The phosphorus imbalance in **Nature**

Phosphorus **supply** to natural ecosystems is limited

Phosphorus demand is growing due to human activities

- Ash and dust deposition
- Free-up inaccessible soil P
- Weathering of mineral P

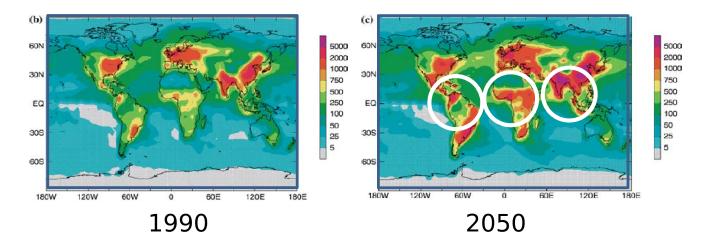
All small & uncertain processes

- **Increasing CO2**, global effect
- Increasing N deposition, mainly over industrialized regions
- Climate change, e.g. longer growing seasons in boreal areas

P Imbalance

The phosphorus imbalance in **Nature**

Phosphorus **supply** to natural ecosystems is limited


Phosphorus demand is growing due to human activities

The P-imbalance will alter ecosystems, carbon sinks, and climate

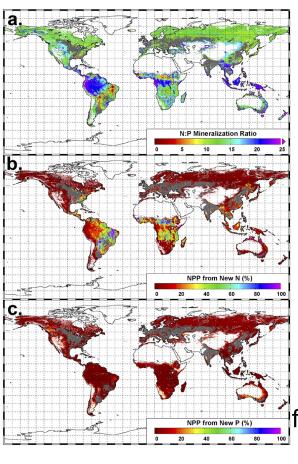
The phosphorus imbalance in tropical areas

- During the 21st century:
 - N deposition will continue, but slow down, over northern areas.
 - N deposition will increase dramatically over tropical areas.

- This will cause the N to P deposition ratio to increase.
- Unlike northern ecosystems, most tropical forests are more limited by P than by N.

The phosphorus imbalance in tropical areas

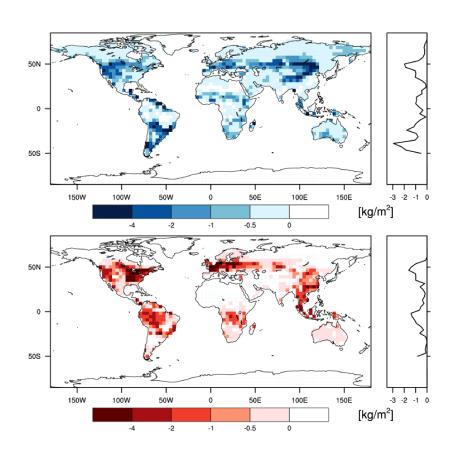
- During the 21st century:
 - N deposition will continue, but slow down, over northern areas.
 - N deposition will increase dramatically over tropical areas.


There exist no measurement of the phosphorus imbalance of tropical forests and its consequences

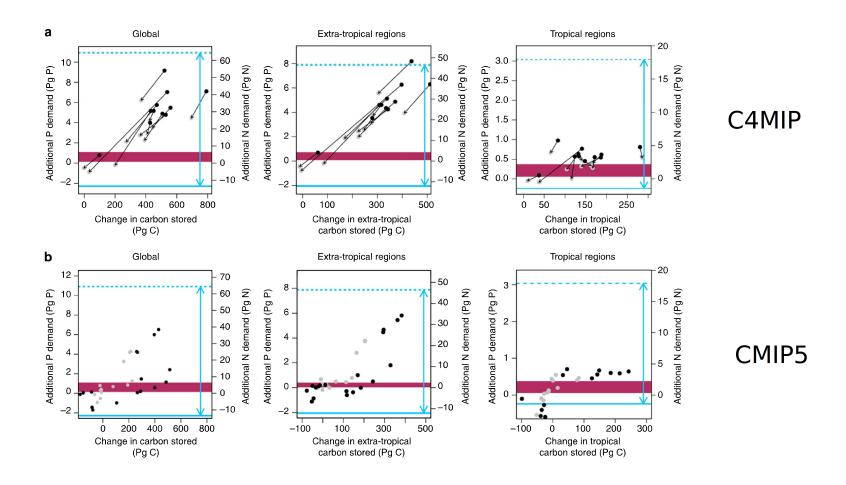
- This will cause the N to P deposition ratio to increase.
- Unlike northern ecosystems, most tropical forests are more limited by P than by N.

NPP limited by nutrients

Global N:P mineralization

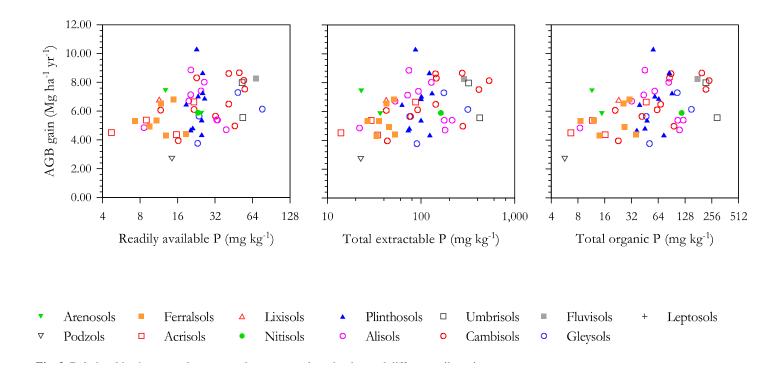

Biome	Area, Mkm²	Total NPP, Pg⋅C⋅y ⁻¹	NPP from new N		NPP from new P	
			Pg·C·y ⁻¹	% Total	Pg⋅C⋅y ^{−1}	% Total
ENF	6.17	2.86	0.07 (0.07-0.09)	2.6 (2.3–3.1)	0.12 (0.07–0.13)	4.1 (2.5–4.5)
EBF	16.21	17.49	3.06 (2.01-4.15)	17.5 (11.5–23.7)	0.08 (0.07-0.16)	0.5 (0.4-0.9)
DNF	1.62	0.56	0.02 (0.02-0.02)	2.9 (2.9-2.9)	0.03 (0.03-0.03)	5.7 (5.2-5.7)
DBF	1.12	0.71	0.16 (0.05-0.31)	21.9 (6.4-43.4)	0.01 (0.01-0.02)	2.0 (1.0-2.2)
MIX	7.46	4.30	0.23 (0.08-0.42)	5.5 (1.9-9.7)	0.14 (0.07-0.14)	3.3 (1.7-3.3)
SHB	26.98	4.75	0.20 (0.11-0.38)	4.2 (2.4-8.0)	0.23 (0.21-1.05)	4.9 (4.4-22.1)
WSV	7.71	4.94	1.30 (0.12-2.14)	26.3 (2.5-43.2)	0.06 (0.04-0.09)	1.2 (0.7–1.7)
SVN	10.78	6.23	1.88 (0.18-3.36)	30.1 (2.9-53.9)	0.10 (0.04-0.14)	1.7 (0.7-2.3)
GRS	11.15	2.52	0.04 (0.01-0.13)	1.6 (0.5-5.1)	0.11 (0.09-0.24)	4.2 (3.6-9.5)
Total	88.20	44.35	6.87 (2.73–10.98)	15.7 (6.0–24.8)	0.89 (0.62–2.00)	2.0 (1.4–4.5)

The median values of within-biome spatial variability are reported for NPP from new nutrients. Values in parentheses represent the within-biome interquartile range in spatial variability. These estimates integrate the spatial variability observed in all internal and external nutrient inputs (Figs. S2 and S4). DBF, deciduous broadleaf forest; DNF, deciduous needleleaf forest; EBF, evergreen broadleaf forest; ENF, evergreen needleleaf forest; GRS, grassland; MIX, mixed forest; SHB, closed shrublands; SVN, savannas; and WSV, woody savannas.

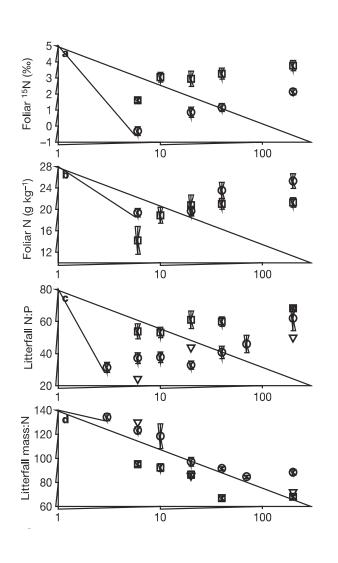

%NPP from new N

%NPP from new Leaf N:P ratio in tropical forest = 50-68 Leaf N:P ratio in temperate forest = 30

Reduction in C storage by nutrient limitation by end of 21st Century



Tropical and global N and P limitations to carbon storage in C4MIP and CMIP5 models


Penuelas et al. Nature Com 2013

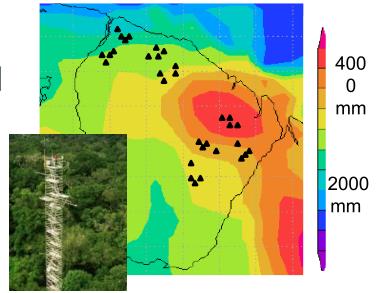
Background P limitations of Amazon forest aboveground wood production

Quesada et al. Biogeosciences 2012

Shift from N to P limitation in Amazon regrowing secondary forests

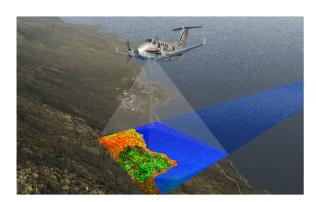
15N enrichment indicates leaky N cycle through denitrification fractionation Increasing N availability with age

N:P ratio increase indicates shift from N economy to P economy Litter mass:N ratio decreases with age (early values similar to N-limited temperate forest)


Davidson et al. Nature 2007

Experiments in French Guiana?

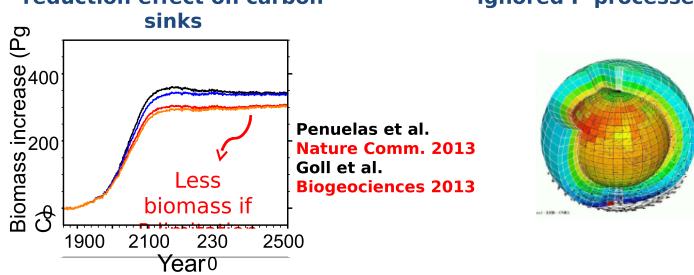
Species level: 5000 trees (700 species)


Community & Ecosystem level

- 40 forest plots
- Each with 15N deposition treatment
- Two with eddy covariance

Regional level: aircraft campaigns

- Greenhouse gas fluxes
- Atmospheric composition
- Airborne remote sensing of biomass and photosynthesis



Earth System & Climate response

We will build phosphorus interactions in the IPSL Earth System model to quantify P feedbacks on climate.

But global models have ignored P-processes so far

- 30 climate models in the World
- 8 with carbon climate interactions
- 3 with nitrogen imbalance
- No Earth System model with phosphorus imbalance.

ERC Synergy Grant 2013

Quantify the responses of ecosystems and society in a world increasingly rich in N and C but limited in Phosphorus

P.Ciais, I.Janssens, M.Obersteiner, J.Peñuelas