The surface-atmosphere interactions

ORCHIDEE Training : Jan 26th 2022

COUPLING BETWEEN ATMOSPHERE AND SURFACE

Processes involved

- The **atmosphere and the surface are coupled** through *turbulence* (in boundary layer) and *radiatio* (SW and LW). Currently, there is no direct influence of the surface to other parametrizations.
- The surface "receive" precipitation from the atmosphere (no direct feedback).
- Surface impacts atmosphere via orography, roughness, albedo, emissivity

Atmosphere-surface interactions in IPSL-CM

In LMDZ:

Each surface grid can be decomposed in a Maximum of 4 sub-grid of different type: land (_ter), continental ice (_lic), open ocean (_oce) and sea_ice (_sic)

Radiation at the surface depends on mean surface properties (albedo, emissivity)

Turbulent diffusion depends on local subgrid properties but each sub-surface sees the same atmosphere

Turbulent diffusion (pbl_surface, LMDZ)

Change of a variable X with the time due to the turbulent transport (continuity) :

$$\frac{\partial X}{\partial t} = -\frac{1}{\rho} \frac{\partial \Phi}{\partial z}$$

$$\Phi = -\rho k_z \frac{\partial X}{\partial z}$$
interfaces layers
$$\Phi^l = -K_1 (X_l - X_{l-1}) \quad (\text{vertical discretization})$$

$$\uparrow$$
From turbulent diffusion scheme
$$(\text{pbl in LMDZ})$$

$$\delta P = (P_{l-1} - P_l) = \rho g \delta z = m_1 g$$

$$\lambda = \text{specific humidity, enthalpie}$$

$$\frac{\partial X}{\partial t} = -\frac{\partial \Phi}{m_{l}} \qquad \Phi^{l}_{\chi} = -K_{l} (X_{l} - X_{l-1})$$

$$m_l \frac{X_l(t+\delta t) - X_l(t)}{\delta t} = \phi_l(t+\delta t) - \phi_{l+1}(t+\delta t)$$

$$m_l \frac{X_l - X_l^0}{\delta t} = \phi_l - \phi_{l+1} \quad \text{with} \quad \begin{array}{l} X_l = X_l(t + \delta t) \\ X_l^0 = X_l(t) \end{array}$$

$$m_l \frac{X_l - X_l^0}{\delta t} = K_{l+1} (X_{l+1} - X_l) - K_l (X_l - X_{l-1})$$

$$-K_{l}X_{l-1} + \left(\frac{m_{l}}{\delta t} + K_{l+1} + K_{l}\right)X_{l} + K_{l+1}X_{l+1} = \frac{m_{l}}{\delta t}X_{l}^{0}$$

$$\left(\frac{m_{l}}{\delta t} + K_{l+1} + K_{l}\right) X_{l} = \frac{m_{l}}{\delta t} X_{l}^{0} + K_{l+1} X_{l+1} + K_{l} X_{l-1}$$

which may be written as:

At th

At th

$$\begin{split} \left(\delta P_{l} + R_{l+1}^{X} + R_{l}^{X}\right) X_{l} &= \delta P_{l} \ X_{l}^{0} + R_{l+1}^{X} \ X_{l+1} + R_{l}^{X} \ X_{l-1} \ (2 \leq l < n) \\ & \text{with } R_{l}^{X} = g \delta t K_{l} \\ \text{At the top (l=n, $ \Phi_{n}=0$)} \\ \hline \left(\delta P_{n} + R_{n}^{X}\right) X_{n} &= \delta P_{n} \ X_{n}^{0} + R_{n}^{X} \ X_{n-1} \\ \text{At the bottom: (l=1): } m_{1} \frac{x - x^{0}}{\delta t} = \Phi^{1}_{x} - \Phi^{2}_{x} \\ & m_{1} \frac{X_{1} - X_{1}^{0}}{\delta t} = K_{2}(X_{2} - X_{1}) - F_{1}^{X} \\ \hline \left(\delta P_{1} + R_{1}^{X}\right) X_{1} &= \delta P_{1} \ X_{1}^{0} + R_{2}^{X} \ X_{2} - g \delta t \underline{F_{1}^{X}} \\ \end{split}$$

With F_1^{Λ} : flux of X at the bottom of the first layer (i.e. between the surface and the atmosphere), positive downward.

$$K_l = \frac{k_z \rho^2 g}{P_{l-1} - P_l}$$

Starting from top:

$$\left(\delta P_n + R_n^X\right) X_n = \delta P_n X_n^0 + R_n^X X_{n-1}$$

can be written as:

$$X_n = C_n^X + D_n^X X_{n-1}$$

with

$$C_n^X = \frac{X_n^0 \delta P_n}{\delta P_n + R_n^X}$$
$$D_n^X = \frac{R_n^X}{\delta P_n + R_n^X}$$

with $R_l^X = g \delta t K_l$

At the bottom of the boundary layer $X_2 = C_2^X + D_2^X X_1$

$$\left(\delta P_1 + R_2^X\right) X_1 = \delta P_1 X_1^0 + R_2^X X_2 - g \delta t F_1^X$$

replacing X_2 in the equation above:

$$X_1 = A_1^X + B_1^X \cdot F_1^X \cdot \delta t$$

with

$$\begin{split} A_1^X &= \frac{X_1^0 \delta P_1 + R_2^X C_2^X}{\delta P_1 + R_2^X (1 - D_2^X)} \\ B_1^X &= \frac{-g}{\delta P_1 + R_2^X (1 - D_2^X)} \end{split}$$

X= wind, enthalpy, specific humidity, tracers

X= wind, enthalpie, specific humidity, tracers

Once F_1^{x} (flux of water mass, heat between the surface and the atmosphere) is known, the X_i can be computed from the first layer to the top of the PBL

Fast Variations requires an implicit approach to solve the energy budget equations Cheruy et al. 2019

Case of the continental surface

• Surface energy budget

$$SW_{net} + LW_{net} + F + L + \Phi_0 = 0$$

$$L = \beta \rho VC_d (q_1 - q_s(T_s))$$

$$SW_{net} + LW_d - \epsilon \sigma T_s^4 + F + L + \Phi_0 = 0$$

$$F = \rho VC_d (T_1 - T_s)$$
depends on Ts

Heat conduction in the soil: diffusion equation :

$$\Phi_T = -\lambda \frac{\partial T}{\partial z}$$
$$\frac{\partial T}{\partial t} = -\frac{1}{c} \frac{\partial \Phi_T}{\partial z}$$

Boundary conditions:

✓ bottom : $\Phi = 0$

٠

✓ top: Continuity of the fluxes and the temperature between sub-surface and atmosphere

• Top: Continuity between sub-surface and atmosphere + vertical discretization $\Phi_o = \text{Rad} + \sum F^{\downarrow}(T_S^t) - \epsilon \sigma(T_S^t)^4$

$$C_{p_{1/2}}^{t} \frac{T_{1/2}^{t} - T_{1/2}}{\delta t} = \frac{1}{z_{1} - z_{0}} \left[\lambda_{1} \frac{T_{3/2}^{t} - T_{1/2}^{t}}{z_{3/2} - z_{1/2}} \right] + Rad + \sum F^{\downarrow} (T_{S}^{t}) - \varepsilon \sigma (T_{S}^{t})^{4}$$

• Heat conduction : Diffusion equation

We obtain by recurrence (same as for atmosphere)

$$\Phi_T = -\lambda \frac{\partial T}{\partial z} ;$$
$$\frac{\partial T}{\partial t} = -\frac{1}{c} \frac{\partial \Phi_T}{\partial z}$$

Top: Continuity between sub-surface and atmosphere

$$C_{p_{1/2}} \frac{T_{1/2}^{t} - T_{1/2}}{\delta t} = \frac{1}{z_1 - z_0} \left[\lambda_1 \frac{T_{3/2}^{t} - T_{1/2}^{t}}{z_{3/2} - z_{1/2}} \right] + Rad + \sum F^{\downarrow} (T_S^{t}) - \varepsilon \sigma (T_S^{t})^4 \qquad T_{3/2}^{t} = \alpha_1^t T_{\frac{1}{2}}^{t} + \beta_1^t$$

• **Bottom**:
$$\Phi_n = 0$$
 $T_{n-1/2}^t = \alpha_{n-1}^t T_{n-\frac{3}{2}}^t + \beta_{n-1}^t$

Intermediate layers

$$\mathbf{T}_{k+1/2}^{\mathsf{t}} = \boldsymbol{\alpha}_{k}^{\mathsf{t}} \mathbf{T}_{k-1/2}^{\mathsf{t}} + \boldsymbol{\beta}_{k}^{\mathsf{t}}$$

At t, α_k and β_{κ} depend on $T_{k1/2}$ at the previous time step they can be computed with a recurrence relationship from one layer to the other. • Heat conduction : Diffusion equation

$$\Phi_T = -\lambda \frac{\partial T}{\partial z} \quad ; \quad \frac{\partial T}{\partial t} = -\frac{1}{c} \frac{\partial \Phi_T}{\partial z}$$

• Top: Continuity between sub-surface and atmosphere

(1)
$$C_{p_{1/2}}^{t} \frac{T_{1/2}^{t} - T_{1/2}}{\delta t} = \frac{1}{z_1 - z_0} \left[\lambda_1 \frac{T_{3/2}^{t} - T_{1/2}^{t}}{z_{3/2} - z_{1/2}} \right] + \sum F^{\downarrow} (T_S^{t}) - \varepsilon \sigma (T_S^{t})^4$$

(2)
$$T_{3/2}^t = \alpha_1^t T_{\frac{1}{2}}^t + \beta_1^t$$

Ts is extrapolated as a function of $T_{\frac{1}{2}}^{t}$ taking advantage of (2) (very thin layers, and continuity of the temperature - Hourdin 1993))

$$C'*\frac{T_{S}^{t}-T_{S}^{0}}{\delta t} = G'*+SW_{net}+LWd+\sum F^{\downarrow}(T_{S}^{t})-\varepsilon\sigma(T_{S}^{t})^{4}$$

Case of the continental surface

• Surface energy budget $SW_{net} + LW_{net} + F_{s} + L + \Phi_{0} = 0$ $SW_{net} + LW_{d} - \varepsilon \sigma T_{s}^{4} + F_{s} + L + \Phi_{0} = 0$ $SW_{net} + LW_{d} - \varepsilon \sigma T_{s}^{4} + F_{s} + L + \Phi_{0} = 0$ $F_{s} = \rho VC_{d} (H_{1} - H_{s})$ H = enthalpy

$$F_{s,H}^{t} = A^{1}_{H} + B^{1}_{H}F_{s,H}^{t}\partial t$$
 Turbulent diffusion Atmosphere

$$F_{s,H}^{t} = \frac{1}{zikt}(H_{1}^{t} - H_{s}^{t}) \quad \frac{1}{zikt} = \rho |\overrightarrow{v}|C_{d}$$
Bulk formulation

$$C_{d}^{x} \text{ drag constraints}$$

$$F_{s,H}^{t} = \frac{1}{zikt} (A_{H}^{1} + B_{H}^{1} \cdot F_{s,H}^{t} \delta t - H_{s}^{t})$$

$$F_{s,H}^{t} = \frac{1}{zikt} \left[\frac{(A_{H}^{1} - H_{s}^{t-\delta t})}{1 - \frac{1}{zikt} B_{H}^{1} \delta t} - \frac{(H_{s}^{t} - H_{s}^{t-\delta t})}{1 - \frac{1}{zikt} B_{H}^{1} \delta t} \right]$$

- C_d^x drag coefficient (Monin Obukhov, constant f in the surface layer) depends on
- roughness lenghts (gustiness, vegetation), orography
- Richardson number (boundary layer stability)
- Formulation depends on the sub-surface typ

$$F_{s,H}^{t} = sensfl_{old} - sensfl_{sns}(T_{s}^{t} - T_{s}^{t-\delta t})$$

Case of the continental surface

• Heat conduction in the soil: diffusion equation : $\Phi_T = -\lambda \frac{\partial T}{\partial z}$

• bottom boundary condition $\Phi = 0$

solve for the temperature into the soil (tridiagonal system)

• Top boundary condition:

Continuity of the fluxes and the temperature between sub-surface and atmosphere

$$C'*\frac{T_s^t - T_s^0}{\delta t} = G' * + SW_{net} + LW_d + \sum F^{\downarrow}(T_s^t) - \varepsilon\sigma(T_s^t)^4$$

Solved using the sensitivity of the flux to the surface temperature to calculate the flux at the new time-step

$$\begin{split} F^t_{s,H} &= sensfl_{old} - sensfl_{sns}(T^t_s - T^{t-\delta t}_s) \\ \sigma * T^{t-\delta t^4}_s - 4\varepsilon \sigma T^{t-\delta t^3}_s(T^t_s - T^{t-\delta t}_s) \end{split}$$

$$T_{\rm S}^{\rm t} = f(SW_{\rm net} + LWd, T_{\rm S}^{\rm 0}, F_{\rm S}^{\rm 0})$$

In LMDZOR

Coupling between atmospheric column(s) and sub-surfaces

Each grid cell is divided into several sub-areas or ``sub-surfaces'' of fractions ω_i

Each sub surface has to compute F_1 using variables X_1 , A_1 and B_1 The boundary layer tendencies in the atmosphere are mixed between sub-columns (equivalent of averaging the surface flux)

Derivation of local sub-surface **net solar** radiation from grid average net solar radiation

The grid average net flux Ψ_s at surface has been computed for each grid point by the radiative code

We want (1) to conserve energy and (2) to take into account the value of the local albedo α i of the sub-surface.

We compute the downward SW radiation as

with the mean albedo

 $\alpha =$ i

For each sub-surface i, the absorbed solar radiation reads:

 $\psi_i^s = (1 - \alpha_i) F_{\perp}^s$

$$\psi_i^s = \frac{(1 - \alpha_i)}{(1 - \alpha)} \bar{\Psi}^s$$

One may verify that this procedure ensure energy conservation, i.e.

$$\sum_{i} \omega_i \psi_i^s = \Psi_s$$

$$F^s_{\downarrow} = \frac{\Psi_s}{(1-\alpha)}$$

$$\sum \omega_i \alpha_i$$

Derivation of local sub-surface **net longwave radiation** from grid average net longwave radiation

The net longwave (LW) radiation $\overline{\Psi}^L$ has been computed by the radiative code for each grid cell. How to split it depending on the sub-surfaces local properties and ensuring energy conservation?

If the downward longwave flux F_{\downarrow} is uniform within each grid, the net LW flux for a sub-surface *i* may be written as:

$$\psi_i^L(T_i) = \epsilon_i \left(F_{\downarrow} - \sigma T_i^4 \right) \tag{1}$$

where T_i is the surface temperature of sub-surface *i* and ϵ_i its emissivity. A linearization around the mean temperature \overline{T} gives:

$$\psi_i^L(T_i) \approx \epsilon_i \left(F_{\downarrow} - \sigma \bar{T}^4\right) - 4\epsilon_i \sigma \bar{T}^3 (T_i - \bar{T})$$
 (2)

To conserve the energy, the following relationship must be true:

$$\sum_{i} \omega_{i} \psi_{i}^{L} = \bar{\Psi}^{L} \tag{3}$$

Using Eq. 2 gives

$$\sum_{i} \omega_{i} \psi_{i}^{L} = \bar{\epsilon} \left(F_{\downarrow} - \sigma \bar{T}^{4} \right) - 4\sigma \bar{T}^{3} \sum_{i} \omega_{i} \epsilon_{i} \left(T_{i} - \bar{T} \right)$$

$$\tag{4}$$

where $\bar{\epsilon} = \sum_{i} \omega_i \epsilon_i$ is the mean emissity.

Derivation of local sub-surface **net longwave radiation** from grid average net longwave radiation

$$\sum_{i} \omega_{i} \psi_{i}^{L} = \bar{\epsilon} \left(F_{\downarrow} - \sigma \bar{T}^{4} \right) - 4\sigma \bar{T}^{3} \sum_{i} \omega_{i} \epsilon_{i} \left(T_{i} - \bar{T} \right)$$

$$\tag{4}$$

where $\bar{\epsilon} = \sum_{i} \omega_i \epsilon_i$ is the mean emissity. The second term on the right hand side is zero if

$$\bar{T} = \frac{\sum_{i} \omega_i \epsilon_i T_i}{\bar{\epsilon}} \tag{5}$$

To ensure energy conservation, we need in addition to verify:

$$\bar{\Psi}^L = \bar{\epsilon} \left(F_{\downarrow} - \sigma \bar{T}^4 \right) \tag{6}$$

Which is consistent with the definition of the net LW flux at the surface. We rewrite now Eq. 2 as:

$$\psi_i^L(T_i) \approx \frac{\epsilon_i}{\bar{\epsilon}} \bar{\Psi}^L - 4\epsilon_i \sigma \bar{T}^3(T_i - \bar{T})$$
 (7)

Due to radiative code limitation, in LMDZ, we always must have $\epsilon_i = 1$ Energy conservation: the radiation is computed by the atmospheric model,

THANK YOU FOR YOUR ATTENTION

- Technical note : Description of the interface with the surface and the computation of the turbulent diffusion in LMDZ (J.L.Dufresne)
- . Thèse F. Hourdin 1993 (section 3.3.3 and annexes)
- Wang F., F. Cheruy, J.L. Dufresne, 2016: The improvement of soil thermodynamics and its effects on land surface meteorology in the IPSL climate model. Geosci. Model Dev., 9, 363–381, 2016 www.geosci-modeldev.net/9/363/2016/

In subroutine PHYSIQ

loop over time steps

Call tree

CALL change_srf_frac : Update fraction of the sub-surfaces (pctsrf)

CALL pbl_surface Main subroutine for the interface with surface

Calculate net radiation at sub-surface

Loop over the sub-surfaces nsrf

Compress variables (Consider only one surface type and only the points for which the fraction for this sub-surface in not zero)

CALL cdrag: coefficients for turbulent diffusion at surface (cdragh and cdragm) CALL coef_diff_turb: coef. turbulent dif. in the atmosphere (ycoefm et ycoefm.) CALL climb_hq_down downhill for enthalpy H and humidity Q

CALL climb_wind_down downhill for wind (U and V)

CALL surface models for the various surface types: **surf_land**, **surf_landice**, **surf_ocean or** surf_seaice.

Each surface model computes:

• evaporation, latent heat flux, sensible heat flux

• surface temperature, albedo (emissivity), roughness lengths

CALL climb_hq_up : compute new values of enthalpy H and humidity Q CALL climb_wind_up : compute new values of wind (U and V) Uncompress variables : (some variables are per unit of sub-surface fraction, some are per unit of grid surface fraction)

Cumulate in global variables after weighting by sub-surface fractions Surface diagnostics : (T, q, wind are evaluated at a reference level (2m) owing to an interpolation scheme based on the MO laws).

End Loop over the sub-surfaces

Calculate the mean values over all sub-surfaces for some variables End pbl-surface