK_STOMATE} SLA = 1.5E-2, 1.53E-2, 2.6E-2, 9.26E-3, 2E-2, 2.6E-2, 9.26E-3, 2.6E-2, 1.9E-2, 2.6E-2, 2.6E-2, 2.6E-2, 2.6E-2 # AVAILABILITY_FACT ([-] ) : Calculate dynamic mortality in lpj_gap, pft dependent parameter {OK_STOMATE } AVAILABILITY_FACT = -9999., 0.14, 0.14, 0.10, 0.10, 0.10, 0.05, 0.05, 0.05, -9999., -9999., -9999., -9999. # R0 ([-] ) : Standard root allocation {OK_STOMATE } R0 = -9999., .30, .30, .30, .30, .30, .30, .30, .30, .30, .30, .30, .30 # S0 ([-] ) : Standard sapwood allocation {OK_STOMATE } S0 = -9999., .25, .25, .30, .30, .30, .30, .30, .30, .30, .30, .30, .30 # FRAC_GROWTHRESP ([-]) : fraction of GPP which is lost as growth respiration {OK_STOMATE} FRAC_GROWTHRESP = -9999., .28, .28, .28, .28, .28, .28, .28, .28, .28, .28, .28, .28 # MAINT_RESP_SLOPE_C ([-]) : slope of maintenance respiration coefficient (1/K), constant c of aT^2+bT+c , tabulated {OK_STOMATE} MAINT_RESP_SLOPE_C = -9999., .20, .20, .16, .16, .16, .16, .16, .16, .16, .12, .16, .12 # MAINT_RESP_SLOPE_B ([-]) : slope of maintenance respiration coefficient (1/K), constant b of aT^2+bT+c , tabulated {OK_STOMATE} MAINT_RESP_SLOPE_B = -9999., .0, .0, .0, .0, .0, .0, .0, .0, -.00133, .0, -.00133, .0 # MAINT_RESP_SLOPE_A ([-]) : slope of maintenance respiration coefficient (1/K), constant a of aT^2+bT+c , tabulated {OK_STOMATE} MAINT_RESP_SLOPE_A = -9999., .0, .0, .0, .0, .0, .0, .0, .0, .0, .0, .0, .0 # CM_ZERO_LEAF ([g/g/day]) : maintenance respiration coefficient at 0 deg C, for leaves, tabulated {OK_STOMATE} CM_ZERO_LEAF = -9999., 2.35E-3, 2.62E-3, 1.01E-3, 2.35E-3, 2.62E-3, 1.01E-3,2.62E-3, 2.05E-3, 2.62E-3, 2.62E-3, 2.62E-3, 2.62E-3 # CM_ZERO_SAPABOVE ([g/g/day]) : maintenance respiration coefficient at 0 deg C,for sapwood above, tabulated {OK_STOMATE} CM_ZERO_SAPABOVE = -9999., 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4 # CM_ZERO_SAPBELOW ([g/g/day]) : maintenance respiration coefficient at 0 deg C, for sapwood below, tabulated {OK_STOMATE} CM_ZERO_SAPBELOW = -9999., 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4 # CM_ZERO_HEARTABOVE ([g/g/day]) : maintenance respiration coefficient at 0 deg C, for heartwood above, tabulated {OK_STOMATE } CM_ZERO_HEARTABOVE = -9999., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. # CM_ZERO_HEARTBELOW ([g/g/day] ) : maintenance respiration coefficient at 0 deg C,for heartwood below, tabulated {OK_STOMATE } CM_ZERO_HEARTBELOW = -9999., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. # CM_ZERO_ROOT ([g/g/day] ) : maintenance respiration coefficient at 0 deg C, for roots, tabulated {OK_STOMATE} CM_ZERO_ROOT = -9999.,1.67E-3, 1.67E-3, 1.67E-3, 1.67E-3, 1.67E-3, 1.67E-3,1.67E-3, 1.67E-3, 1.67E-3, 1.67E-3, 1.67E-3, 1.67E-3 # CM_ZERO_FRUIT ([g/g/day] ) : maintenance respiration coefficient at 0 deg C, for fruits, tabulated {OK_STOMATE} CM_ZERO_FRUIT = -9999., 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4,1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4 # CM_ZERO_CARBRES ([g/g/day] ) : maintenance respiration coefficient at 0 deg C, for carbohydrate reserve, tabulated {OK_STOMATE} CM_ZERO_CARBRES = -9999., 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4,1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4, 1.19E-4 # FLAM ([-]) : flamability: critical fraction of water holding capacity {OK_STOMATE} FLAM = -9999., .15, .25, .25, .25, .25, .25, .25, .25, .25, .25, .35, .35 # RESIST ([-]) : fire resistance {OK_STOMATE} RESIST = -9999., .95, .90, .12, .50, .12, .12, .12, .12, .0, .0, .0, .0 # COEFF_LCCHANGE_1 ([-]) : Coeff of biomass export for the year {OK_STOMATE} COEFF_LCCHANGE_1 = -9999., 0.897, 0.897, 0.597, 0.597, 0.597, 0.597, 0.597, 0.597, 0.597, 0.597, 0.597, 0.597 # COEFF_LCCHANGE_10 ([-]) : Coeff of biomass export for the decade {OK_STOMATE} COEFF_LCCHANGE_10 = -9999., 0.103, 0.103, 0.299, 0.299, 0.299, 0.299, 0.299, 0.299, 0.299, 0.403, 0.299, 0.403 # COEFF_LCCHANGE_100 ([-]) : Coeff of biomass export for the century {OK_STOMATE} COEFF_LCCHANGE_100 = -9999., 0., 0., 0.104, 0.104, 0.104, 0.104, 0.104, 0.104, 0.104, 0., 0.104, 0. # LAI_MAX_TO_HAPPY ([-]) : threshold of LAI below which plant uses carbohydrate reserves {OK_STOMATE} LAI_MAX_TO_HAPPY = -9999., .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5 # LAI_MAX ([m^2/m^2]) : maximum LAI, PFT-specific {OK_STOMATE} LAI_MAX = -9999., 7., 7., 5., 5., 5., 4.5, 4.5, 3.0, 2.5, 2.5, 5.,5. # PHENO_TYPE ([-]) : type of phenology, 0 {OK_STOMATE} PHENO_TYPE = 0, 1, 3, 1, 1, 2, 1, 2, 2, 4, 4, 2, 3 # PHENO_GDD_CRIT_C ([-]) : critical gdd, tabulated (C), constant c of aT^2+bT+c {OK_STOMATE} PHENO_GDD_CRIT_C = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 270., 400., 125., 400. # PHENO_GDD_CRIT_B ([-]) : critical gdd, tabulated (C), constant b of aT^2+bT+c {OK_STOMATE} PHENO_GDD_CRIT_B = -9999., -9999., -9999., -9999., -9999., -9999., -9999.,-9999., -9999., 6.25, 0., 0., 0. # PHENO_GDD_CRIT_A ([-]) : critical gdd, tabulated (C), constant a of aT^2+bT+c {OK_STOMATE} PHENO_GDD_CRIT_A = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 0.03125, 0., 0., 0. # PHENO_MOIGDD_T_CRIT ([C]) : Average temperature threashold for C4 grass used in pheno_moigdd {OK_STOMATE} PHENO_MOIGDD_T_CRIT = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 22.0, -9999., -9999. # NGD_CRIT ([days]) : critical ngd, tabulated. Threshold -5 degrees {OK_STOMATE} NGD_CRIT = -9999., -9999., -9999., -9999., -9999., -9999., -9999., 0., -9999., -9999., -9999., -9999., -9999. # NCDGDD_TEMP ([C] ) : critical temperature for the ncd vs. gdd function in phenology {OK_STOMATE} NCDGDD_TEMP = -9999., -9999., -9999., -9999., -9999., 5., -9999., 0., -9999., -9999., -9999., -9999., -9999. # HUM_FRAC ([%]) : critical humidity (relative to min/max) for phenology {OK_STOMATE} HUM_FRAC = -9999., -9999., .5, -9999., -9999., -9999., -9999., -9999., -9999., .5, .5, .5,.5 # HUM_MIN_TIME ([days]) : minimum time elapsed since moisture minimum {OK_STOMATE} HUM_MIN_TIME = -9999., -9999., 50., -9999., -9999., -9999., -9999., -9999., -9999., 35., 35., 75., 75. # TAU_SAP ([days]) : sapwood -> heartwood conversion time {OK_STOMATE} TAU_SAP = -9999., 730., 730., 730., 730., 730., 730., 730., 730., -9999., -9999., -9999., -9999. # TAU_LEAFINIT ([days]) : time to attain the initial foliage using the carbohydrate reserve {OK_STOMATE} TAU_LEAFINIT = -9999., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10. # TAU_FRUIT ([days]) : fruit lifetime {OK_STOMATE} TAU_FRUIT = -9999., 90., 90., 90., 90., 90., 90., 90., 90., -9999., -9999., -9999., -9999. # ECUREUIL ([-]) : fraction of primary leaf and root allocation put into reserve {OK_STOMATE} ECUREUIL = -9999., .0, 1., .0, .0, 1., .0, 1., 1., 1., 1., 1., 1. # ALLOC_MIN ([-]) : minimum allocation above/below {OK_STOMATE} ALLOC_MIN = -9999., 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, -9999., -9999., -9999., -9999. # ALLOC_MAX ([-]) : maximum allocation above/below {OK_STOMATE} ALLOC_MAX = -9999., 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, -9999., -9999., -9999., -9999. # DEMI_ALLOC ([-]) : mean allocation above/below {OK_STOMATE} DEMI_ALLOC = -9999., 5., 5., 5., 5., 5., 5., 5., 5., -9999., -9999., -9999., -9999. # LEAFLIFE_TAB ([years]) : leaf longevity {OK_STOMATE} LEAFLIFE_TAB = -9999., .5, 2., .33, 1., 2., .33, 2., 2., 2., 2., 2., 2. # LEAFFALL ([days]) : length of death of leaves, tabulated {OK_STOMATE} LEAFFALL = -9999., -9999., 10., -9999., -9999., 10., -9999., 10., 10., 10., 10., 10., 10. # LEAFAGECRIT ([days]) : critical leaf age, tabulated {OK_STOMATE} LEAFAGECRIT = -9999., 730., 180., 910., 730., 180., 910., 180., 180., 120., 120., 90., 90. # SENESCENCE_TYPE ([-]) : type of senescence, tabulated {OK_STOMATE} SENESCENCE_TYPE = none, none, dry, none, none, cold, none, cold, cold, mixed, mixed, mixed, mixed # SENESCENCE_HUM ([-] ) : critical relative moisture availability for senescence {OK_STOMATE} SENESCENCE_HUM = -9999., -9999., .3, -9999., -9999., -9999., -9999., -9999., -9999., .2, .2, .3, .2 # NOSENESCENCE_HUM ([-]) : relative moisture availability above which there is no humidity-related senescence {OK_STOMATE} NOSENESCENCE_HUM = -9999., -9999., .8, -9999., -9999., -9999., -9999., -9999., -9999., .3, .3, .3, .3 # MAX_TURNOVER_TIME ([days]) : maximum turnover time for grasse {OK_STOMATE} MAX_TURNOVER_TIME = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 80., 80., 80., 80. # MIN_TURNOVER_TIME ([days]) : minimum turnover time for grasse {OK_STOMATE} MIN_TURNOVER_TIME = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 10., 10., 10., 10. # MIN_LEAF_AGE_FOR_SENESCENCE ([days] ) : minimum leaf age to allow senescence g {OK_STOMATE} MIN_LEAF_AGE_FOR_SENESCENCE = -9999., -9999., 90., -9999., -9999., 90., -9999., 60., 60., 30., 30., 30., 30. # SENESCENCE_TEMP_C ([-]) : critical temperature for senescence (C), constant c of aT^2+bT+c, tabulated {OK_STOMATE} SENESCENCE_TEMP_C = -9999., -9999., -9999., -9999., -9999., 12., -9999., 7., 2., -1.375, 5., 5., 10. # SENESCENCE_TEMP_B ([-]) : critical temperature for senescence (C), constant b of aT^2+bT+c ,tabulated {OK_STOMATE } SENESCENCE_TEMP_B = -9999., -9999., -9999., -9999., -9999., 0., -9999., 0., 0., .1, 0., 0., 0. # SENESCENCE_TEMP_A ([-] ) : critical temperature for senescence (C), constant a of aT^2+bT+c , tabulated {OK_STOMATE} SENESCENCE_TEMP_A = -9999., -9999., -9999., -9999., -9999., 0., -9999., 0., 0.,.00375, 0., 0., 0. # GDD_SENESCENCE ([days] ) : minimum gdd to allow senescence of crops {OK_STOMATE} GDD_SENESCENCE = -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., -9999., 950., 4000. # RESIDENCE_TIME ([years]) : residence time of trees {OK_DGVM and NOT(LPJ_GAP_CONST_MORT)} RESIDENCE_TIME = -9999., 30.0, 30.0, 40.0, 40.0, 40.0, 80.0, 80.0, 80.0, 0.0, 0.0, 0.0, 0.0 # TMIN_CRIT ([C]) : critical tmin, tabulated {OK_STOMATE} TMIN_CRIT = -9999., 0.0, 0.0, -30.0, -14.0, -30.0, -45.0, -45.0, -9999., -9999., -9999., -9999., -9999. # TCM_CRIT ([C]) : critical tcm, tabulated {OK_STOMATE} TCM_CRIT = -9999., -9999., -9999., 5.0, 15.5, 15.5, -8.0, -8.0, -8.0, -9999., -9999., -9999., -9999. # HERBIVORES ([FLAG]) : herbivores allowed? {OK_STOMATE } HERBIVORES = n # TREAT_EXPANSION ([FLAG]) : treat expansion of PFTs across a grid cell? {OK_STOMATE } TREAT_EXPANSION = n # LPJ_GAP_CONST_MORT ([FLAG]) : Constant mortality {OK_STOMATE AND NOT OK_DGVM} LPJ_GAP_CONST_MORT = y/n depending on OK_DGVM # HARVEST_AGRI ([FLAG]) : Harvest model for agricultural PFTs. {OK_STOMATE } HARVEST_AGRI = y # FIRE_DISABLE ([FLAG]) : no fire allowed {OK_STOMATE } FIRE_DISABLE = n # SPINUP_ANALYTIC (BOOLEAN ) : Activation of the analytic resolution of the spinup. {OK_STOMATE} SPINUP_ANALYTIC = n # AGRICULTURE ([FLAG]) : agriculture allowed? {OK_SECHIBA or OK_STOMATE} AGRICULTURE = y # IMPOSE_VEG ([FLAG]) : Should the vegetation be prescribed ? {OK_SECHIBA or OK_STOMATE} IMPOSE_VEG = n # IMPOSE_SOILT ([FLAG]) : Should the soil type be prescribed ? {IMPOSE_VEG} IMPOSE_SOILT = n # LAI_MAP ([FLAG]) : Read the LAI map {OK_SECHIBA or OK_STOMATE} LAI_MAP = n # MAP_PFT_FORMAT ([FLAG]) : Read a land use vegetation map on PFT format {OK_SECHIBA or OK_STOMATE} MAP_PFT_FORMAT = y # VEGET_REINIT ([FLAG] ) : booleen to indicate that a new LAND USE file will be used. {MAP_PFT_FORMAT} VEGET_REINIT = y # VEGET_YEAR ([FLAG] ) : Year of the vegetation map to be read {MAP_PFT_FORMAT} VEGET_YEAR = 1 # MAXMASS_SNOW ([kg/m^2] ) : The maximum mass of a snow {OK_SECHIBA or HYDROL_CWRR} MAXMASS_SNOW = 3000. # SNOWCRI ([kg/m^2] ) : Sets the amount above which only sublimation occures {OK_SECHIBA or HYDROL_CWRR} SNOWCRI = 1.5 # MIN_WIND ([m/s]) : Minimum wind speed {OK_SECHIBA} MIN_WIND = 0.1 # MAX_SNOW_AGE ([days?]) : Maximum period of snow aging {OK_SECHIBA} MAX_SNOW_AGE = 50. # SNOW_TRANS ([m] ) : Transformation time constant for snow {OK_SECHIBA} SNOW_TRANS = 0.2 # OK_NUDGE_MC ([FLAG]) : Activate nudging of soil moisture {HYDROL_CWRR} OK_NUDGE_MC = n # NUDGE_TAU_MC ([-]) : Relaxation time for nudging of soil moisture expressed in fraction of the day {OK_NUDGE_MC} NUDGE_TAU_MC = 1 # OK_NUDGE_SNOW ([FLAG]) : Activate nudging of snow variables {HYDROL_CWRR} OK_NUDGE_SNOW = n # NUDGE_TAU_SNOW ([-]) : Relaxation time for nudging of snow variables {OK_NUDGE_SNOW} NUDGE_TAU_SNOW = 1 # NUDGE_INTERPOL_WITH_XIOS ([FLAG]) : Activate reading and interpolation with XIOS for nudging fields {OK_NUDGE_MC or OK_NUDGE_SNOW} NUDGE_INTERPOL_WITH_XIOS = n # HEIGHT_DISPLACEMENT ([m] ) : Magic number which relates the height to the displacement height. {OK_SECHIBA } HEIGHT_DISPLACEMENT = 0.75 # Z0_BARE ([m] ) : bare soil roughness length {OK_SECHIBA } Z0_BARE = 0.01 # Z0_ICE ([m] ) : ice roughness length {OK_SECHIBA } Z0_ICE = 0.001 # TCST_SNOWA ([days]) : Time constant of the albedo decay of snow {OK_SECHIBA } TCST_SNOWA = 10.0 # SNOWCRI_ALB ([cm] ) : Critical value for computation of snow albedo {OK_SECHIBA} SNOWCRI_ALB = 10. # VIS_DRY ([-] ) : The correspondance table for the soil color numbers and their albedo {OK_SECHIBA } VIS_DRY = 0.24, 0.22, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10, 0.27 # NIR_DRY ([-] ) : The correspondance table for the soil color numbers and their albedo {OK_SECHIBA } NIR_DRY = 0.48, 0.44, 0.40, 0.36, 0.32, 0.28, 0.24, 0.20, 0.55 # VIS_WET ([-] ) : The correspondance table for the soil color numbers and their albedo {OK_SECHIBA } VIS_WET = 0.12, 0.11, 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.15 # NIR_WET ([-] ) : The correspondance table for the soil color numbers and their albedo {OK_SECHIBA } NIR_WET = 0.24, 0.22, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10, 0.31 # ALBSOIL_VIS ([-] ) : {OK_SECHIBA } ALBSOIL_VIS = 0.18, 0.16, 0.16, 0.15, 0.12, 0.105, 0.09, 0.075, 0.25 # ALBSOIL_NIR ([-] ) : {OK_SECHIBA } ALBSOIL_NIR = 0.36, 0.34, 0.34, 0.33, 0.30, 0.25, 0.20, 0.15, 0.45 # ALB_DEADLEAF ([-] ) : albedo of dead leaves, VIS+NIR {OK_SECHIBA } ALB_DEADLEAF = 0.12, 0.35 # ALB_ICE ([-] ) : albedo of ice, VIS+NIR {OK_SECHIBA} ALB_ICE = 0.60, 0.20 # CONDVEG_SNOWA ([-]) : The snow albedo used by SECHIBA {OK_SECHIBA} CONDVEG_SNOWA = 1.E+20 # ALB_BARE_MODEL ([FLAG]) : Switch bare soil albedo dependent (if TRUE) on soil wetness {OK_SECHIBA} ALB_BARE_MODEL = n # ALB_BG_MODIS ([FLAG]) : Read bare soil albedo from file with background MODIS data {OK_SECHIBA} ALB_BG_MODIS = n # IMPOSE_AZE ([FLAG]) : Should the surface parameters be prescribed {OK_SECHIBA} IMPOSE_AZE = n # CONDVEG_Z0 ([m]) : Surface roughness {IMPOSE_AZE} CONDVEG_Z0 = 0.15 # ROUGHHEIGHT ([m] ) : Height to be added to the height of the first level {IMPOSE_AZE} ROUGHHEIGHT = 0.0 # CONDVEG_ALBVIS ([-]) : SW visible albedo for the surface {IMPOSE_AZE} CONDVEG_ALBVIS = 0.25 # CONDVEG_ALBNIR ([-] ) : SW near infrared albedo for the surface {IMPOSE_AZE} CONDVEG_ALBNIR = 0.25 # CONDVEG_EMIS ([-] ) : Emissivity of the surface for LW radiation {IMPOSE_AZE} CONDVEG_EMIS = 1.0 # ROUGH_DYN ([FLAG]) : Account for a dynamic roughness height {OK_SECHIBA} ROUGH_DYN = y # C1 ([-] ) : Constant used in the formulation of the ratio of {ROUGH_DYN} C1 = 0.32 # C2 ([-] ) : Constant used in the formulation of the ratio of {ROUGH_DYN} C2 = 0.264 # C3 ([-] ) : Constant used in the formulation of the ratio of {ROUGH_DYN} C3 = 15.1 # Cdrag_foliage ([-] ) : Drag coefficient of the foliage {ROUGH_DYN} Cdrag_foliage = 0.2 # Ct ([-] ) : Heat transfer coefficient of the leaf {ROUGH_DYN} Ct = 0.01 # Prandtl ([-] ) : Prandtl number used in the calculation of Ct* {ROUGH_DYN} Prandtl = 0.71 # xansmax ([-] ) : maximum snow albedo {OK_SECHIBA} xansmax = 0.85 # xansmin ([-] ) : minimum snow albedo {OK_SECHIBA} xansmin = 0.50 # xans_todry ([S-1] ) : albedo decay rate for the dry snow {OK_SECHIBA} xans_todry = 0.008 # xans_t ([S-1] ) : albedo decay rate for the wet snow {OK_SECHIBA} xans_t = 0.24 # xrhosmax ([-] ) : maximum snow density {OK_SECHIBA} xrhosmax = 750 # xwsnowholdmax1 ([-] ) : snow holding capacity 1 {OK_SECHIBA} xwsnowholdmax1 = 0.03 # xwsnowholdmax2 ([-] ) : snow holding capacity 2 {OK_SECHIBA} xwsnowholdmax2 = 0.10 # xsnowrhohold ([kg/m3] ) : snow density {OK_SECHIBA} xsnowrhohold = 200.0 # ZSNOWTHRMCOND1 ([W/m/K] ) : Thermal conductivity Coef 1 {OK_SECHIBA} ZSNOWTHRMCOND1 = 0.02 # ZSNOWTHRMCOND2 ([W m5/(kg2 K)] ) : Thermal conductivity Coef 2 {OK_SECHIBA} ZSNOWTHRMCOND2 = 2.5E-6 # ZSNOWTHRMCOND_AVAP ([W/m/K] ) : Thermal conductivity Coef 1 water vapor {OK_SECHIBA} ZSNOWTHRMCOND_AVAP = -0.06023 # ZSNOWTHRMCOND_BVAP ([W/m] ) : Thermal conductivity Coef 2 water vapor {OK_SECHIBA} ZSNOWTHRMCOND_BVAP = -2.5425 # ZSNOWTHRMCOND_CVAP ([K] ) : Thermal conductivity Coef 3 water vapor {OK_SECHIBA} ZSNOWTHRMCOND_CVAP = -289.99 # ZSNOWCMPCT_RHOD ([kg/m3]) : Snow compaction coefficent {OK_SECHIBA} ZSNOWCMPCT_RHOD = 150.0 # ZSNOWCMPCT_ACM ([1/s]) : Coefficent for the thermal conductivity {OK_SECHIBA} ZSNOWCMPCT_ACM = 2.8e-6 # ZSNOWCMPCT_BCM ([1/K]) : Coefficent for the thermal conductivity {OK_SECHIBA} ZSNOWCMPCT_BCM = 0.04 # ZSNOWCMPCT_CCM ([m3/kg] ) : Coefficent for the thermal conductivity {OK_SECHIBA} ZSNOWCMPCT_CCM = 460. # ZSNOWCMPCT_V0 ([Pa/s]) : Vapor coefficent for the thermal conductivity {OK_SECHIBA} ZSNOWCMPCT_V0 = 3.7e7 # ZSNOWCMPCT_VT ([1/K]) : Vapor coefficent for the thermal conductivity {OK_SECHIBA} ZSNOWCMPCT_VT = 0.081 # ZSNOWCMPCT_VR ([m3/kg]) : Vapor coefficent for the thermal conductivity {OK_SECHIBA} ZSNOWCMPCT_VR = 0.018 # CB ([-] ) : Constant of the Louis scheme {OK_SECHIBA} CB = 5.0 # CC ([-] ) : Constant of the Louis scheme {OK_SECHIBA} CC = 5.0 # CD ([-] ) : Constant of the Louis scheme {OK_SECHIBA} CD = 5.0 # RAYT_CSTE ([W.m^{-2}] ) : Constant in the computation of surface resistance {OK_SECHIBA} RAYT_CSTE = 125 # DEFC_PLUS ([K.W^{-1}] ) : Constant in the computation of surface resistance {OK_SECHIBA} DEFC_PLUS = 23.E-3 # DEFC_MULT ([K.W^{-1}] ) : Constant in the computation of surface resistance {OK_SECHIBA} DEFC_MULT = 1.5 # NLAI ([-] ) : Number of LAI levels {OK_SECHIBA} NLAI = 20 # LAIMAX ([m^2/m^2] ) : Maximum LAI {OK_SECHIBA} LAIMAX = # DEW_VEG_POLY_COEFF ([-] ) : coefficients of the polynome of degree 5 for the dew {OK_SECHIBA} DEW_VEG_POLY_COEFF = 0.887773, 0.205673, 0.110112, 0.014843, 0.000824, 0.000017 # DOWNREGULATION_CO2 ([FLAG] ) : Activation of CO2 downregulation {OK_SECHIBA} DOWNREGULATION_CO2 = n # DOWNREGULATION_CO2_BASELEVEL ([ppm] ) : CO2 base level {OK_SECHIBA } DOWNREGULATION_CO2_BASELEVEL = 280. # GB_REF ([s m-1] ) : Leaf bulk boundary layer resistance {OK_CO2} GB_REF = 1./25. # CLAYFRACTION_DEFAULT ([-] ) : default fraction of clay {OK_SECHIBA } CLAYFRACTION_DEFAULT = 0.2 # MIN_VEGFRAC ([-] ) : Minimal fraction of mesh a vegetation type can occupy {OK_SECHIBA } MIN_VEGFRAC = 0.001 # STEMPDIAG_BID ([K]) : only needed for an initial LAI if there is no restart file {OK_SECHIBA } STEMPDIAG_BID = 280. # LAI_LEVEL_DEPTH ([-] ) : {OK_CO2} LAI_LEVEL_DEPTH = 0.15 # Oi ([ubar] ) : Intercellular oxygen partial pressure {OK_CO2} Oi = 210000. # TOO_LONG ([days] ) : longest sustainable time without regeneration (vernalization) {OK_STOMATE} TOO_LONG = 5. # TAU_FIRE ([days] ) : Time scale for memory of the fire index (days). Validated for one year in the DGVM. {OK_STOMATE } TAU_FIRE = 30. # LITTER_CRIT ([gC/m^2] ) : Critical litter quantity for fire {OK_STOMATE } LITTER_CRIT = 200. # FIRE_RESIST_STRUCT ([-] ) : {OK_STOMATE } FIRE_RESIST_STRUCT = 0.5 # CO2FRAC ([-] ) : What fraction of a burned plant compartment goes into the atmosphere {OK_STOMATE } CO2FRAC = 0.95, 0.95, 0., 0.3, 0., 0., 0.95, 0.95 # BCFRAC_COEFF ([-] ) : {OK_STOMATE } BCFRAC_COEFF = 0.3, 1.3, 88.2 # FIREFRAC_COEFF ([-] ) : {OK_STOMATE } FIREFRAC_COEFF = 0.45, 0.8, 0.6, 0.13 # REF_GREFF ([1/year] ) : Asymptotic maximum mortality rate {OK_STOMATE } REF_GREFF = 0.035 # OK_MINRES ([FLAG]) : Do we try to reach a minimum reservoir even if we are severely stressed? {OK_STOMATE } OK_MINRES = y # RESERVE_TIME_TREE ([days] ) : maximum time during which reserve is used (trees) {OK_STOMATE } RESERVE_TIME_TREE = 30. # RESERVE_TIME_GRASS ([days] ) : maximum time during which reserve is used (grasses) {OK_STOMATE } RESERVE_TIME_GRASS = 20. # F_FRUIT ([-] ) : Standard fruit allocation {OK_STOMATE } F_FRUIT = 0.1 # ALLOC_SAP_ABOVE_GRASS ([-] ) : fraction of sapwood allocation above ground {OK_STOMATE } ALLOC_SAP_ABOVE_GRASS = 1.0 # MIN_LTOLSR ([-] ) : extrema of leaf allocation fraction {OK_STOMATE } MIN_LTOLSR = 0.2 # MAX_LTOLSR ([-] ) : extrema of leaf allocation fraction {OK_STOMATE } MAX_LTOLSR = 0.5 # Z_NITROGEN ([m] ) : scaling depth for nitrogen limitation {OK_STOMATE} Z_NITROGEN = 0.2 # NLIM_TREF ([C] ) : {OK_STOMATE } NLIM_TREF = 25. # PIPE_TUNE1 ([-] ) : crown area {OK_STOMATE } PIPE_TUNE1 = 100.0 # PIPE_TUNE2 ([-] ) : height {OK_STOMATE } PIPE_TUNE2 = 40.0 # PIPE_TUNE3 ([-] ) : height {OK_STOMATE } PIPE_TUNE3 = 0.5 # PIPE_TUNE4 ([-] ) : needed for stem diameter {OK_STOMATE } PIPE_TUNE4 = 0.3 # PIPE_DENSITY ([-] ) : Density {OK_STOMATE } PIPE_DENSITY = 2.e5 # PIPE_K1 ([-] ) : {OK_STOMATE } PIPE_K1 = 8.e3 # PIPE_TUNE_EXP_COEFF ([-] ) : pipe tune exponential coeff {OK_STOMATE } PIPE_TUNE_EXP_COEFF = 1.6 # PRECIP_CRIT ([mm/year] ) : minimum precip {OK_STOMATE } PRECIP_CRIT = 100. # GDD_CRIT_ESTAB ([-] ) : minimum gdd for establishment of saplings {OK_STOMATE } GDD_CRIT_ESTAB = 150. # FPC_CRIT ([-] ) : critical fpc, needed for light competition and establishment {OK_STOMATE } FPC_CRIT = 0.95 # ALPHA_GRASS ([-] ) : sapling characteristics : alpha's {OK_STOMATE } ALPHA_GRASS = 0.5 # ALPHA_TREE ([-] ) : sapling characteristics : alpha's {OK_STOMATE } ALPHA_TREE = 1. # MASS_RATIO_HEART_SAP ([-] ) : mass ratio (heartwood+sapwood)/sapwood {OK_STOMATE } MASS_RATIO_HEART_SAP = 3. # TAU_HUM_MONTH ([days] ) : time scales for phenology and other processes {OK_STOMATE } TAU_HUM_MONTH = 20. # TAU_HUM_WEEK ([days] ) : time scales for phenology and other processes {OK_STOMATE } TAU_HUM_WEEK = 7. # TAU_T2M_MONTH ([days] ) : time scales for phenology and other processes {OK_STOMATE } TAU_T2M_MONTH = 20. # TAU_T2M_WEEK ([days] ) : time scales for phenology and other processes {OK_STOMATE } TAU_T2M_WEEK = 7. # TAU_TSOIL_MONTH ([days] ) : time scales for phenology and other processes {OK_STOMATE } TAU_TSOIL_MONTH = 20. # TAU_SOILHUM_MONTH ([days] ) : time scales for phenology and other processes {OK_STOMATE } TAU_SOILHUM_MONTH = 20. # TAU_GPP_WEEK ([days] ) : time scales for phenology and other processes {OK_STOMATE } TAU_GPP_WEEK = 7. # TAU_GDD ([days] ) : time scales for phenology and other processes {OK_STOMATE } TAU_GDD = 40. # TAU_NGD ([days] ) : time scales for phenology and other processes {OK_STOMATE } TAU_NGD = 50. # COEFF_TAU_LONGTERM ([days] ) : time scales for phenology and other processes {OK_STOMATE } COEFF_TAU_LONGTERM = 3. # BM_SAPL_CARBRES ([-] ) : {OK_STOMATE } BM_SAPL_CARBRES = 5. # BM_SAPL_SAPABOVE ([-] ) : {OK_STOMATE} BM_SAPL_SAPABOVE = 0.5 # BM_SAPL_HEARTABOVE ([-] ) : {OK_STOMATE } BM_SAPL_HEARTABOVE = 2. # BM_SAPL_HEARTBELOW ([-] ) : {OK_STOMATE } BM_SAPL_HEARTBELOW = 2. # INIT_SAPL_MASS_LEAF_NAT ([-] ) : {OK_STOMATE } INIT_SAPL_MASS_LEAF_NAT = 0.1 # INIT_SAPL_MASS_LEAF_AGRI ([-] ) : {OK_STOMATE } INIT_SAPL_MASS_LEAF_AGRI = 1. # INIT_SAPL_MASS_CARBRES ([-] ) : {OK_STOMATE } INIT_SAPL_MASS_CARBRES = 5. # INIT_SAPL_MASS_ROOT ([-] ) : {OK_STOMATE } INIT_SAPL_MASS_ROOT = 0.1 # INIT_SAPL_MASS_FRUIT ([-] ) : {OK_STOMATE } INIT_SAPL_MASS_FRUIT = 0.3 # CN_SAPL_INIT ([-] ) : {OK_STOMATE } CN_SAPL_INIT = 0.5 # MIGRATE_TREE ([m/year] ) : {OK_STOMATE } MIGRATE_TREE = 10000. # MIGRATE_GRASS ([m/year] ) : {OK_STOMATE } MIGRATE_GRASS = 10000. # LAI_INITMIN_TREE ([m^2/m^2] ) : {OK_STOMATE } LAI_INITMIN_TREE = 0.3 # LAI_INITMIN_GRASS ([m^2/m^2] ) : {OK_STOMATE } LAI_INITMIN_GRASS = 0.1 # DIA_COEFF ([-] ) : {OK_STOMATE } DIA_COEFF = 4., 0.5 # MAXDIA_COEFF ([-] ) : {OK_STOMATE } MAXDIA_COEFF = 100., 0.01 # BM_SAPL_LEAF ([-] ) : {OK_STOMATE } BM_SAPL_LEAF = 4., 4., 0.8, 5. # METABOLIC_REF_FRAC ([-]) : {OK_STOMATE } METABOLIC_REF_FRAC = 0.85 # Z_DECOMP ([m] ) : scaling depth for soil activity {OK_STOMATE } Z_DECOMP = 0.2 # CN ([-] ) : C/N ratio {OK_STOMATE } CN = 40., 40., 40., 40., 40., 40., 40., 40. # LC ([-] ) : Lignine/C ratio of the different plant parts {OK_STOMATE } LC = 0.22, 0.35, 0.35, 0.35, 0.35, 0.22, 0.22, 0.22 # FRAC_SOIL_STRUCT_AA ([-]) : frac_soil(istructural,iactive,iabove) {OK_STOMATE } FRAC_SOIL_STRUCT_AA = 0.55 # FRAC_SOIL_STRUCT_A ([-]) : frac_soil(istructural,iactive,ibelow) {OK_STOMATE } FRAC_SOIL_STRUCT_A = 0.45 # FRAC_SOIL_STRUCT_SA ([-] ) : frac_soil(istructural,islow,iabove) {OK_STOMATE} FRAC_SOIL_STRUCT_SA = 0.7 # FRAC_SOIL_STRUCT_SB ([-] ) : frac_soil(istructural,islow,ibelow) {OK_STOMATE } FRAC_SOIL_STRUCT_SB = 0.7 # FRAC_SOIL_METAB_AA ([-] ) : frac_soil(imetabolic,iactive,iabove) {OK_STOMATE } FRAC_SOIL_METAB_AA = 0.45 # FRAC_SOIL_METAB_AB ([-] ) : frac_soil(imetabolic,iactive,ibelow) {OK_STOMATE } FRAC_SOIL_METAB_AB = 0.45 # METABOLIC_LN_RATIO ([-] ) : {OK_STOMATE } METABOLIC_LN_RATIO = 0.018 # TAU_METABOLIC ([days] ) : {OK_STOMATE } TAU_METABOLIC = 0.066 # TAU_STRUCT ([days]) : {OK_STOMATE } TAU_STRUCT = 0.245 # SOIL_Q10 ([-]) : {OK_STOMATE } SOIL_Q10 = 0.69 ( # TSOIL_REF ([C] ) : {OK_STOMATE } TSOIL_REF = 30. # LITTER_STRUCT_COEF ([-] ) : {OK_STOMATE } LITTER_STRUCT_COEF = 3. # MOIST_COEFF ([-] ) : {OK_STOMATE } MOIST_COEFF = 1.1, 2.4, 0.29 # MOISTCONT_MIN ([-]) : minimum soil wetness to limit the heterotrophic respiration {OK_STOMATE } MOISTCONT_MIN = 0.25 # FRAC_TURNOVER_DAILY ([-]) : {OK_STOMATE } FRAC_TURNOVER_DAILY = 0.55 # TAX_MAX ([-] ) : maximum fraction of allocatable biomass used for maintenance respiration {OK_STOMATE } TAX_MAX = 0.8 # ALWAYS_INIT ([-] ) : take carbon from atmosphere if carbohydrate reserve too small? {OK_STOMATE } ALWAYS_INIT = n # MIN_GROWTHINIT_TIME ([days] ) : minimum time since last beginning of a growing season {OK_STOMATE } MIN_GROWTHINIT_TIME = 300. # MOIAVAIL_ALWAYS_TREE ([-] ) : moisture availability above which moisture tendency doesn't matter {OK_STOMATE } MOIAVAIL_ALWAYS_TREE = 1.0 # MOIAVAIL_ALWAYS_GRASS ([-] ) : moisture availability above which moisture tendency doesn't matter {OK_STOMATE } MOIAVAIL_ALWAYS_GRASS = 0.6 # T_ALWAYS_ADD ([C] ) : monthly temp. above which temp. tendency doesn't matter {OK_STOMATE } T_ALWAYS_ADD = 10. # GDDNCD_REF ([-] ) : {OK_STOMATE } GDDNCD_REF = 603. # GDDNCD_CURVE ([-] ) : {OK_STOMATE } GDDNCD_CURVE = 0.0091 # GDDNCD_OFFSET ([-] ) : {OK_STOMATE } GDDNCD_OFFSET = 64. # BM_SAPL_RESCALE ([-] ) : {OK_STOMATE } BM_SAPL_RESCALE = 40. # MAINT_RESP_MIN_VMAX ([-] ) : {OK_STOMATE } MAINT_RESP_MIN_VMAX = 0.3 # MAINT_RESP_COEFF ([-] ) : {OK_STOMATE } MAINT_RESP_COEFF = 1.4 # FRAC_CARB_AP ([-]) : frac carb coefficients from active pool: depends on clay content {OK_STOMATE } FRAC_CARB_AP = 0.004 # FRAC_CARB_SA ([-]) : frac_carb_coefficients from slow pool {OK_STOMATE } FRAC_CARB_SA = 0.42 # FRAC_CARB_SP ([-] ) : frac_carb_coefficients from slow pool {OK_STOMATE } FRAC_CARB_SP = 0.03 # FRAC_CARB_PA ([-]) : frac_carb_coefficients from passive pool {OK_STOMATE } FRAC_CARB_PA = 0.45 # FRAC_CARB_PS ([-]) : frac_carb_coefficients from passive pool {OK_STOMATE } FRAC_CARB_PS = 0.0 # ACTIVE_TO_PASS_CLAY_FRAC ([-] ) : {OK_STOMATE } ACTIVE_TO_PASS_CLAY_FRAC = 0.68 # CARBON_TAU_IACTIVE ( [days] ) : residence times in carbon pools {OK_STOMATE } CARBON_TAU_IACTIVE = 0.149 # CARBON_TAU_ISLOW ([days]) : residence times in carbon pools {OK_STOMATE } CARBON_TAU_ISLOW = 5.48 # CARBON_TAU_IPASSIVE ([days] ) : residence times in carbon pools {OK_STOMATE } CARBON_TAU_IPASSIVE = 241. # FLUX_TOT_COEFF ([days] ) : {OK_STOMATE } FLUX_TOT_COEFF = 1.2, 1.4,.75 # NEW_TURNOVER_TIME_REF ([days] ) : {OK_STOMATE } NEW_TURNOVER_TIME_REF = 20. # LEAF_AGE_CRIT_TREF ([days] ) : {OK_STOMATE } LEAF_AGE_CRIT_TREF = 20. # LEAF_AGE_CRIT_COEFF ([-] ) : {OK_STOMATE } LEAF_AGE_CRIT_COEFF = 1.5, 0.75, 10. # VMAX_OFFSET ([-] ) : offset (minimum relative vcmax) {OK_STOMATE } VMAX_OFFSET = 0.3 # LEAFAGE_FIRSTMAX ([-] ) : leaf age at which vmax attains vcmax_opt (in fraction of critical leaf age) {OK_STOMATE } LEAFAGE_FIRSTMAX = 0.03 # LEAFAGE_LASTMAX ([-] ) : leaf age at which vmax falls below vcmax_opt (in fraction of critical leaf age) {OK_STOMATE } LEAFAGE_LASTMAX = 0.5 # LEAFAGE_OLD ([-] ) : leaf age at which vmax attains its minimum (in fraction of critical leaf age) {OK_STOMATE } LEAFAGE_OLD = 1. # GPPFRAC_DORMANCE ([-]) : rapport maximal GPP/GGP_max pour dormance {OK_STOMATE } GPPFRAC_DORMANCE = 0.2 # TAU_CLIMATOLOGY ([days]) : tau for "climatologic variables {OK_STOMATE } TAU_CLIMATOLOGY = 20 # HVC1 ([-] ) : parameters for herbivore activity {OK_STOMATE } HVC1 = 0.019 # HVC2 ([-] ) : parameters for herbivore activity {OK_STOMATE } HVC2 = 1.38 # LEAF_FRAC_HVC ([-] ) : parameters for herbivore activity {OK_STOMATE } LEAF_FRAC_HVC = 0.33 # TLONG_REF_MAX ([K] ) : maximum reference long term temperature {OK_STOMATE } TLONG_REF_MAX = 303.1 # TLONG_REF_MIN ([K] ) : minimum reference long term temperature {OK_STOMATE } TLONG_REF_MIN = 253.1 # NCD_MAX_YEAR ([days]) : {OK_STOMATE } NCD_MAX_YEAR = 3. # GDD_THRESHOLD ([days] ) : {OK_STOMATE } GDD_THRESHOLD = 5. # GREEN_AGE_EVER ([-] ) : {OK_STOMATE } GREEN_AGE_EVER = 2. # GREEN_AGE_DEC ([-] ) : {OK_STOMATE } GREEN_AGE_DEC = 0.5 # ESTAB_MAX_TREE ([-] ) : Maximum tree establishment rate {OK_DGVM} ESTAB_MAX_TREE = 0.12 # ESTAB_MAX_GRASS ([-] ) : Maximum grass establishment rate {OK_DGVM} ESTAB_MAX_GRASS = 0.12 # ESTABLISH_SCAL_FACT ([-] ) : {OK_DGVM } ESTABLISH_SCAL_FACT = 5. # MAX_TREE_COVERAGE ([-] ) : {OK_DGVM } MAX_TREE_COVERAGE = 0.98 # IND_0_ESTAB ([-] ) : {OK_DGVM } IND_0_ESTAB = 0.2 # ANNUAL_INCREASE ([FLAG]) : for diagnosis of fpc increase, compare today's fpc to last year's maximum (T) or to fpc of last time step (F)? {OK_DGVM} ANNUAL_INCREASE = y # MIN_COVER ([-] ) : For trees, minimum fraction of crown area occupied {OK_DGVM} MIN_COVER = 0.05 # IND_0 ([-] ) : initial density of individuals {OK_DGVM} IND_0 = 0.02 # MIN_AVAIL ([-] ) : minimum availability {OK_DGVM} MIN_AVAIL = 0.01 # RIP_TIME_MIN ([year] ) : {OK_DGVM} RIP_TIME_MIN = 1.25 # NPP_LONGTERM_INIT ([gC/m^2/year]) : {OK_DGVM} NPP_LONGTERM_INIT = 10. # EVERYWHERE_INIT ([-] ) : {OK_DGVM} EVERYWHERE_INIT = 0.05 # PRINTLEV ([0, 1, 2, 3, 4]) : Print level for text output {} PRINTLEV = 2 # PRINTLEV_modname ([0, 1, 2, 3, 4]) : Specific print level of text output for the module "modname". Default as PRINTLEV. {} PRINTLEV_modname = PRINTLEV # DRY_SOIL_HEAT_CAPACITY ([J.m^{-3}.K^{-1}] ) : Dry soil Heat capacity of soils {OK_SECHIBA } DRY_SOIL_HEAT_CAPACITY = 1.80e+6 # DRY_SOIL_HEAT_COND ([W.m^{-2}.K^{-1}] ) : Dry soil Thermal Conductivity of soils {OK_SECHIBA} DRY_SOIL_HEAT_COND = 0.40 # WET_SOIL_HEAT_CAPACITY ([J.m^{-3}.K^{-1}]) : Wet soil Heat capacity of soils {OK_SECHIBA} WET_SOIL_HEAT_CAPACITY = 3.03e+6 # WET_SOIL_HEAT_COND ([W.m^{-2}.K^{-1}]) : Wet soil Thermal Conductivity of soils {OK_SECHIBA } WET_SOIL_HEAT_COND = 1.89 # SNOW_HEAT_COND ([W.m^{-2}.K^{-1}]) : Thermal Conductivity of snow {OK_SECHIBA } SNOW_HEAT_COND = 0.3 # SNOW_DENSITY ([-] ) : Snow density for the soil thermodynamics {OK_SECHIBA } SNOW_DENSITY = 330.0 # NOBIO_WATER_CAPAC_VOLUMETRI ([s/m^2]) : {OK_SECHIBA and .NOT.(HYDROL_CWRR)} NOBIO_WATER_CAPAC_VOLUMETRI = 150. # SECHIBA_QSINT ([m]) : Interception reservoir coefficient {OK_SECHIBA } SECHIBA_QSINT = 0.1 # CHOISNEL_DIFF_MIN ([kg/m^2/dt]) : Diffusion constant for the slow regime {OK_SECHIBA and .NOT.(HYDROL_CWRR)} CHOISNEL_DIFF_MIN = 0.001 # CHOISNEL_DIFF_MAX ([kg/m^2/dt]) : Diffusion constant for the fast regime {OK_SECHIBA and .NOT.(HYDROL_CWRR)} CHOISNEL_DIFF_MAX = 0.1 # CHOISNEL_DIFF_EXP ([-]) : The exponential in the diffusion law {OK_SECHIBA and .NOT.(HYDROL_CWRR)} CHOISNEL_DIFF_EXP = 1.5 # CHOISNEL_RSOL_CSTE ([s/m^2]) : Constant in the computation of resistance for bare soil evaporation {OK_SECHIBA and .NOT.(HYDROL_CWRR)} CHOISNEL_RSOL_CSTE = 33.E3 # HCRIT_LITTER ([m]) : Scaling depth for litter humidity {OK_SECHIBA and .NOT.(HYDROL_CWRR) } HCRIT_LITTER = 0.08 # OK_FREEZE ([FLAG]) : Activate the complet soil freezing scheme {OK_SECHIBA } OK_FREEZE = FALSE # READ_REFTEMP ([FLAG]) : Initialize soil temperature using climatological temperature {} READ_REFTEMP = True/False depening on OK_FREEZE # OK_FREEZE_THERMIX ([FLAG]) : Activate thermal part of the soil freezing scheme {} OK_FREEZE_THERMIX = True if OK_FREEZE else false # OK_ECORR ([FLAG]) : Energy correction for freezing {OK_FREEZE_THERMIX} OK_ECORR = True if OK_FREEZE else false # POROS ([-] ) : Soil porosity {OK_SECHIBA} POROS = 0.41 # fr_dT ([K] ) : Freezing window {OK_SECHIBA} fr_dT = 2.0 # OK_FREEZE_CWRR ([FLAG]) : CWRR freezing scheme by I. Gouttevin {} OK_FREEZE_CWRR = True if OK_FREEZE else false # OK_THERMODYNAMICAL_FREEZING ([FLAG]) : Calculate frozen fraction thermodynamically {HYDROL_CWRR .AND. OK_FREEZE_CWRR} OK_THERMODYNAMICAL_FREEZING = True # CHECK_CWRR ([FLAG]) : Check detailed CWRR water balance {HYDROL_CWRR} CHECK_CWRR = n # CHECK_CWRR2 ([FLAG]) : Caluculate diagnostics to check CWRR water balance {HYDROL_CWRR2} CHECK_CWRR2 = n # VEGET_UPDATE ([years]) : Update vegetation frequency {MAP_PFT_FORMAT} VEGET_UPDATE = 0Y # SECHIBA_ZCANOP ([m]) : Soil level used for canopy development (if STOMATE disactivated) {OK_SECHIBA and .NOT. OK_STOMATE } SECHIBA_ZCANOP = 0.5 # SECHIBA_QSINT ([m]) : Interception reservoir coefficient {OK_SECHIBA } SECHIBA_QSINT = 0.1 # SECHIBA_VEGMAX ([-]) : Maximum vegetation distribution within the mesh (0-dim mode) {IMPOSE_VEG} SECHIBA_VEGMAX = 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0 # SECHIBA_FRAC_NOBIO ([-]) : Fraction of other surface types within the mesh (0-dim mode) {IMPOSE_VEG} SECHIBA_FRAC_NOBIO = 0.0 # SECHIBA_LAI ([-]) : LAI for all vegetation types (0-dim mode) {IMPOSE_VEG} SECHIBA_LAI = 0., 8., 8., 4., 4.5, 4.5, 4., 4.5, 4., 2., 2., 2., 2. # SOIL_FRACTIONS ([-]) : Fraction of the 3 soil types (0-dim mode) {IMPOSE_VEG and IMPOSE_SOILT} SOIL_FRACTIONS = -9999._sechiba # CLAY_FRACTION ([-] ) : Fraction of the clay fraction (0-dim mode) {IMPOSE_VEG and IMPOSE_SOIL} CLAY_FRACTION = 0.2 # REINF_SLOPE ([-]) : Slope coef for reinfiltration {IMPOSE_VEG} REINF_SLOPE = 0.1 # SLOWPROC_HEIGHT ([m]) : Height for all vegetation types {OK_SECHIBA} SLOWPROC_HEIGHT = 0., 30., 30., 20., 20., 20., 15., 15., 15., .5, .6, 1.0, 1.0 # GET_SLOPE ([FLAG]) : Read slopes from file and do the interpolation {} GET_SLOPE = n # LAI_FILE ([FILE]) : Name of file from which the vegetation map is to be read {LAI_MAP} LAI_FILE = lai2D.nc # RENORM_LAI ([FLAG]) : flag to force LAI renormelization {LAI_MAP} RENORM_LAI = n # VEGETATION_FILE ([FILE]) : Name of file from which the vegetation map is to be read {MAP_PFT_FORMAT} VEGETATION_FILE = PFTmap.nc # VEGETATION_FILE ([FILE]) : Name of file from which the vegetation map is to be read {NOT(IMPOSE_VEG) and NOT(MAP_PFT_FORMAT)} VEGETATION_FILE = carteveg5km.nc # SOILCLASS_FILE ([FILE]) : Name of file from which soil types are read {NOT(IMPOSE_VEG)} SOILCLASS_FILE = soils_param.nc # SLOPE_NOREINF ([-]) : See slope_noreinf above {} SLOPE_NOREINF = 0.5 # TOPOGRAPHY_FILE ([FILE]) : Name of file from which the topography map is to be read {} TOPOGRAPHY_FILE = cartepente2d_15min.nc # WOODHARVEST_FILE ([FILE]) : Name of file from which the wood harvest will be read {DO_WOOD_HARVEST} WOODHARVEST_FILE = woodharvest.nc # SOILALB_FILE ([FILE]) : Name of file from which the bare soil albedo {NOT(IMPOSE_AZE)} SOILALB_FILE = soils_param.nc # ALB_BG_FILE ([FILE]) : Name of file from which the background albedo is read {} ALB_BG_FILE = alb_bg.nc # CDRAG_FROM_GCM ([FLAG]) : Keep cdrag coefficient from gcm. {OK_SECHIBA} CDRAG_FROM_GCM = y # N_FERTIL_FILE (- ) : File name {CHEMISTRY_BVOC and NOx_FERTILIZERS_USE} N_FERTIL_FILE = orchidee_fertilizer_1995.nc # N_FERTIL_FILE (-) : File name {CHEMISTRY_BVOC and NOx_FERTILIZERS_USE} N_FERTIL_FILE = orchidee_fertilizer_1995.nc # ENERBIL_TSURF (Kelvin [K]) : Initial temperature if not found in restart {OK_SECHIBA} ENERBIL_TSURF = 280. # ENERBIL_EVAPOT () : Initial Soil Potential Evaporation {OK_SECHIBA } ENERBIL_EVAPOT = 0.0 # BEDROCK_FLAG ([FLAG]) : Flag to consider bedrock at deeper layers. {} BEDROCK_FLAG = 0 # THERMOSOIL_TPRO (Kelvin [K]) : Initial soil temperature profile if not found in restart {OK_SECHIBA} THERMOSOIL_TPRO = 280. # SOIL_REFTEMP_FILE ([FILE]) : File with climatological soil temperature {READ_REFTEMP} SOIL_REFTEMP_FILE = reftemp.nc # HYDROL_OK_HDIFF ([FLAG]) : do horizontal diffusion? {OK_SECHIBA and .NOT.(HYDROL_CWRR) } HYDROL_OK_HDIFF = n # HYDROL_SNOW ([kg/m^2]) : Initial snow mass if not found in restart {OK_SECHIBA} HYDROL_SNOW = 0.0 # HYDROL_SNOWAGE ([days]) : Initial snow age if not found in restart {OK_SECHIBA } HYDROL_SNOWAGE = 0.0 # HYDROL_SNOW_NOBIO ([m]) : Initial snow amount on ice, lakes, etc. if not found in restart {OK_SECHIBA } HYDROL_SNOW_NOBIO = 0.0 # HYDROL_SNOW_NOBIO_AGE ([days]) : Initial snow age on ice, lakes, etc. if not found in restart {OK_SECHIBA } HYDROL_SNOW_NOBIO_AGE = 0.0 # HYDROL_HUMR ([-]) : Initial soil moisture stress if not found in restart {OK_SECHIBA } HYDROL_HUMR = 1.0 # HYDROL_BQSB ([kg/m^2]) : Initial restart deep soil moisture if not found in restart {OK_SECHIBA } HYDROL_BQSB = 999999. # HYDROL_GQSB ([kg/m^2]) : Initial upper soil moisture if not found in restart {OK_SECHIBA } HYDROL_GQSB = 0.0 # HYDROL_DSG ([m]) : Initial upper reservoir depth if not found in restart {OK_SECHIBA } HYDROL_DSG = 0.0 # HYDROL_QSV ([kg/m^2]) : Initial water on canopy if not found in restart {OK_SECHIBA } HYDROL_QSV = 0.0 # HYDROL_DSP ([m]) : Initial dry soil above upper reservoir if not found in restart {OK_SECHIBA } HYDROL_DSP = 999999. # HYDROL_TAU_HDIFF ([seconds]) : time scale (s) for horizontal diffusion of water {HYDROL_OK_HDIFF} HYDROL_TAU_HDIFF = 86400. # DO_PONDS ([FLAG]) : Should we include ponds {HYDROL_CWRR} DO_PONDS = n # FROZ_FRAC_CORR ([-]) : Coefficient for the frozen fraction correction {HYDROL_CWRR and OK_FREEZE} FROZ_FRAC_CORR = 1.0 # MAX_FROZ_HYDRO ([-]) : Coefficient for the frozen fraction correction {HYDROL_CWRR and OK_FREEZE} MAX_FROZ_HYDRO = 1.0 # SMTOT_CORR ([-]) : Coefficient for the frozen fraction correction {HYDROL_CWRR and OK_FREEZE} SMTOT_CORR = 2.0 # DO_RSOIL ([FLAG]) : Should we reduce soil evaporation with a soil resistance {HYDROL_CWRR} DO_RSOIL = n # OK_DYNROOT ([FLAG]) : Calculate dynamic root profile to optimize soil moisture usage {HYDROL_CWRR} OK_DYNROOT = n # CWRR_N_VANGENUCHTEN ([-]) : Van genuchten coefficient n {HYDROL_CWRR} CWRR_N_VANGENUCHTEN = 1.89, 1.56, 1.31 # CWRR_A_VANGENUCHTEN ([1/mm] ) : Van genuchten coefficient a {HYDROL_CWRR} CWRR_A_VANGENUCHTEN = 0.0075, 0.0036, 0.0019 # VWC_RESIDUAL ([m3/m3] ) : Residual soil water content {HYDROL_CWRR} VWC_RESIDUAL = 0.065, 0.078, 0.095 # VWC_SAT ([m3/m3] ) : Saturated soil water content {HYDROL_CWRR} VWC_SAT = 0.41, 0.43, 0.41 # CWRR_KS ([mm/d] ) : Hydraulic conductivity Saturation {HYDROL_CWRR } CWRR_KS = 1060.8, 249.6, 62.4 # WETNESS_TRANSPIR_MAX ([-] ) : Soil moisture above which transpir is max {HYDROL_CWRR} WETNESS_TRANSPIR_MAX = 0.5, 0.5, 0.5 # VWC_FC ([m3/m3] ) : Volumetric water content field capacity {HYDROL_CWRR} VWC_FC = 0.32, 0.32, 0.32 # VWC_WP ([m3/m3] ) : Volumetric water content Wilting pt {HYDROL_CWRR} VWC_WP = 0.10, 0.10, 0.10 # VWC_MIN_FOR_WET_ALB ([m3/m3] ) : Vol. wat. cont. above which albedo is cst {HYDROL_CWRR} VWC_MIN_FOR_WET_ALB = 0.25, 0.25, 0.25 # VWC_MAX_FOR_DRY_ALB ([m3/m3] ) : Vol. wat. cont. below which albedo is cst {HYDROL_CWRR} VWC_MAX_FOR_DRY_ALB = 0.1, 0.1, 0.1 # HYDROL_MOISTURE_CONTENT ([m3/m3]) : Soil moisture on each soil tile and levels {HYDROL_CWRR } HYDROL_MOISTURE_CONTENT = 0.3 # US_INIT ([-]) : US_NVM_NSTM_NSLM {HYDROL_CWRR } US_INIT = 0.0 # ZWT_FORCE ([m]) : Prescribed water depth, dimension nstm {HYDROL_CWRR } ZWT_FORCE = -9999. -9999. -9999. # FREE_DRAIN_COEF ([-]) : Coefficient for free drainage at bottom, dimension nstm {HYDROL_CWRR } FREE_DRAIN_COEF = 1.0 1.0 1.0 # WATER_TO_INFILT ([mm]) : Water to be infiltrated on top of the soil {HYDROL_CWRR } WATER_TO_INFILT = 0.0 # EVAPNU_SOIL ([mm]) : Bare soil evap on each soil if not found in restart {HYDROL_CWRR } EVAPNU_SOIL = 0.0 # HYDROL_SNOW () : Initial snow mass if not found in restart {OK_SECHIBA} HYDROL_SNOW = 0.0 # HYDROL_SNOWAGE (***) : Initial snow age if not found in restart {OK_SECHIBA} HYDROL_SNOWAGE = 0.0 # HYDROL_SNOW_NOBIO ([mm]) : Initial snow amount on ice, lakes, etc. if not found in restart {OK_SECHIBA} HYDROL_SNOW_NOBIO = 0.0 # HYDROL_SNOW_NOBIO_AGE (***) : Initial snow age on ice, lakes, etc. if not found in restart {OK_SECHIBA} HYDROL_SNOW_NOBIO_AGE = 0.0 # HYDROL_QSV ([mm]) : Initial water on canopy if not found in restart {OK_SECHIBA} HYDROL_QSV = 0.0 # CWRR_NKS_N0 ([-]) : fitted value for relation log((n-n0)/(n_ref-n0)) {HYDROL_CWRR } CWRR_NKS_N0 = 0.95 # CWRR_NKS_POWER ([-]) : fitted value for relation log((n-n0)/(n_ref-n0)) {HYDROL_CWRR } CWRR_NKS_POWER = 0.34 # CWRR_AKS_A0 ([1/mm]) : fitted value for relation log((a-a0)/(a_ref-a0)) {HYDROL_CWRR } CWRR_AKS_A0 = 0.00012 # CWRR_AKS_POWER ([-]) : fitted value for relation log((a-a0)/(a_ref-a0)) {HYDROL_CWRR } CWRR_AKS_POWER = 0.53 # KFACT_DECAY_RATE ([1/m]) : Factor for Ks decay with depth {HYDROL_CWRR } KFACT_DECAY_RATE = 2.0 # KFACT_STARTING_DEPTH ([m]) : Depth for compacted value of Ks {HYDROL_CWRR } KFACT_STARTING_DEPTH = 0.3 # KFACT_MAX ([-]) : Maximum Factor for Ks increase due to vegetation {HYDROL_CWRR } KFACT_MAX = 10.0 # DT_ROUTING ([seconds]) : Time step of the routing scheme {RIVER_ROUTING} DT_ROUTING = 86400. # ROUTING_RIVERS ([-]) : Number of rivers {RIVER_ROUTING} ROUTING_RIVERS = 50 # DO_FLOODINFILT ([FLAG]) : Should floodplains reinfiltrate into the soil {RIVER_ROUTING} DO_FLOODINFILT = n # DO_SWAMPS ([FLAG]) : Should we include swamp parameterization {RIVER_ROUTING} DO_SWAMPS = n # DO_PONDS ([FLAG]) : Should we include ponds {RIVER_ROUTING} DO_PONDS = n # SLOW_TCST ([days]) : Time constant for the slow reservoir {RIVER_ROUTING } SLOW_TCST = n # FAST_TCST ([days]) : Time constant for the fast reservoir {RIVER_ROUTING } FAST_TCST = fast_tcst_cwrr or fast_tcst_chois depending on flag HYDROL_CWRR # STREAM_TCST ([days]) : Time constant for the stream reservoir {RIVER_ROUTING} STREAM_TCST = stream_tcst_cwrr or stream_tcst_chois depending on flag HYDROL_CWRR # FLOOD_TCST ([days]) : Time constant for the flood reservoir {RIVER_ROUTING} FLOOD_TCST = 4.0 # SWAMP_CST ([-]) : Fraction of the river that flows back to swamps {RIVER_ROUTING} SWAMP_CST = 0.2 # FLOOD_BETA ([-] ) : Parameter to fix the shape of the floodplain {RIVER_ROUTING} FLOOD_BETA = 2.0 # POND_BETAP ([-] ) : Ratio of the basin surface intercepted by ponds and the maximum surface of ponds {RIVER_ROUTING} POND_BETAP = 0.5 # FLOOD_CRI ([mm] ) : Potential height for which all the basin is flooded {DO_FLOODPLAINS or DO_PONDS} FLOOD_CRI = 2000. # POND_CRI ([mm] ) : Potential height for which all the basin is a pond {DO_FLOODPLAINS or DO_PONDS} POND_CRI = 2000. # MAX_LAKE_RESERVOIR ([kg/m2(routing area)] ) : Maximum limit of water in lake_reservoir {RIVER_ROUTING} MAX_LAKE_RESERVOIR = 7000 # RIVER_DESC ([FLAG]) : Writes out a description of the rivers {RIVER_ROUTING} RIVER_DESC = n # RIVER_DESC_FILE ([FILE]) : Filename in which we write the description of the rivers. If suffix is ".nc" a netCDF file is created {RIVER_DESC} RIVER_DESC_FILE = river_desc.nc # ROUTING_FILE ([FILE]) : Name of file which contains the routing information {RIVER_ROUTING} ROUTING_FILE = routing.nc # IRRIGATION_FILE ([FILE]) : Name of file which contains the map of irrigated areas {DO_IRRIGATION OR DO_FLOODPLAINS} IRRIGATION_FILE = floodplains.nc # EPS_CARBON ([%] ) : Allowed error on carbon stock {SPINUP_ANALYTIC} EPS_CARBON = 0.01 # SPINUP_PERIOD ([years] ) : Period to calulcate equilibrium during spinup analytic {SPINUP_ANALYTIC} SPINUP_PERIOD = -1 # STOMATE_FORCING_NAME ([FILE]) : Name of STOMATE's forcing file {OK_STOMATE} STOMATE_FORCING_NAME = NONE # STOMATE_FORCING_MEMSIZE ([MegaBytes]) : Size of STOMATE forcing data in memory {OK_STOMATE} STOMATE_FORCING_MEMSIZE = 50 # STOMATE_CFORCING_NAME ([FILE]) : Name of STOMATE's carbon forcing file {OK_STOMATE} STOMATE_CFORCING_NAME = NONE # FORCESOIL_STEP_PER_YEAR ([days, months, year]) : Number of time steps per year for carbon spinup. {OK_STOMATE} FORCESOIL_STEP_PER_YEAR = 365 # FORCESOIL_NB_YEAR ([years]) : Number of years saved for carbon spinup. {OK_STOMATE} FORCESOIL_NB_YEAR = 1 # XIOS_ORCHIDEE_OK ([FLAG]) : Use XIOS for writing diagnostics file {} XIOS_ORCHIDEE_OK = y