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1. How to upscale the topographic index k when using high resolution topography? 

The question stems from the will to use a high resolution topographic information to drive 
ORCHIDEE’s routing. For the PhD of Trung Nguyen-Quang, we used a data base prepared at the 30-
arc-sec resolution (ca 1km at Equator) based on HydrosHEDS (itself available at 3 and 15 arc-sec, but 
excluding land areas north of 60°N). This resolution is finer than the one of ORCHIDEE, which requires 
to properly deal with the way we upscale the topographic information at the scale of ORCHIDEE grid 
cells (or rather sub-basins or HTUs, for hydrological transfer units, which compose a grid-cell).  

This topographic information is twofold: (i) the topographic index which depends on the pixel length 
and its slope, (ii) the flow direction, which depends on the slope between the pixels and its 
neighbors, and which is important to deduce the total travel distance within a HTU. 

The topographic index k is involved in the timescale of each linear reservoir involved the routing 
scheme: 

(1) Q=V/τ, with τ=k.g. 

Units: Q is the outflow from the reservoir, here in kg/days, V is the stored water “volume” (in kg) at 
the beginning of the time step (of length dt_routing in seconds), k is in km, and g depends on the 
type of reservoir and is given in d/km: gstream = 2.4 10-4 d/km, gfast = 3.0 10-3d/km, gslow=2.5 10-2 d/km. 
These values come from the parameters fast_tcst = 3.0, slow_tcst = 25.0, stream_tcst = 0.24 in the 
routing module, which are divided by 1000 in routing_flow. In Eq. 1, the timescale τ is therefore 
given in days, and in the code, Q is further converted to kg/dt_routing by multiplying by 
86400/dt_routing (see Eq. 7 below, and related questions). 

The topographic index describes the influence of topography on the timescale, based on a 
simplification of Manning’s formula, thus only valid, a priori, for the stream reservoirs: 

(2)  k = d/sqrt(slope) = sqrt(d3/dz), 

where d is the stream length in the pixel, assumed to be the pixel length, and dz is a vertical elevation 
change at the pixel scale. 

Eventually, the timescale of one HTU is given by: 

(3) τ = g . d / sqrt(slope)  

The data compiled from HydroSHEDS at the 1-km resolution by Ana Schneider directly give the slope 
(calculated as the maximum slope among the 8 possible directions from one pixel), and k= 
d/sqrt(slope), in which the pixel length d varies geographically (it accounts for the exact pixel length, 



2/5 

 

estimated as the square root of the pixel area, and for the flow direction, with a factor √2 along the 
diagonals ).  

At the pixel scale, the timescale τ=k.g can be seen as the lag time between a unit input to the 
reservoir, and the resulting outflow. Knowing the pixels that belong to a sub-basin, the goal is to 
combine the local timescales t into the equivalent sub-basin timescale <T>. The different test cases 
below are illustrated in Figure 1. 

a) Time lag Ti from one pixel i to the sub-basin outlet 
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b) Let’s imagine a unit runoff over three pixels along a 3-pixel streamline 

Pixel 1 is upstream, pixel 2 is in the middle, pixel 3 is downstream, so that T1>T2>T3. We further 
assume that each pixel has the same area. Thus, the lag Ti of each pixel contributes to the sub-basin 
lag with a 1/3 weight.  
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ii TT α , where αi is the areal fraction of pixel i in the sub-basin. 

c) Case of 3 branched network of 3 pixels (1 confluence) 

Pixel 3 is downstream, and pixels 1 and 2 each have Ti > T3 (T1=T2 in the illustration). Again, 
considering the resulting time lag in case of unit input in all pixels leads to the same expression as 
above.  

d) Generalization 

This easily generalizes to any kind of sun-basin network in ORCHIDEE, since the reservoirs are linear 
(so the result of 2 unit inputs is 2 unit outputs), and we assume the entire sub-basin always receives a 
uniform input.  

The resulting calculation can be further be simplified using the “hierarchy” information, which gives 
the cumulative value of k from one pixel to the large basin outlet at sea: 
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τ , where Houtlet is the value of hierarchy at the sub-basin’s outlet. 

It follows that the equivalent sub-basin timescale is: 

(4) outlet
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α , where αi is the areal fraction of each pixel i in the 

sub-basin. 

The above formulation is normally better than what’s presently coded in ORCHIDEE, which relies on a 
simple mean of the k of all the “topography” cells (at the 0.5° resolution). Such a mean leads to 
underestimate <T>, and to underestimate all the more as the resolution of topography is finer 
compared to the one of ORCHIDEE.     
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Figure 1. 
Combination of 
local timescale τi 
into sub-basin 
equivalent 
timescale <T> in 
simple cases. 

 

2. Scaling problem when using the 0.5° topography 

This problem has been identified when looking at the runs performed at different resolutions when 
preparing CMIPv1 (end of 2017, beginning of 2018). Based on physical considerations, the routing 
timescales should increase when the grid-cell size do, following the length of the HTUs (Eq. 3). Yet, it 
is not the case in the standard version of ORCHIDEE, which erroneously leads to results that are 
resolution dependent. The reason is that, in a given river basin, you get all the more grid-cells and 
HTUs as the resolution is fine, so the total routing time increases at higher resolutions if you don’t 
correct by shorter timescales to match smaller HTUs.  

Why are timescales independent from the model’s spatial resolution? It comes from the routine 
routing_globalize, where the grid-scale topographic index (basin_topoind) is calculated as the 
average of the values from each contributing 0.5° pixel (topoind_bx): 
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basin_topoind(ib,ij) = basin_topoind(ib,ij) + topoind_bx(basin_pts(ij,iz,1),basin_pts(ij,iz,2)) 
basin_topoind(ib,ij) = basin_topoind(ib,ij)/REAL(basin_sz(ij),r_std) 

In this part of the code, the first line is looped over basin_sz(ij), which gives the nb of 0.5° pixels in 
the HTU (see routing_simplify). As a result, topoind does not increase when the HTU gets larger, 
while it should. 

Illustration of the impact. Figure 2 plot was prepared by Vladislav Bastrikov and compares four 
simulations of river discharge. They rely on the same code (trunk [r4438] with Zobler soil map). 
Simulations FG2 are forced by CRU-NECP at 2°, and FG3 by WFDEI_GPCC_v1 at 0.5°.   

Simulations ending with ref (red and blue) use the default values of the g parameters (slow_tcst = 
25.0, fast_tcst = 3.0, stream_tcst = 0.24), and they show the important sensitivity of the simulated 
discharge to the meteorological forcing. An important dependence to resolution is also visible, 
related to the proper location of the measurement station over the grid-mesh. This difficulty 
probably explains the lower discharges at 2° (red) compared to 1° (blue). Note that Matthieu 
Guimberteau has proposed a look-up table to place the  main stations optimally at 0.5, 1, and 2°: 
https://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/Ancillary 

Besides, a close inspection of the timing of peak discharge suggests it occurs sooner at lower 
resolution (red before blue, clear for the Ob and the Mississippi for instance). This effect is consistent 
with the upscaling error reported below (same HTU-scale timescale at coarser resolution, thus with 
less HTU along the main river course, leading to smaller travel time to the outlet and measurement 
station).  

This is confirmed by the other two simulations, in which we tried to correct the tcst parameters to 
make the two simulations closer to the 1° behavior: 
• FG2.4438z.tcst (green): parameters multiplied by 2 (slowed down) to correct from 2° to 1° 

(SLOW_TCST = 50.0, FAST_TCST = 6.0, STREAM_TCST = 0.48) 
• FG3.4438z.tcst (brown): parameters divided by 2 (accelerated) to correct from 0.5° to 1° 

(SLOW_TCST = 12.5, FAST_TCST = 1.5, STREAM_TCST = 0.12) 
This choice was made since the tcst were tuned at the 1° resolution by Ngo-Duc  et al. (2007) to 
reproduce the Senegal River discharge. 

As expected, the 2° peak flow is delayed (FG2, from red to green), while the 0.5° peak flow comes 
earlier (FG3, from blue to brown). This effect is particularly visible for the Amazon, Orinico and 
Brahmapoutra, but it is overall very small. In the Amazon and Orinoco, peak discharge happens at the 
same month for the green and brown simulations, but with a different volume, coming from the 
different forcing and/or station location problems. Overall, the impact of the correction is small, and 
this simple method might not be enough.  

Link to the upscaling method of section 1? To use the upscaling method proposed in section 1, we 
require the average of the high-resolution (here 0.5°) hierarchies inside the HTUs, to be subtracted 
by the hierarchy of the outflow pixel. This requires to combine the output of hierar_method=‘MEAN’ 
(which overlooks the effect of 0.5° area) and hierar_method = ’OUTP’. Presently, the HTU-scale 
hierarchy is defined by hierar_method = 'OUTP'. Question: how comes OUTP is not equivalent to 
hierar_method=‘MINI’, which should also correspond to the outlet of the HTU, at least if hierarchy 
does increase from headwaters to the oceans? 

https://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/Ancillary
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Figure 2. Comparison of river discharge simulated off-line at different resolutions with ORCHIDEE and the 

standard routing based on topographic info at 0.5°. Observed river discharge from GRDC appear in black. More 
explanations in the text. 

3. Further questions regarding the validity of Eq.1 

Eq. 1 is equivalent to the following differential equation: 

(5)  τ
V

dt
dV

−= , which integrates as )exp()( 0 τtVtV −= , in which time and timescales are 

have the same unit. 

Over one time step of length dt_routing (given in seconds), assuming that the outflow starts from the 
volume V* at the beginning of time step, and assuming V* includes the inflow, we should get: 

(6) [ ]τ)dt(V=)V(dtV=Q routingrouting 86400/exp1** −−−  

The above equation assumes, as in the code, that τ is given in days. 

This is different from what is found in the code, which corresponds to an explicit finite difference 
scheme: 

(7) 
86400

*
routingdt

τ
V=Q  

flow = MIN(slow_reservoir(ig,ib)/((topo_resid(ig,ib)/1000.)*slow_tcst*one_day/dt_routing),& 
                  & slow_reservoir(ig,ib)) 
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We find here again that the timescale τ is given by topo_resid(ig,ib)/1000.)*slow_tcst (in d/km). 

As shown in Table 1, the difference between the two equations, corresponding to the error over a 
time step, increases with dt_routing. This error also increases when τ decreases, which is consistent 
with the Courant-Friedrichs-Lewy stability criterion for finite difference methods: 

(8) 1
x
≤

∆
∆tv

, equivalent to ∆t ≤ τ, 

where v is the propagation velocity, inversely related to τ, and ∆t and ∆x are the time step and 
spatial step used for finite-differencing (thus dt_routing, and the “length” of the sub-basins in 
ORCHIDEE). The above criterion shows that the smaller τ, the higher the velocity, and the more 
unstable the scheme, unless ∆t and ∆x are adapted. 

Table 1. Differences between two integrations of Eq. 5: analytical (K_Eq5, numbered Eq. 6 in text), and with an 
Euler scheme (K_Eq6, numbered Eq. 7 in text). 

Comment tau tau Tau/dt_routing K_Eq5 K_Eq6
(days)  (sec)  (h) (sec)  (-) « True » per time step « per day »

Tau = 10 days 10 864000 1 3600 240 240,5003472 240 -0,208044283 -4,99306278
10 864000 24 86400 10 10,50833194 10 -4,837418036 -4,83741804
67 5788800 1 3600 1608 1608,500052 1608 -0,031088083 -0,74611398
67 5788800 24 86400 67 67,50124378 67 -0,74256969 -0,74256969

Tau = 2 years 730 63072000 1 3600 17520 17520,5 17520 -0,002853827 -0,06849185
730 63072000 24 86400 730 730,5001142 730 -0,068461886 -0,06846189

Tau = 20 years 7300 630720000 1 3600 175200 175200,5 175200 -0,000285387 -0,0068493
7300 630720000 24 86400 7300 7300,500011 7300 -0,006849002 -0,006849

Tau = 200 years 73000 6307200000 1 3600 1752000 1752000,5 2E+06 -2,85355E-05 -0,00068485
73000 6307200000 24 86400 73000 73000,5 73000 -0,000684928 -0,00068493

Median of tau/slowr
at 0.5°+Ngo-Duc

dt_routing Error (%)

 

 

Note finally that other methods exist for integrating Eq. 5 with a finite-difference scheme. A simple 
one at the scale of a reach is the convex-routing method, cf Dingman (2002), p 427-431, see Fig 2. 

Another method is linked with the Muskingum model, which differs from ORCHIDEE’s routing 
because it uses two parameters (k = 1/ τ, and x, which describes wave diffusion) to relate inflow (I) 
and ouflow (Q): 

(9)  dV/dt = I – Q 

(10) V = k x I – k(1-x)Q 

The routing in ORCHIDEE is a simplification with x=0. It is noteworthy that an efficient matrix-based 
solution of the Muskingum method has been developed for complex river networks by David et al. 
(2011), and that many variations were developed to describe the effect of river discharge on the 
routing parameters k and x (Muskingum-Cunge method, cf Todini 2007; stage de M2 de Zhao (2007), 
encadré par A. Ducharne, avec tests de plusieurs méthodes d’intégration numérique). 
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Figure 3. The convex-routing method, from Dingman (2002). 

4. Steady state volume for initialization  

By definition, steady state is achieved when the outflow equals the inflow. It thus defines equilibrium 
between inflow and outflow, the equilibrium that is seeked by spin-up when no analytic solution is 
available. Since the time to reach equilibrium is commensurate to τ, we have the chance that a linear 
reservoir model has a simple analytic steady state solution. We define Vss as the corresponding 
volume, which can be deduced from the long-term means of inflow (mean recharge thus drainage in 
ORCHIDEE, called Dm) and outflow (mean slowflow in ORCHIDEE, called Qm).  

Vss can then be deduced directly from the differential equation (Eq. 5): 

(11) 
τ

VQD ss
mm ==  which leads to mss DτV =  

Of course, for this equation to give a useful result, it has to be used with consistent units: if you want 
Vss in mm, and have τ in days, then Dm must be in mm/d. 

Equation 11 is particularly useful when τ is large, as the equilibrium volume is large as well, and 
initializing to zero would lead to incorrect results. This methods was used by Schneider (2017) [p83], 
who tested the impact of new formulations of τ for the slow reservoir, based on the Boussinesq 
equation.  

5. Realism of the stream timescale values  

We want to assess the realism of  gstream = 2.4 10-4 d/km = 20 s/km = 0.02 s/m.  

Taken as is, this value corresponds to a velocity of 50 s/m, which is very fast compared to the widely 
accepted value of 0.5 s/m for large fluvial rivers. The reason is that the effect of slope is not yet 
accounted:  v=sqrt(slope)/g 
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From Carlston (1969), we get that the slope of large US rivers falls in [0.0001,0.0005]: 
slope=0.0001 => v ≈ 0.5 s/m 
slope=0.0005 => v ≈ 1,1 s/m 

So the default value of gstream in ORCHIDEE seems to have the correct order of magnitude, although a 
bit too fast. 

The corresponding timescales depend on the length d of “travel”, which is theoretically the stream 
length in the calculation unit, related to the grid-cell size in ORCHIDEE. They are calculated in Table 2, 
for values of slope and length that are typical when running ORCHIDEE at the 0.5° resolution and 
coarser. 
 

Table 2. Estimates of timescale τ [d] , as a function of slope and length of the calculation unit. 

τ [d]  Slope [m/m] 
  0.0001 0.0005 0.001 0.01 

d [km] 
25  0.06 0.027 0.019 0.006 
50  0.12 0.054 0.038 0.012 
100  0.24 0.107 0.076 0.0024 

 
Compared to the CFL criterion expressed (Eq. 8), Table 2 shows that the finite difference scheme is 
never stable (dt_routing ≤ τ) with dt_routing = 1d, very rarely with dt_routing = 3h = 0.125 d, and not 
always with dt_routing = 1h = 0.042d (the corresponding “good” timescales values, so that 0.042 ≤ τ, 
appear in bold). This analysis confirms that the routing time step must be reduced when performing 
the routing at higher resolutions. 
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