

Dynamic Global Vegetation Model ORCHIDEE

Coding Guidelines

Main Authors Issuer
M. McGrath (IPSL/LSCE)
J. Ryder (IPSL/LSCE)
S. Luyssaert (IPSL/LSCE)

P. Peylin (IPSL/LSCE)

 Date &
Signature

Contributors
Working group: A. Cozic (IPSL/LSCE), Marie-Alice Foujols (IPSL), J. Ghattas (IPSL), F.
Maignan (IPSL/LSCE), P. Maugis (IPSL/LSCE), J. Polcher (IPSL/LMD)

Diffusion list
orchidee-dev@ipsl.jussieu.fr

Following version
Index Date Modifications
1.0 2014/10/31 Creation

2/17

CONTENTS

1 INTRODUCTION 4

2 REFERENCE DOCUMENTS 4

3 GENERALITIES 4

3.1 ENGLISH LANGUAGE 4

4 STYLE RULES 4

4.1 ARGUMENT LIST FORMAT 4
4.2 SEQUENCE OF ARGUMENTS DECLARATION 5
4.3 COMMENT AT END OF LOOP 6
4.4 NAMING CONVENTIONS 6
4.4.1 MODULES 6
4.4.2 COUNTERS 6
4.4.3 VARIABLES AND PARAMETERS 6
4.5 FORMATTING CONVENTIONS 6
4.5.1 CAPITALIZATION 6
4.5.2 USE OF SPACE - INDENTATION 6
4.5.3 EQUATIONS 7
4.5.4 LINE LENGTH 7
4.5.5 SPECIAL CHARACTERS 7

5 CONTENT RULES 7

5.1 CONSTANTS 7
5.2 DECLARATION FOR VARIABLES AND CONSTANTS 8
5.2.1 IMPLICIT NONE 8
5.2.2 INTENT 8
5.2.3 DIMENSION 8
5.3 READING OF A PARAMETER 8
5.4 VOLUNTARY TERMINATION 8
5.5 PARALLELIZATION 8

6 DOCUMENTATION 10

6.1 HEADERS 10
6.1.1 MODULE HEADER 10
6.1.2 SUBROUTINE HEADER 11
6.1.3 FUNCTION HEADER 13
6.2 EQUATIONS AND GRAPHICS 14
6.3 TABLE OF CONTENT 14
6.4 DECLARATION PART 14
6.5 VARIABLES 14

3/17

6.6 DOCUMENT UNITS 14
6.7 DOCUMENT YOUR THINKING 14

7 CODE STRUCTURE 15

7.1 MODULES NEED TO BE SELF SUFFICIENT 15
7.2 MODULES HAVE AT LEAST 3 SUBROUTINES 15
7.3 CIRCULAR STRUCTURE CALL 15

8 DEBUGGING AND OPTIMISATION 15

8.1 CONTROL TEXT OUTPUT 15
8.1.1 PRINTLEV: GLOBAL PARAMETER 15
8.1.2 PRINTLEV_MODULENAME: LOCAL PARAMETER TO ONE MODULE 16
8.2 DON'T FORGET THE ELSE 16
8.3 SELECT DEFAULT CASES LAST 17
8.4 LOOP ORDERING 17
8.5 PORTABILITY 17

4/17

1 Introduction
This is a collaborative document whose objective is to outline standard working procedures
and coding style for ORCHIDEE.
This document is derived from the corresponding wiki page
(http://forge.ipsl.jussieu.fr/orchidee/wiki/HowTo/FortranStandards) and is updated when
needed.

2 Reference documents
Some climate models coding standards are referenced here:
http://www.easterbrook.ca/steve/2010/11/climate-model-coding-standards/
We particularly took inspiration from:
RD-1 NEMO coding conventions, NEMO System Team - C. Lévy, version 2, July 2010
RD-2 PRISM Coding Rules, Program for Integrated Earth System Modelling, May 2002

3 Generalities

3.1 English Language
Owing to the international user community, all naming of files, variables, modules, functions,
and subroutines as well as all comments are to be written in English.
Note: copied from RD-2.

4 Style rules
The style rules are written to make it easier to read and understand the model. The main
guideline is to write nice and tidy code. Think about the overview of the file: indent the code,
add section numbers to the comments, align variable declarations and use capital letters to
FORTRAN keywords, all this to have a more homogeneous code.

4.1 Argument list format
For function/subroutine calls, there should be the same number of arguments per line in the
SUBROUTINE and in the corresponding CALL.
The arguments should if possible be aligned vertically as done in the example below.
We recommend using only five arguments per line (same as in RD-1 and RD-2).

CALL subroutine(arg1, arg2, arg3, arg4, arg5, &
 arg6, arg7, ...)

http://forge.ipsl.jussieu.fr/orchidee/wiki/HowTo/FortranStandards
http://www.easterbrook.ca/steve/2010/11/climate-model-coding-standards/

5/17

4.2 Sequence of arguments declaration
Related to point one, in the argument declaration of the subroutine, it's nice to have all the variables which are passed to/from:
- to be in the same order as they are listed,
- and respecting the order: INTENT(IN), then INTENT(INOUT), and last INTENT(OUT).

SUBROUTINE subroutine(arg1, arg2, arg3, arg4, arg5, &
 arg6, arg7, ...)

 !
 !! 0. Variable and parameter declaration
 !

 !
 !! 0.1 Input variables
 !
 REAL(r_std), INTENT(in) :: arg1 !! Time step (s)
 INTEGER(i_std), INTENT(in) :: arg2 !! Domain size (unitless)
 REAL(r_std), DIMENSION(kjpindex), INTENT(in) :: arg3 !! Downwelling short wave flux

 !
 !! 0.2 Modified variables
 !
 INTEGER(i_std), INTENT(inout) :: arg4 !! … (unitless)
 REAL(r_std), INTENT(inout) :: arg5 !! … (s)
 REAL(r_std), DIMENSION(kjpindex), INTENT(inout) :: arg6 !! …

 !
 !! 0.3 Output variables
 !
 INTEGER(i_std), INTENT(out) :: arg7 !! … (unitless)

Furthermore, we should try to give a standard logic to the order of arguments:

1) time information, 2) grid information, 3) I/O information, 4) physical INPUT variables, 5) physical IN/OUT variables, 6) OUTPUT
variables.
The corresponding comment should be written on the same line after each variable declaration, this is mandatory for the documentation tool we
use (Doxygen).

6/17

4.3 Comment at end of loop
For single loops and nested loops (loop within a loop) longer than about ten lines, it is helpful
to repeat the loop instructions as a comment next to the END statement, as so:

eta_3_surf = 0.0d0

DO j = 1, nlevels

 DO k = j, 1
 jfactor = jfactor * (1.0d0 - jomega(k))

 ...
 ten more lines of code
 ...

 END DO ! k = j, 1

 eta_3_surf = eta_3_surf + (jomega_surf * jomega(j) * jfactor &

 * sbsigma * temp_leaf_pres(j)**4.0d0)

END DO ! j = 1, nlevels

4.4 Naming conventions

4.4.1 Modules
Filenames have the extension .f90 (lowercase).
The file is named after the module it contains.
We use short names for the modules and all the routines inside a module have names of the
type modulename_tasks_executed. So in stomate.f90 you can only find subroutines of the
type stomate_*.

4.4.2 Counters
Limit to five characters. If the variable being looped over begins with "n", replace the "n" by
an "i" for the counter name. For example: nvm ivm, npts ipts, nelements ielem, naprts
 ipart, ncirc icirc, nleafage ilage (the more logical ileaf is already used).

4.4.3 Variables and parameters
When possible, use the same name for call-parameters in the calling program and in the
routine definition.
Avoid using a same identifier in different routines with different meanings or uses.
Choose names that really reflect the content or the use of the variable, placing yourself as an
external reader trying to understand your code.

4.5 Formatting conventions

4.5.1 Capitalization
Always use capital letters for FORTRAN keywords: ALLOCATE, SUBROUTINE, DO,
END DO, ... and intrinsic functions.

4.5.2 Use of space - indentation
Indentation of the code is very important to make it easier to read and understand the code.
Always indent the code within conditional statements or loops, but don't use tabs, as the
formatting will not be preserved across platforms.

7/17

Note: The emacs indent function works well for this, since it indents with spaces (even if you
use the tab key).
Don't add a single comment character on an empty line, keep the line empty. Do not:

!

Similarly, don't use empty continuation lines containing only ampersand '&'.
Try to align the affectation signs '=' when doing multiple affectations on successive lines. Use
spaces around it. Align also the '::' in declarations and chose one column at which to start by
standard the trailing comments. Put one space after comas in argument lists (see example
§4.2).
Starting a line with an ampersand is useless and should be avoided, except in case of a long
string. The trailing '&' suffices to tell FORTRAN that the line carries on to next line.

4.5.3 Equations
Use brackets to improve readability (even though addition and subtraction are treated ahead of
division and multiplication, it is easier for the reader to scan the equations if this is made
explicit). Also, if the equation runs over several lines, try to break the expression at a close
bracket or an addition/subtraction.
e.g. a = (b * i) + (c / n) is easier to read than a = b * i + c / n

Align multi-line equations according to the level of the operation. Aerate parenthesis content
when made necessary by intense nesting:

 d1 = (k_lin(ji+1,jst) / (avan(jst)*m*nvan(jst))) &
 * (((frac**(-un/m)) / (mc_lin(ji+1,jst) - mcr(jst))) &
 + frac**(-un/m) -un) ** (-m)

4.5.4 Line length
Although the maximum line length of FORTRAN 90 is 132 characters, try to keep your code
to less than 100 characters per line - this preserves the formatting for those who work with
small terminal windows on their computer and when producing a printout.
NOTE: If you are an emacs user, loading the column-marker.el file will help you highlight
column 100 so you know where to terminate the line at.
There is an exception for the header and declaration parts of modules/subroutines/functions,
whose length is 132 characters, due to detailed comments.

4.5.5 Special characters
Do not use non-ascii characters (typically, accentuated characters) in comments. They are non
portable and can induce treatment failure by code analysis scripts.

5 Content rules

5.1 Constants
Never use "magic numbers", i.e. hard-coded numbers that cannot be traced to a literature
formula. Externalization helps a lot with this. Similarly, when converting between units, use
variables in constants.f90 for this purpose instead of using the number directly. This makes it
more obvious exactly what one is doing.

8/17

5.2 Declaration for variables and constants

5.2.1 IMPLICIT NONE
Always add IMPLICIT NONE at the beginning of subroutine or module (the scope of such a
module declaration extends to all procedures defined in the module).

5.2.2 INTENT
Always use the INTENT() attribute for arguments.

5.2.3 DIMENSION
Always use the DIMENSION statement in the declaration. This helps readability and allows
the compiler to do consistency checks.

5.3 Reading of a parameter
When reading a parameter from the run.def file, use the getin (sequential mode)/getin_p
(parallel mode) subroutine, see example below:

!Config Key = VEGETATION_FILE
!Config Desc = Name of file from which the vegetation map is to be
read
!Config If = LAND_USE
!Config Def = PFTmap.nc
!Config Help = The name of the file to be opened to read a
vegetation
!Config map (in pft) is to be given here.
!Config Units = [FILE]
!
filename = 'PFTmap.nc'
CALL getin_p('VEGETATION_FILE',filename)

5.4 Voluntary termination
In case the program is to be terminated, use the ipslerr subroutine and not a STOP statement.
This enables to quit all processors properly.
See example below:

WRITE(numout,*) 'ERROR: We are thinning, but we have no trees left!'
WRITE(numout,*) 'ipts, ivm ',ipts, ivm
WRITE(numout,*) 'kill ',circ_class_kill_temp(:)
WRITE(numout,*) 'n ',circ_class_n_temp(:)
CALL ipslerr_p (3,'forestry', 'Thinning, but no trees left.',&

'Look in the output file for ERROR.',&
'')

The WRITE statements before ipslerr give a good amount of additional information (such as
the pixel and PFT) to help solve the problem, and by writing to numout (instead of standard
output, like ipslerr does) one knows which CPU is causing the problem. That can make it
easier to isolate the pixel and create a small reproducer case.

5.5 Parallelization
The code is parallelized using both MPI and OpenMP. In coupled mode with LMDZ, the
model can run in sequential, pure MPI and mixed MPI/OpenMP mode. In offline mode,

9/17

ORCHIDEE can run in sequential or pure MPI mode. The offline driver can also be compiled
in mixed MPI/OpenMP mode but it can not run on more than 1 OMP thread.

Each development must be validated in the different parallelization modes. Running on
different numbers of cores should give identical results for the same simulation setup, for
example using 16MPI should give the same results as 8MPI*4OMP. The parallelization is
transparent as far as there are no interactions between the grid cells. Except if you develop
the routing module, interpolations or I/O issues such as reading or writing new files, you
don't need to worry much about the parallelization. However, you have some rules to respect:

• Use the subroutines called restget_p, restput_p and getin_p instead of restget, restput
and getin.

• Exception : if you restart a scalar, you have to use restget followed by a bcast
command:

IF (is_root_prc) THEN

var_name = 'day_counter'
CALL restget (rest_id_stomate, var_name, 1 , 1 , 1, itime, &

 & .TRUE., xtmp)
day_counter = xtmp(1)
IF (day_counter == val_exp) day_counter = un

ENDIF
CALL bcast(day_counter)

 For restput, follow the example:

IF (is_root_prc) THEN
var_name = 'day_counter'
xtmp(1) = day_counter

 CALL restput (rest_id_stomate, var_name, 1, 1, 1, itime, xtmp)
ENDIF

• Use histwrite_p instead of histwrite.
• Use ioconf_setatt_p instead of ioconf_setatt.
• Use ipslerr_p instead of ipslerr.
• For variables with the SAVE attribute, add a declaration

!$OMP THREADPRIVATE(name_var) as in the example below:

 REAL(r_std),ALLOCATABLE,SAVE,DIMENSION(:,:,:) :: biomass
!! Biomass per ground area @tex $(gC m^{-2})$ @endtex
!$OMP THREADPRIVATE(biomass)

10/17

6 Documentation

6.1 Headers
The code has to be documented to benefit to all users. Here are header examples for module, subroutine and function. The specific signs (!, !!,
!>\, !!\n and !_) are mandatory for the ‘Doxygen’ tool, which is used to automatically extract pdf and html documentations from the code.

6.1.1 Module header
Each module starts with a module header, see example below:

!
===
====================
! MODULE : forestry
!
! CONTACT : orchidee-help _at_ ipsl.jussieu.fr
!
! LICENCE : IPSL (2006)
! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC
!
!>\BRIEF Gathers the main elements for forest management: the "forestry"
!! subroutine, which itself calls a set of subroutines
!! forestry_clear, clearcut, thinning, harvest, force_load, QsortC, and
!! Partition, and a set of functions used in these subroutines.
!!
!!\n DESCRIPTION: None
!!
!! RECENT CHANGE(S): None
!!
!! REFERENCE(S) :
!! - Asael, S., 1999. Typologie des peuplements forestiers du massif vosgiens.
!! C.R.P.F. Lorraine-Alsace, Nancy, 54 p.
!! - Bellassen, V., Le Maire, G., Dhote, J.F., Viovy, N., Ciais, P., 2010.
!! Modeling forest management within a global vegetation model Part 1:
!! model structure and general behaviour. Ecological Modelling 221, 24582474.
!! - Bellassen, V., Le Maire, G., Guin, O., Dhote, J.F., Viovy, N., Ciais, P.,
!! 2011a. Modeling forest management within a global vegetation model Part 2:
!! model validation from tree to continental scale. Ecological Modelling 222,

11/17

!! 5775.
!!
!! SVN :
!! $HeadURL: $
!! $Date: $
!! $Revision: $
!! \n
!_
===
===================

6.1.2 Subroutine header
Each subroutine starts with a subroutine header, see example below:

!!
===
===================
!! SUBROUTINE : pheno_moigdd
!!
!>\BRIEF The 'moigdd' onset model initiates leaf onset based on mixed temperature
!! and moisture availability criteria.
!! Currently PFTs 10 - 13 (C3 and C4 grass, and C3 and C4 agriculture)
!! are assigned to this model.
!!
!! DESCRIPTION : This onset model combines the GDD model (Chuine, 2000), as described for
!! the 'humgdd' onset model (::pheno_humgdd), and the 'moi' model, in order
!! to account for dependence on both temperature and moisture conditions in
!! warmer climates. \n
!! Leaf onset begins when the a PFT-dependent GDD threshold is reached.
!! In addition there are temperature and moisture conditions.
!! The temperature condition specifies that the monthly temperature has to be
!! higher than a constant threshold (::t_always) OR
!! the weekly temperature is higher than the monthly temperature.
!! There has to be at least some moisture. The moisture condition
!! is exactly the same as the 'moi' onset model (::pheno_moi), which has
!! already been described. \n
!! GDD is set to undef if beginning of the growing season detected.
!! As in the ::pheno_humgdd model, the parameter ::t_always is defined as

12/17

!! 10 degrees C in this subroutine, as are the parameters ::moisture_avail_tree
!! and ::moisture_avail_grass (set to 1 and 0.6 respectively), which are used
!! in the moisture condition (see ::pheno_moi onset model description). \n
!! The PFT-dependent GDD threshold (::gdd_crit) is calculated as in the onset
!! model ::pheno_humgdd, using the equation:
!! \latexonly
!! \input{phenol_hummoigdd_gddcrit_eqn.tex}
!! \endlatexonly
!! \n
!! where i and j are the grid cell and PFT respectively.
!! The three GDDcrit parameters (::pheno_crit%gdd(j,*)) are set for each PFT in
!! ::stomate_data, and three tables defining each of the three critical GDD
!! parameters for each PFT is given in ::gdd_crit1_tab, ::gdd_crit2_tab and
!! ::gdd_crit3_tab in ::stomate_constants. \n
!! The ::pheno_moigdd subroutine is called in the subroutine ::phenology.
!!
!! RECENT CHANGE(S): None
!!
!! MAIN OUTPUT VARIABLE(S): ::begin_leaves - specifies whether leaf growth can start
!!
!! REFERENCE(S) :
!! - Botta, A., N. Viovy, P. Ciais, P. Friedlingstein and P. Monfray (2000),
!! A global prognostic scheme of leaf onset using satellite data,
!! Global Change Biology, 207, 337-347.
!! - Chuine, I (2000), A unified model for the budburst of trees, Journal of
!! Theoretical Biology, 207, 337-347.
!! - Krinner, G., N. Viovy, N. de Noblet-Ducoudre, J. Ogee, J. Polcher, P.
!! Friedlingstein, P. Ciais, S. Sitch and I.C. Prentice (2005), A dynamic global
!! vegetation model for studies of the coupled atmosphere-biosphere system, Global
!! Biogeochemical Cycles, 19, doi:10.1029/2003GB002199.
!!
!! FLOWCHART :
!! \latexonly
!! \includegraphics[scale = 1]{pheno_moigdd.png}
!! \endlatexonly
!! \n
!_
===
===================

13/17

6.1.3 Function header
Each function starts with a function header, see example below:

!!
===
===================
!! FUNCTION : bm_vol
!!
!>\BRIEF ! This allometric function computes biomass as a function of
!! volume at stand scale. biomass \f$gC m^{-2}) = f(volume (m^3 ha^{-1}))\f$
!!
!! DESCRIPTION : None
!!
!! RECENT CHANGE(S): None
!!
!! RETURN VALUE : bm_vol
!!
!! REFERENCE(S) : See above, module description.
!!
!! FLOWCHART : None
!! \n
!_
===
===================

14/17

6.2 Equations and graphics
Equations may be saved as separate latex files. These files are stored in one of the sub folders
in ORCHIDE/DOC/ORCHIDEE directory. An equation is written in latex contained between
\begin{equation} and \end{equation}. The file is named after the subroutine/function it
belongs to.

Examples:
!!\latexonly
!!\input{interception.tex}
!!\endlatexonly

!!\latexonly
!!\includegraphics[scale = 1]{choisnelvariables.pdf}
!!\endlatexonly

6.3 Table of content
The ‘Doxygen’ tool extracts comments preceded by a number e.g. !! 1. Initialize
variables and organizes these comments as a 'Table of content'. Take this in mind when
numbering sections of code and use short headers. More information can be given below the
header.

6.4 Declaration part
For the declaration part, please use:

!! 0. Variables and parameter declaration
!! 0.1 Input variables
!! 0.2 Modified variables
!! 0.3 Output variables
!! 0.4 Local variables

6.5 Variables
Variables are commented AFTER variable declaration.

6.6 Document units
Use comment lines to document units and unit conversions.
A variable without units is labeled as (unitless).
If the range of the variable is known, this range is given i.e. (0-1, unitless).
Units are written in latex and no fractions should be used i.e. (m s^{-1}) instead of (m/s).
So special superscript characters like 2 or 3 are banned.
Units are contained within the following tags @tex ($m s^{-1}$) @endtex.
This latex formatting is used to get nice outputs in the pdf documentation generated with the
Doxygen tool.

6.7 Document your thinking
Document your thinking rather than simply describing the FORTRAN code. In particular, if
you tried a couple of ways to structure the code before deciding on what you leave in,
mention what you tried and why that didn't work in order to prevent people in the future from
redoing those same tests.
Suppress obsolete or old comment markers dedicated only to you or a small set of
contributors, aiming at precising a specific modification that needed to be pointed out at a

15/17

given time of the developments. Prefer documenting the header, the svn commit, or your own
development booknote, since the modifications are traced by svn.

7 Code structure

7.1 Modules need to be self sufficient
They have their own prognostic variables for which they need to manage the allocation,
restart, Prognostic variables are not to be exchanged with other modules (i.e. private to the
module) else you cannot change one module without affecting the others.

7.2 Modules have at least 3 subroutines
1) module_main: manages the actions to be taken and the calling sequence,
2) module_init: initialises the module (configuration, restart, allocation),
3) module_clear: deallocates the internal memory.
Currently in most cases only module_main and module_clear are public.
The first call to module_main triggers only the module initialization phase under a boolean
flag like 'firstcall_module'. This initialization can be done either in the _main or in a dedicated
routine called by the main but should not be performed outside them. This init phase does not
perform any non-initialization computation as the input variables are not all guaranteed to be
valid. For robustness, setting " firstcall_module = .FALSE" should be done at the end of the
initialization phase in the top-routine that tested the flag first (i.e. most of the time in the
_main() routine). Complete initialisation (including allocation) must be performed in a single
pass. For example, and even if several init. flags can be used, only one initialization
"RETURN" should close the initialization phase. Deallocation is forbidden there and must be
performed in the _clear() routine only. It is only the second call to module_main that will start
the onward calculations.
Note that all modules do not need a main subroutine. This is often the case for modules
dealing with technical issues like I/O, parallelism, etc.

7.3 Circular structure call
In the calling tree, subroutines should not call higher level routines (i.e. one that called the
current routine directly or indirectly): circularity is forbidden.

8 Debugging and optimisation

8.1 Control text output

8.1.1 PRINTLEV: global parameter
PRINTLEV is an externalised parameter used to define a global level of output text
information. Default value is 1.

PRINTLEV definition:
0 no output.
1 minimum writing for long simulations only at initialization and finalization phase

(default)
2 more basic information for long simulations, some daily information can be written,

nothing must be written at each time step.
3 first debug level: entering and leaving subroutines can be reported.

16/17

4 higher debug level: input parameters to major subroutines can be reported, other debug
information.

In the code, use the following syntax:
IF (printlev>=1) WRITE(numout,*) 'This is a very important write statement...'
IF (printlev>=3) WRITE(numout,*) 'This is a debug print...'

8.1.2 PRINTLEV_modulename: local parameter to one module
The function get_ printlev('modulename') makes it possible to have a local write level in a
module. Setting PRINTLEV_modulename in run.def changes then the write level in that
module. The default value is the global PRINTLEV value.

This functionality is available only in modules where the function get_printlev() is called.
get_printlev should be called once in the initialization part for the module to define a new
local saved variable. This new variable should be used in the whole module for all write
statements instead of printlev. For example:

In module sechiba:
INTEGER, SAVE :: printlev_loc

In subroutine init_sechiba:
printlev_loc=get_printlev('sechiba') => this function will read the variable PRINTLEV
_sechiba from run.def.

In the rest of the module, all write statements should be done as follows:
IF (printlev_loc>=1) WRITE(numout,*) 'This is a low level print'
IF (printlev_loc>=3) WRITE(numout,*) 'This is a debug print'

8.2 Don't forget the ELSE
If you are using an IF...ELSEIF....ENDIF loop, it is recommended that you include an ELSE
statement at the end to catch any situation not covered in the other cases. Too many bugs are
found because an IF statement is not triggered due to something the programmer didn't think
of. This is especially problematic when the programmer thinks to him/herself, "This value
will always be in this range, so I don't have to consider other possibilities"...and then one day
things change.
If the ELSE statement doesn't do anything, it could have something written in a comment
instead just so that other people know that nothing needs to be done in some cases. Even
better would be a call to ipslerr to stop the code and say we should not have been here.

IF () THEN
 ! do something
 blah
ELSEIF () THEN
 ! do something else
 blah blah
ELSE
 ! do something, or not, but at least you should be aware of the
possibility
ENDIF

There are few cases when this is not mandatory such as:

17/17

IF (firstcall)THEN
 ! do something
 blah
ENDIF

8.3 Select default cases last
If you are using a SELECT CASE ... CASE ... END SELECT statement, it is recommended
for the same reason that you include a “CASE default” statement at the end. Despite the fact
that FORTRAN 90 allows you to place it anywhere in the sequence, it is mandatory to place it
last to allow proper code analysis for assimilation.

SELECT CASE (var)
CASE (val1)
 ! do something if var == val1
 blah
CASE (val2)
 ! do something else
 blah blah
CASE default
 ! other cases; note the absence of parenthesis
END SELECT

8.4 Loop ordering
Be mindful of loop ordering for best memory access (performance). If the embedded loops are
independent, then the first index should correspond to the most inner loop. In other words:

DO k=1,nk
 DO j=1,nj
 DO i=1,ni
 f(i,j,k) = ...
 ENDDO
 ENDDO
ENDDO

This ensures that one accesses contiguous memory blocks during the loop, which makes it
faster.

8.5 Portability
Test your modifications on several computers using different compilers. Activate compile
debug options for testing the code. In ORCHIDEE/arch directory, you find compile debug
options for different computers. Get more information on the ORCHIDEE wiki.

	1 Introduction
	2 Reference documents
	3 Generalities
	3.1 English Language

	4 Style rules
	4.1 Argument list format
	4.2 Sequence of arguments declaration
	4.3 Comment at end of loop
	4.4 Naming conventions
	4.4.1 Modules
	4.4.2 Counters
	4.4.3 Variables and parameters

	4.5 Formatting conventions
	4.5.1 Capitalization
	4.5.2 Use of space - indentation
	4.5.3 Equations
	4.5.4 Line length
	4.5.5 Special characters

	5 Content rules
	5.1 Constants
	5.2 Declaration for variables and constants
	5.2.1 IMPLICIT NONE
	5.2.2 INTENT
	5.2.3 DIMENSION

	5.3 Reading of a parameter
	5.4 Voluntary termination
	5.5 Parallelization

	6 Documentation
	6.1 Headers
	6.1.1 Module header
	6.1.2 Subroutine header
	6.1.3 Function header

	6.2 Equations and graphics
	6.3 Table of content
	6.4 Declaration part
	6.5 Variables
	6.6 Document units
	6.7 Document your thinking

	7 Code structure
	7.1 Modules need to be self sufficient
	7.2 Modules have at least 3 subroutines
	7.3 Circular structure call

	8 Debugging and optimisation
	8.1 Control text output
	8.1.1 PRINTLEV: global parameter
	8.1.2 PRINTLEV_modulename: local parameter to one module

	8.2 Don't forget the ELSE
	8.3 Select default cases last
	8.4 Loop ordering
	8.5 Portability

