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COUPLING BETWEEN ATMOSPHERE AND SURFACE Processes involved

Latent heat for the surface

Photo by: Jay Chapman | Flickr

The atmosphere and the surface are coupled through turbulence (in boundary layer) and radiation
(SW and LW). Currently, there is no direct influence of the surface to other parametrizations.

The surface “receive” precipitation from the atmosphere (no direct feedback).




Atmosphere-surface interactions

The atmosphere and the surface are coupled through furbulence (in the boundary layer) and
radiation (SW and LW). Currently, there are no direct influence of the surface to other

parametrizations.
The surface “receive” precipitation from the atmosphere (no direct feedback).

The surface impacts the atmosphere via the orography (factors constant with time), roughness, albedo
emissivity
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Turbulent diffusion (pbl_surface)

* Change of a variable X with the time due to the turbulent transport (continuity) :
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Tri-diagonal system that can be solved for the vector X




Solving the tridiagonal system

my my . .
( 57 ) X, = 57 )+ K X + KX

which may be written as:

(0P + R, +RMN) X, =0F X+ R Xi + R Xy |(2< 1 < n)

with R* = gitK;
At the top (1=n, @ =0)

(6P, + RX) X, = 6P, X"+ RY X,_,

At the bc)tt(:}mlzl (I=1): m, 5% St =P, -P2,

With F7" : flux of X at the bottom of the first layer (1.e. between the surface
and the atmosphere), positive downward.

I‘LF,I =



Solving the tridiagonal system

Starting from top:

can be written as:

T T

with 0 <

ox_ X0,
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0P, + R}

X

DX L Rﬂ
with ;Y = goth " 6 Pﬂ + RI}E




interfaces

_______ L s Solving the tridiagonal system

@ i1 T Dl+1Xl
"""" 1 S—_

(6P + RA + RN X, = 0B XRX X1 2<l<n

GP+RX, (1-DX)+RY)X, = 6B XP+RY, ¢

[+1

1—|—R Xgl

. with ;Y = gdtK
So we obtain by reccurence:
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Solving the tridiagonal system

At the bottom of the boundary layer X, = C5' + D3 X

(6P + Ry ) X1 = 0P, X{ + Ry Xy — gStFy}*

replacing X5 in the equation above:

X, = A} + B Fy .6t

with

. X
depend only on properties in the Ad =
layers above and the variables 5P1 —+ R‘QX (1 — Djf)
at the previous time step. —q




Solving the tridiagonal system
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X= wind, enthalpie, specific humidity, tracers

F.* (flux of water mass, flux of heat, flux of momentum) is either prescribed or
computed for each sub-surface

Once F,*isknown, the X, can be computed from the first layer to the top of the PBL



Coupling with the surface : compute T, and F," (sensible heat flux)

Case of the continental surface and the temperature

* Heat conduction in the soil: Diffusion equation

A= thermal diffusivity
| oor 0D, 10 22T C = thermal capacity
at C oz _ cozlazl

Boundary conditions:

v' bottom: ® =0
v’ top: Continuity of the fluxes and the temperature between sub-surface and atmosphere

SWiet # LWy ~8p TP+ H+L+ Do 30 L= BpC,VCy (a,(T)-s) = PC,VCq (duray)
H= -pCpVCd (T,-T))

depen'd onTs

depend only on properties in the
layers above and the variables

at the previous time step.



Coupling with the surface : compute T, and F," (sensible heat flux)

Case of the continental surface and the temperature

* Heat conduction in the soil: Diffusion equation

oT
O, = — Ao
T 9z A= thermal diffusivity
(C) - ar a0, C = thermal capacity
ot C 0z

Boundary conditions:

v' bottom: ® =0
v’ top: Continuity of the fluxes and the temperature between sub-surface and atmosphere

SW, o + LW, -gc T+ H+L+ D

9="0 L= BpVC4(a; - al(Ty)
depc'end onTs H = pVC, (T,-T))

Vertical discretization and time discretization of C

» Tridiagonal system as for the atmosphere (different boundary conditions)



* Heat conduction : Diffusion equation Cﬂ _ 9 (Ka_T
ot 0 0z

e Top: Continuity between sub-surface and atmosphere + vertical discretization
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* Heat conduction : Diffusion equation

We obtain by recurrence (same as for atmosphere) oT

* Top: Continuity between sub-surface and atmosphere

Tt1/2_T1/2 1 TE/Z—TE/Z Lot . . o X
‘ - Z1-Zo [}\1 ] + Rad + Z F (TS) B EO-(TS)4 T3/2 = 0 Tl—l— Bl
2
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interface layers
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1 ' t
z;=interface (D1¢ T1'E+1/2 = OLtk T1’2—1/2 T Bk
z;,=layers A —— Zey2
k+1
.................. ) Att, oy and B, dependonT,,,,
n i ( layer below) at the previous
®, =0 time step. They can be computed
with a inner relation from one
* Bottom: ®, =0 layer to the other (starting from

the bottom)

t _ .t t t

Tho1/2 = 0n—1 Tn_§+ B4
2



* Heat conduction : Diffusion equation

We obtain an inner relation oT

Top: Continuity between sub-surface and atmosphere

(1) t TE/Z_Tl/Z
P1/2 5t

1 Tg/z—Ti/z l
=— [7\1 —] +rad + ), F (Tst) — SO'(TSt)4
1= 40

23/2—21/2

(2) TS, =of Ti+p;
2




* Heat conduction : Diffusion equation

We obtain by recurrence:

Top: Continuity between sub-surface and atmosphere

f(l) C

T§/2—T1/2
P1/2 8t

Tt _qt
= - 1Z [7\ L2 1/2] + Rad + Y FY(TE) — eo(TH)*
1740

Z3/2—Z21/2

&) @pzei b >

Ty~ T *
> 22— G +Rad + Y F(TS) — eo(TS)*

T, : linearly extrapolated from T5 , and T, /,

Ts—Ts

’ %
C ot

Att, oy and B, dependonT,,,
at the previous time step

they can be computed with a
recurrence relation from one
layer to the other.

= G’ * +Rad + Y, F*(T§) — eo(TH)*

Hourdin 1993 (these)
Wang, Cheruy, Dufresne 2016 GMD
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Att oy and B, dependonT, at
the previous time step and on
the underlying layers :

They can be pre-computed

t-1 t
C‘\. D\ ____________________ n
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c'*

T5—Ts
ot

SOLVING FOR T,
= G', + netrad + Y, F*(T$)



c'*

* netrad =SW__ + LW

net down

T5—Ts
ot

- (1- &) LW

SOLVING FOR T,
= G', + netrad + Y, F*(T$)

—eo(TH* -4ec T3 (TS —T))

down



SOLVING FOR T,

t_
Is7Ts — ¢'. + netrad + Y FY(TS)

c'*
ot

* netrad =SW,_, + LW, - (1- &) LW,,,,, — €o(TH)* - 4ec T3 (T,  —T,) e=1

down down

C4* drag coefficient (Monin Obukhov
, constant flux in the surface layer) depends on:
® FlH =p CdX|V| (Hl' Hts) = Kl (Hl_ Hts) * roughness lenghts (gustiness, vegetation),
Richardson number (boundary layer stability)
Formulation depends on the sub-surface type

H,=A, + BlHSt F1H = M;- N; (HtS—HS)
ORCHIDEE names:

K,(A,,—H° ) K,
1Ay A, = petBcoef, B, dt= petAcoef

_ 1~
1-8tK B, 1-8tK B,

M1=

A,,and B,,, given by LMDZ and known



SOLVING FOR T,

415~ Ts _ Lt
C*=—=0G, +netrad + 1 F (TS)

* netrad =SW,_, + LW, - (1- &) LW,,,,, — €o(TH)* - 4ec T3 (T,  —T,) e=1

C4* drag coefficient (Monin Obukhov
, constant flux in the surface layer) depends on:
® FlH =p CdX|V| (Hl' Hts) = Kl (Hl_ Hts) * roughness lenghts (gustiness, vegetation),
*  Richardson number (boundary layer stability)
Formulation depends on the sub-surface type

H,=A, + BlHSt F1H = M;- N; (HtS—HS)
ORCHIDEE names:

- K1(A1H_Hos ) _ K
M, = 1-8tK,B Ny= 1-8t zle o A, = petBcoef, B, 6t= petAcoef

A,,and B,,, given by LMDZ and known

¢ qu = prcd (ql - qs(Tts) )
2q.(Ts
0T = a,m) + 24 )
91 =4, + By Fyot ORCHIDEE:

LF, = LP, - Cinl (T',-T,) Al = peqBcoef, B1 dt= pegAcoef

_ K BA—as, (T0)) 29(Ts ),

Py= 1-8tK B, Q.= —a(;rs—l
1-o0tK.B
171
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Att oy and B, dependonT, at
the previous time step and on
the underlying layers :

They can be pre-computed
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Atta,and B, dependonT, at
the previous time step and on
the underlying layers :

They can be pre-computed

t-1

Down-hill

Y= DN

Up-hill




Coupling between atmospheric column(s) and sub-surfaces

Each grid cell 1s divided into several sub-areas or " sub-surfaces" of fractions Wi

Sub-surfaces Turbulent Radiative
flux flux
Z w; = 1 One PBL over each One column covers
i sub-surface all the sub-surface

Each sub surface has to compute F', using variables X,, 4, and B,
The boundary layer tendencies in the atmosphere are mixed between

sub-columns (equivalent of averaging the surface flux)



Derivation of local sub-surface net solar
radiation from grid average net solar radiation

The grid average net flux ¥s at surface has been computed for each grid point by the radiative code.
We want (1) to conserve energy and (2) to take into account the value of the local albedo a1 of the sub-surface

We compute the downward SW radiation as

: W
with the mean albedo o = Wi (X Fe=__ "5
2. SRRCED
For each sub-surface i, the absorbed solar radiation reads: LT; — (1 — ('_]-'_i) F f
F I — ) -
w;‘ _ ( l) \PS
(1—a)

One may verified that this procedure ensure energy conservation, i.e. W; W, = qj,g



Derivation of local sub-surface net longwave radiation
from grid average net longwave radiation

The net longwave (LW) radiation W* has been computed by the radiative code for each grid
cell. How to split it depending on the sub-surfaces local properties and ensuring energy
conservation?’

If the downward longwave flux F| is uniform within each grid, the net LW flux for a

sub-surface ¢ may be written as:

UH(T;) = € (F) — oT}) (1)

2

where 1; is the surface temperature of sub-surface ¢ and ¢, its emissivity. A linearization
around the mean temperature 1" gives:

VHT) ~ e (F.l. - UTLL) — 4e,0THT; = T) (2)

T

To conserve the energy, the following relationship must be true:

Using Eq. 2 gives

where € = > . w;€; is the mean emissity.



Derivation of local sub-surface net longwave radiation
from grid average net longwave radiation

szz* = FL—O'T)——LO'T?'ZL@ZQ i —1T) (4)

where € = > w;e; is the mean emissity. The second term on the right hand side is zero if

T — Z@ wi€il;

€

(5)

To ensure energy conservation, we need in addition to verify:
vl = (F —oT?) (6)

Which 1s consistent with the definition of the net LW flux at the surface. We rewrite now

Eq. 2 as:

VET) = SWE 4o THT - T) (7)
€

Due to radiative code limitation, in LMDZ, we always must have ¢.= 1



In subroutine PHYSIQ Call tree
loop over time steps
CALL change srf frac : Update fraction of the sub-surfaces (pctsrf)

CALL pbl_surface Main subroutine for the interface with surface

Calculate net radiation at sub-surface

Loop over the sub-surfaces nsrf
Compress variables (Consider only one surface type and only the points for
which the fraction for this sub-surface in not zero)
CALL cdrag: coefficients for turbulent diffusion at surface (cdragh and cdragm)
CALL coef diff turb: coef. turbulent dif. in the atmosphere (ycoefm et ycoefm.)
CALL climb_hq down downhill for enthalpie H and humidity Q
CALL climb_wind down downhill for wind (U and V)
CALL surface models for the various surface types: surf land, surf landice,
surf ocean or surf seaice. Each surface model computes:
* evaporation, latent heat flux, sensible heat flux
» surface temperature, albedo (emissivity), roughness lengths
CALL climb_hq up : compute new values of enthalpie H and humidity Q
CALL climb_wind_up : compute new values of wind (U and V)
Uncompress variables : (some variables are per unit of sub-surface fraction,
some are per unit of grid surface fraction)
Cumulate in global variables after weighting by sub-surface fractions
Surface diagnostics : (T, q, wind are evaluated at a reference level (2m)
owing to an interpolation scheme based on the MO laws).

End Loop over the sub-surfaces

Calculate the mean values over all sub-surfaces for some variables

End pbl-surface



Extension verticale des obstacles et
discretisation verticale,

-— e - —-— e e o E e e Ee e W
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!” y cdrag, # cdrag,




Extension verticale des obstacles et
discrétisation verticale

CMIP5 CMIP6
du 5
ko —A(h.veget)ug (ul + v})
ot ‘
‘) 2 i ‘ ¢ ‘
cdrag, + cdrag, A T e e
Ot obstl
ToU 00 . Freinage
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pUp 1
Zon=Zon=Z0q OER'S <
mémes Cdrag
— §
N S N | et
e

Zov=f(u,u’,h), 2o, =f(zgp,LAI)
Z0 effectif



.LXtension verticale et discretisation verticale,
revoir la prise en compte des hétérogénéités

% =LS(U) + Turb(U) + Drag”._
0

aVv

— = LS(V) + Turb(V) + Dragv.

Jr

Boundary layer % =LS(6) + Turb(H)

duy, 3 9 ]
Freinage Fp ~ ~Alhveget)u(ui + ) d_q = LS(g) + Turb(q)
+turbulence . ot
pr (o i U O g o
Ot obstl de

= = Adv(e) + DynProd + ThermProd + Turb
O

0 opy
Zom(PFT), Zg=F(Zgpp, LALPFT) J
cdrag(pft ...) = diffusion verticale B e V2 —— O
- par classe de PFT
- O N IR O
A e - Do )

I Level coupled L
N with the surface I "R

Couplage avec modele de canopée



a)

forcind level
A

S

"single-layer" surface
scheme forced off-line

b) c)

lowest atm.

level — [y ) ¥ [} [}
' lowest atm. 1
q\f level —>
"single-layer" surface scheme "multi-layer" surface scheme
coupled to an atmospheric model coupled to an atmospheric

model



About the surface models: land, ocean, sea-ice, land-ice

For land : simplified land surface model, hydrology= bucket or “beta clim”,
constant thermal inertia (soil /snow) , albedo and rugosity from a file.

or SVAT model (ORCHIDEE)

For ocean: Forced, fully coupled (with NEMO), coupled with a slab-ocean

For sea ice depends on the coupling with the ocean (forced, coupled, slab)

For land-ice : snow properties calculated with sisvat if ok_snow=T.
otherwise simplified (as for land + simplified snow prop., rugo, albedo)



About the values interpolated at a reference level near the surface (e.g. 2m)

Principle: Constant flux in the surface layer and similarity laws: Non dimensional vertical gradient
of horizontal wind, potential temperature, specific humidity are assumed to be universal function
of a stability parameter z/L (L= Monin-Obukhov law) or of the Richardson Number.
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Technical note : Description of the interface with the surface and the computation of the
turbulent diffusion in LMDZ (J.L.Dufresne)
http://www.lmd.jussieu.fr/~cheruy/Coupling/pbl_surface.pdf

These F. Hourdin 1993 (section 3.3.3 and annexes)

Wang F., F. Cheruy, J.L. Dufresne, 2016: The improvement of soil thermodynamics and
its effects on land surface meteorology in the IPSL climate model. Geosci. Model Dev., 9,
363-381, 2016 www.geosci-model-dev.net/9/363/2016/


http://www.lmd.jussieu.fr/~jldufres/publi/pbl_surface.pdf

