Re-organization of ORCHIDEE's interpolation

L. Fita

¹Laboratoire de Météorologie Dynamique (LMD), CNRS, UPMC, Jussieu, Paris, Francia

ORCHIDEE meeting – Toulouse, 30 November 2015

Contact: Iluis.fita@Imd.jussieu.fr

Overview: HEAT project

- HEAT project aims to develop a new Global Climate Model (GCM) using different components:
 - New atmospheric dynamical core called DYNAMICO
 - LMD atmospheric physics from LMDZ GCM
 - IPSL land model: ORCHIDEE
 - ocean model: NEMO
 - IPSL atmospheric chemistry: INCA

Overview: HEAT project

- HEAT project aims to develop a new Global Climate Model (GCM) using different components:
 - New atmospheric dynamical core called DYNAMICO
 - LMD atmospheric physics from LMDZ GCM
 - IPSL land model: ORCHIDEE
 - ocean model: NEMO
 - IPSL atmospheric chemistry: INCA
 - ...
- DYNAMICO uses an unstructured grid and XIOS libraries for I/O

Overview: HEAT project

- HEAT project aims to develop a new Global Climate Model (GCM) using different components:
 - New atmospheric dynamical core called DYNAMICO
 - LMD atmospheric physics from LMDZ GCM
 - IPSL land model: ORCHIDEE
 - ocean model: NEMO
 - IPSL atmospheric chemistry: INCA
 - ...
- DYNAMICO uses an unstructured grid and XIOS libraries for I/O
- All the components have to be prepared to be able to work on an unstructured grid (or not with OASIS) and with XIOS libraries
 - Components' code have to use XIOS
 - Input and initialization files have to be understandable by XIOS

 Due to efficiency constrains ORCHIDEE will be directly coupled to DYNAMICO

- Due to efficiency constrains ORCHIDEE will be directly coupled to DYNAMICO
- Current trunk version of ORCHIDEE uses XIOS for the output

- Due to efficiency constrains ORCHIDEE will be directly coupled to DYNAMICO
- Current trunk version of ORCHIDEE uses XIOS for the output
- ORCHIDEE should be prepared to use XIOS also for the input data

- Due to efficiency constrains ORCHIDEE will be directly coupled to DYNAMICO
- Current trunk version of ORCHIDEE uses XIOS for the output
- ORCHIDEE should be prepared to use XIOS also for the input data
- Planned steps:
 - Prepare ORCHIDEE to use XIOS variables-like outcome: Do not add any new feature. JUST re-organization & standardization of the existing code
 - 2. Prepare ORCHIDEE forcing files for XIOS

- Due to efficiency constrains ORCHIDEE will be directly coupled to DYNAMICO
- Current trunk version of ORCHIDEE uses XIOS for the output
- ORCHIDEE should be prepared to use XIOS also for the input data
- Planned steps:
 - Prepare ORCHIDEE to use XIOS variables-like outcome: Do not add any new feature. JUST re-organization & standardization of the existing code
 - 2. Prepare ORCHIDEE forcing files for XIOS
- Work done in a new branch:

svn://forge.ipsl.jussieu.fr/orchidee/branches/ORCHIDEE-DYNAMICO/ORCHIDEE

• Currently ORCHIDEE interpolation done via <code>aggregate_p</code> with a specific interface for each file with a given masking and modification of file values

• Currently ORCHIDEE interpolation done via <code>aggregate_p</code> with a specific interface for each file with a given masking and modification of file values

variable	file	shape	subroutine
LAI	lai2D.nc	4D	slowproc.f90
soilalb_[dry/we/moy] ^a	soils_param.nc	3D	condveg.f90
veget	PFTmap.nc	3D	slowproc.f90
vegetation_map	carteveg5km.nc	1D	slowproc.f90
soilclass ^{b} , clayfraction ^{b}	soils_param.nc	3D	slowproc.f90
pente	cartepente2d_15min.nc	2D	slowproc.f90
bg_albedo	alb_bg_jrctip.nc	4D	condveg.f90
N_qt_[WRICE/OTHER]_year	orchidee_fertilizer_1995.nc	2D	chemistry.f90
flx_co2_bbg_year	orchidee_bbg_clim.nc	2D	chemistry.f90
remperature	reftemp.nc	2D	thermsoil[c].f90

^{*a*}from soilcolor, visisble and infrared ^{*b*}from soiltext

- Currently ORCHIDEE interpolation done via <code>aggregate_p</code> with a specific interface for each file with a given masking and modification of file values
- Writing of 'all-purpose' interpolation code grouped in a new module src_global/module_InerpWeight.f90 all forcing files (even that ones not using aggregate_p)

- Currently ORCHIDEE interpolation done via <code>aggregate_p</code> with a specific interface for each file with a given masking and modification of file values
- Writing of 'all-purpose' interpolation code grouped in a new module src_global/module_InerpWeight.f90 all forcing files (even that ones not using aggregate_p)
 - Tinny modifications, readiness to use outcomes from XIOS
 - New variable abver availability of data for the interpolation ([0, 1], where < 0 value when data was not available)

$$aovar_{i,j} = \frac{\sum_{k=1}^{Ncoin.} \mathcal{A}_k^{in}}{\mathcal{A}_{i,j}^{OR}}$$

– Generalized version of ORCHIDEE interpolation !!

• ORCHIDEE only works on continental points. Current land/sea mask 'on fly'

- ORCHIDEE only works on continental points. Current land/sea mask 'on fly'
- Each file contains different umber of categories/types. Currently it is known by hearth: dimension, maximum value, ... Two main kinds:
 - unique value for grid-point (e.g. carteveg5km.nc)
 - fractions of multiple-values by grid point (e.g. soils_param.nc)

- ORCHIDEE only works on continental points. Current land/sea mask 'on fly'
- Each file contains different umber of categories/types. Currently it is known by hearth: dimension, maximum value, ... Two main kinds:
 - unique value for grid-point (e.g. carteveg5km.nc)
 - fractions of multiple-values by grid point (e.g. soils_param.nc)
- XIOS requirements: clarity on the content of the file: dims' name, projection, ...

- ORCHIDEE only works on continental points. Current land/sea mask 'on fly'
- Each file contains different umber of categories/types. Currently it is known by hearth: dimension, maximum value, ... Two main kinds:
 - unique value for grid-point (e.g. carteveg5km.nc)
 - fractions of multiple-values by grid point (e.g. soils_param.nc)
- XIOS requirements: clarity on the content of the file: dims' name, projection, ...
- Proposal:

https://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/Forcings/CfStandard

- Provide file with mask incorporated
- Homogenization of names: dimensions, variables, ...
- Provide a new variable with a new dimension for the categories/types

• Mask

- Mask
 - Proper definition of land/sea mask ensures right representation of the continents, coastal lines, ...
 - Incorporated within the file avoids possible errors from computation
 - Provider of data best to know
 - Use __FillValue to mask oceanic points

PFTmap_IPCC_2000_XIOS.nc

- Mask
- Labelization (following CF-standard)

- Mask
- Labelization (following CF-standard)
 - Standard nomenclature avoids confusion
 - Flexible/general programs, use of files
 - Add bounds variables (lat_bnds, lon_bnds) for non regular lon/lat projections of input data (as carteveg5km.nc, Goode Homolosine)

- Mask
- Labelization (following CF-standard)
- Types/categories

- Mask
- Labelization (following CF-standard)
- Types/categories
 - New string variable char typesnames (Ntypes, Lstring)

generic	PFTmap.nc	soils_param.nc
1: [type 1]	1: bare soil	1: light (brightness=1)
2: [type 2]	2: tropical broad-leaved evergreen	2: bright (brightness=0.875)
()	()	()
N: [type N]	13: C4 agriculture	9: dark (brightness=0)

- Robust information content of the files
- Flexibility on interpolation of files (via the dimension Ntypes)
- Clear framework easier to incorporate new forcing files

- Mask
- Labelization (following CF-standard)
- Types/categories
- All current ORCHIDEE files have been CF-standardized. Python tools to check/create files.:

https://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/Forcings/CfStandard

- file_rectifier.py: rectifies input files
- file_checker.py: checks the consistency of the file

• Merging with recent version of trunk: 3469 (2016-05-25)

- Merging with recent version of trunk: 3469 (2016-05-25)
- Routing is not generalized yet

- Merging with recent version of trunk: 3469 (2016-05-25)
- Routing is not generalized yet
- Schedule:
 - 1. Upload modifications to trunk
 - 2. On the branch:
 - (a) Adapting interpolation to be done via XIOS2 (replacing all calls to InterpWeight[N]D)
 - (b) Generalization of interpolation adding multi-projection interface recently incorporated from J. Polcher
 - (c) Incorporate aovar variable in output (where?)
 - (d) Coding interpolation of routing to unstructured and XIOS2-based framework
 - (e) First coupled runs before the end of 2016
 - (f) Add XIOS2 features to ORCHIDEE: calendar

- Merging with recent version of trunk: 3469 (2016-05-25)
- Routing is not generalized yet
- Schedule:
 - 1. Upload modifications to trunk
 - 2. On the branch:
 - (a) Adapting interpolation to be done via XIOS2 (replacing all calls to InterpWeight[N]D)
 - (b) Generalization of interpolation adding multi-projection interface recently incorporated from J. Polcher
 - (c) Incorporate aovar variable in output (where?)
 - (d) Coding interpolation of routing to unstructured and XIOS2-based framework
 - (e) First coupled runs before the end of 2016
 - (f) Add XIOS2 features to ORCHIDEE: calendar

Thank you for you attention !!

• Currently ORCHIDEE interpolation done via <code>aggregate_p</code> with a specific interface for each file with a given masking and modification of file values

• Currently ORCHIDEE interpolation done via <code>aggregate_p</code> with a specific interface for each file with a given masking and modification of file values

variable	file	shape	subroutine
LAI	lai2D.nc	4D	slowproc.f90
soilalb_[dry/we/moy] ^a	soils_param.nc	3D	condveg.f90
veget	PFTmap.nc	3D	slowproc.f90
vegetation_map	carteveg5km.nc	1D	slowproc.f90
soilclass ^{b} , clayfraction ^{b}	soils_param.nc	3D	slowproc.f90
pente	cartepente2d_15min.nc	2D	slowproc.f90
bg_albedo	alb_bg_jrctip.nc	4D	condveg.f90
N_qt_[WRICE/OTHER]_year	orchidee_fertilizer_1995.nc	2D	chemistry.f90
flx_co2_bbg_year	orchidee_bbg_clim.nc	2D	chemistry.f90
remperature	reftemp.nc	2D	thermsoil[c].f90

^{*a*}from soilcolor, visisble and infrared ^{*b*}from soiltext

- Currently ORCHIDEE interpolation done via <code>aggregate_p</code> with a specific interface for each file with a given masking and modification of file values
- Interpolation in all files follows a similar structure:
 - 1. Getting variable and variable's lon, lat
 - 2. Check variable values (if necessary modify them)
 - 3. Mask values
 - 4. Check matching grid-point areas of ORCHIDEE grid via aggregate_p
 - 5. Provide interpolated values (PFT fractions, albedos, ...) using matching of areas $(\mathcal{A}^{OR}, \mathcal{A}^{in})$

$$\mathcal{X}_{i,j}^{OR} = \frac{\sum_{k=1}^{Ncoin.} \mathcal{X}_k^{in} \mathcal{A}_k^{in}}{\sum_{k=1}^{Ncoin.} \mathcal{A}_k^{in}} ; Ncoin. \in \mathcal{A}^{OR}$$

- Currently ORCHIDEE interpolation done via <code>aggregate_p</code> with a specific interface for each file with a given masking and modification of file values
- Writing of 'all-purpose' interpolation code grouped in a new module src_global/module_InerpWeight.f90

- Currently ORCHIDEE interpolation done via <code>aggregate_p</code> with a specific interface for each file with a given masking and modification of file values
- Writing of 'all-purpose' interpolation code grouped in a new module src_global/module_InerpWeight.f90
 - nD-generalization of the interpolation
 - Inclusion of all the 'modification' and 'masking' methodologies found for the different files
 - Use of the aggregate_p methodology for all the files including: reftemp.nc, orchidee_fertilizer_1995.nc, orchidee_bbg_clim.nc
 - XIOS-like calculation of the final ORCHIDEE values

- Currently ORCHIDEE interpolation done via <code>aggregate_p</code> with a specific interface for each file with a given masking and modification of file values
- Writing of 'all-purpose' interpolation code grouped in a new module src_global/module_InerpWeight.f90
- re-structured interpolation:
 - 1. Set-up file, variable and methods to use
 - 2. Call general interpolation subroutines: InterpWeight1D-4D
 - (a) Modify values
 - (b) Mask values
 - (C) USE aggregate_p
 - (d) Provide interpolated values via provide_fractions2D-4D
 - (e) New variable abver availability of data for the interpolation ([0, 1], where < 0 value when data was not available)

$$aovar_{i,j} = rac{\sum_{k=1}^{Ncoin.} \mathcal{A}_k^{in}}{\mathcal{A}_{i,j}^{OR}}$$

- Currently ORCHIDEE interpolation done via <code>aggregate_p</code> with a specific interface for each file with a given masking and modification of file values
- Writing of 'all-purpose' interpolation code grouped in a new module src_global/module_InerpWeight.f90
- Generalized version of ORCHIDEE interpolation !!