Validation and evaluation of ORCHIDEE hydrological component (SECHIBA) using various data sources

30 01 2018, Hiroki Mizuochi

Structure of ORCHIDEE

Various validations have been done. However, quantitative/comprehensive evaluation is still not sufficient.

Factor analysis by using various data sources would extend our knowledge about controlling factor of uncertainty in SECHIBA.

Structure of ORCHIDEE

Simulation version: revision 4438 (used in IPSL6.0.11)

- 13 PFT maps
- zobler soil map (3 textures)
- OK_FREEZE = y
- OK_EXPLICITSNOW = y
- $DO_RSOIL = y$
- ALB_BG_MODIS = y

Two simulations

offline simulation: FG3 reference, created on 23 Jun, 2017 - forced by WFDEI (WATCH-Forcing-DATA-ERA-Interim)

online simulation: CL5 reference, created on 22 Jun, 2017

- coupled with LMDZ; NPv5.67 with nudging

Evaluated values

SSM, ET, albedo

- 0.5deg × 0.5deg or 1deg × 1deg (depends on simulation), monthly time step
- temporal (long-term/seasonal) change
- spatial pattern
- pixel-based statistics (mean bias, r, RMSE and NSE to reference data)

Reference data

- SSM: CCI SSM version 3.2 (Liu et al., 2012) SMOS IC version 1.0 (initial version; Fernandez-Moran et al., 2017)
- ET: MPI (Jung et al., 2011); GLEAM (Miralles et al., 2011); NTSG (Zhang et al., 2010); PKU (Zeng et al., 2014)

Albedo: MODIS albedo product (provided by Ghattas, J.)

Factor analysis criteria

PFT: ORCHIDEE input (13 categories)
Topography: ORCHIDEE reinfiltration ratio (reinf_slope)
LAI: GIMMS 3G (Zhu et al., 2013; gap-filled by Druel, A.)
Irrigation: GMIA (Siebert et al., 2013; Siebert et al., 2010)

1. Soil Moisture

Pre-processing (quality check, co-masking, spatiotemporal aggregation and normalization)

- remove unreliable observation data
- mitigate inconsistency (data availability and systematic bias) among data

CCI_SSM - uncertainty $[m^3/m^3] < 0.06$ - VWC $[m^3/m^3] > 0 \&\& < 0.6$ - Flag = 0 - only used after 1987	0.25deg × 0.25deg, 1979–2015, VWC [m³/m³] (Al-Yaari et al., 2016) (Fernandez-Moran et al., 2017; Drigo et al., 2013) exclude snow, dense vegetation, other unreliable region after "uncertainty" value being assigned
SMOS IC - quality flag = 0 - VWC [m ³ /m ³] > 0 && < 0.6	0.25deg ×0.25deg, 2010–2017, VWC [m³/m³] data OK (Fernandez-Moran et al., 2017; Drigo et al., 2013)
FG3 - SWE [mm] < 48 - only used after 1981	0.5deg × 0.5deg, 1979–2009, kg/m ² VWC [m ³ /m ³] exclude snowy/frozen region to avoid initialization error
CL5 - SWE [mm] < 48	143pixel × 144pixel, 1985–2014, kg/m ² ► VWC [m ³ /m ³] exclude snowy/frozen region

*SWE threshold was set by trial and error referring to seasonal cycle of boreal region.

All data were aggregated into 0.5deg × 0.5deg. ▶ co-masking, normalization

Spatial pattern of temporal average of each SSM

- Spatial patterns are basically similar among datasets.
- FG3/CL5 seem to show lower contrast than observations.
- SMOS IC data is available over tropical regions, but largely missed over China and some other regions (radio frequency interference).
- large discrepancy was observed in PDF and temporal change.
- Split into specific periods, co-masking & normalization

Temporal change of CCI, CL5 after normalization

Temporal change of CCI, CL5 for all zones

Pixel-based statistics (only RMSE was shown)

Basically good accuracy in many region (0-1.0)

Uncertain region

- Boreal region Snow-melting/freezing effect
- some tropical rainforest (Congo, Amazon) Less reliability in SMOS?
- Largely irrigated region (North America, Indo-Gangetic Plain):

Add factor analysis to see irrigation and LULC effects

- offline (FG3) and online (CL5) show different results
- CL5 shows slight positive bias in steep (mountainous) region (relates local climate system?)
- ² CL5 shows low correlation in high LAI region.

- large irrigation area shows low r, negative bias (especially for CL5)

Summary for SSM

- ORCHIDEE basically shows satisfactory consistency with observations.
- Discrepancy was observed in Boreal region: snowmelt effect and observation uncertainty Arid regions: low r seems to be from less temporal variability (not fault of ORCHIDEE), but slight positive bias was also observed.
- offline (FG3) and online (CL5) show different results suggest climate model uncertainty in steep region, high LAI region
- large irrigation area shows low *r*, negative bias (especially for CL5) ORCHIDEE does not implements irrigation scheme.

2. Evapotranspiration

- FG3 temporal pattern was good.
- CL5 temporal pattern has positive systematic bias.
- Opposite bias patterns in tropical Africa and south America between FG3 and CL5. seems to relate to atmospheric component such as precipitation in CL5.
- substantial underestimation was observed in India and Indonesia (irrigation?)

factor analysis

- not obvious pattern for slope
- low~middle LAI show good consistency
- high LAI region shows low r, negative bias in FG3 too much water stress in high LAI region ?

- obvious negative bias in largely irrigated area

Summary for ET

- FG3 temporal change was good, CL5 has positive bias relates to precipitation in CL5.

LAI affects ET accuracy.
 Low~middle LAI is good (boreal, arid/semiarid, temperate)
 high LAI leads high uncertainty. FG3 shows negative ET bias in high LAI region (too much water stress?)

- obvious negative bias in largely irregated region

3. Albedo

MODIS CL5 FG3

- underestimation of VIS/NIR albedo in winter~spring of boreal region Likely to be snow albedo effect
- Global pattern is primary controlled by 30N-60N region (largest land pixels)

- NIR global overestimation is related to systematic overestimation in equatorial region and overestimation in growing season at temperate zone

- middle~high LAI region show low r for both VIS and NIR in spite of small mean bias.
 Suggest incomplete vegetation seasonality in ORCHIDEE
- low LAI region has high dispersion in bias (especially for VIS) Uncertainty in background soil albedo

NSE

Summary for albedo

- VIS/NIR albedo in winter~spring of boreal region (or mountainous region) are likely to be affected by snow
- NIR global overestimation is related to systematic overestimation in tropical zone And overestimation in growing season at temperate zone.
- Seasonality of VIS/NIR albedo of vegetation should be carefully considered in ORCHIDEE.
- bias of background soil albedo (especially for VIS) shows large dispersion.

Summary

ORCHIDEE hydrological component (SECHIBA) was evaluated in the aspect of:

SSM

- ORCHIDEE shows basically good result, but some uncertainty was observed in boreal region, arid region and irrigated area.

EΤ

- ORCHIDEE offline simulation (FG3) describes good temporal change. Online simulation (CL5) has positive bias, relating to precipitation.
- In high LAI region, high uncertainty
- obvious negative bias in large irrigated area

Albedo

- snow may affects both VIS/NIR albedo
- vegetation (middle~high LAI) seasonality in VIS/NIR albedo should be considered.
- background soil albedo also leads diverged bias

Future work:

- Do the analysis for the recent ORCHIDEE trunk (CMIP6 simulation)
- Add evaluation on LAI, total water storage
- Careful selection of observation data (SMOS IC recent version etc...)

Thank you for your attention!! Contact: hiroki.mizuoti@gmail.com

Citations

Global Map of Irrigation Areas (GMIA) Siebert, S., Henrich, V., Frenken, K., Burke, J. (2013): Update of the Global Map of Irrigation Areas to version 5. Project report, 178 p. [Download pdf, 4 MB] Siebert, S., Burke, J., Faurès, J.-M., Frenken, K., Hoogeveen, J., Döll, P., Portmann, F.T. (2010): Groundwater use for irrigation - a global inventory. Hydrology and Earth System Sciences, 14, 1863-1880. [Download pdf, 3 MB, and Download zip, 11 MB]

Koppen-Geiger map http://koeppen-geiger.vu-wien.ac.at/shifts.htm university of Bern, Institute for Veterinary Public Health Rubel, F., and M. Kottek, 2010: Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol. Z., 19, 135-141. DOI: 10.1127/0941-2948/2010/0430.

Soil Moisture

Masking process

<CCI_SSM> 82.8% of data remained; mean available land area 3.52×10¹³ m² Data range after masking and monthly aggregation: 0.016–0.511 (VWC)

<SMOS IC> 80.9% of data remained; mean available land area 1.48×10¹³ m² Data range after masking and monthly aggregation: 0.000–0.587 (VWC)

<FG3> FG3.4438z_19790101_20091231_1M_mrsos.nc 90.1% of data remained; mean available land area 1.33×10¹⁴ m² Data range: 0.002–0.400

<CL5> CL5.4438.L6010.ref_19850101_20141231_1M_mrsos.nc 87.4% of data remained; mean available land area $1.18 \times 10^{14} \text{ m}^2$ Data range: 0.060–0.389

FERRET (optimized) Ver.7.1 NOW/FMEL Take 06-NOV-2017 18:07.15

FG3 (SWE < 48 mm) seasonal availability

FERRET (optimized) Ver.7.1 MON/FME, TMP 06-HEV-2017 18:07.14 FERET (optimized) Ver.7.1 NCW/FMEL TerP 06-NDV-2017 10:07.17

FERRET (optimized) Ver.7.1 MOA/FMEL TMPP 08-HDV-2017 18:07.16

 $\texttt{CL5_MASK[GT=TCLIM@MOD,D=cl5_monthly_mask_48]}$

FERRET (optimized) Ver.7.1 NOVA/FMEL TeXP 06-N2Y-2017 18:07.46

CL5 (SWE < 48 mm) seasonal availability

 $\texttt{CL5_MASK[GT=TCLIM@MOD,D=cl5_monthly_mask_48]}$

 $\texttt{CL5_MASK[GT=TCLIM@MOD,D=cl5_monthly_mask_48]}$

FERRET (optimized) Ver.7.1 MOAU/FME: TANP 08-HAV/-2017 18/07-47 FERET (optimized) Ver.7.1 NOA/FAID, 1649 06-N2V-2017 16/07.46

FERRET (optimized) Ver.7.1 NOAV/FME: TANP 08-HEV-2017 18:07:48

VWC [%]

WC	60N–90N	30N–60N	0N–30N Seasonal cycle (period 2)	0S–30S Seasonal cycle (period 2)	30S–60S Seasonal cycle (period 2)
Normalized V	Seasonal cycle (period 2) Fraction of land 12.0%	Seasonal cycle (period 2) Fraction of land 31.4%	Fraction of land 24.8%	Fraction of land 19.9%	Fraction of land 3.6%

Slight gap in seasonal change Snowmelt in boreal region?

There seems to be slight bias?

- → use only Hydro1K to keep the consistency within dataset
- → but Hydro1K has no data over Australia
 ()
- \rightarrow use HydroSHED only for Australia

ETOPO: $1.922 \times 10^{12} \text{ m}^2$ (1.3%) were removed Range: 0 – 73.6 (%), mean 1.50

Hydro1K: 1.922×10^{12} m² (1.3%) were removed Range: 0.00 - 47.3 (%), mean 2.81

Mean bias of CL5 - CCI over period 1 (monthly time steps).

Mean bias of CL5 - SMOS over period 2 (monthly time steps).

Correlation significance between CCI/CL5 (period 1).

Correlation significance between CCI/CL5 (period 2).

TIME : 31-DEC-2010 19:00 to 31-DEC-2014 19:00 NOLEAP

DATA SET: tmp

Correlation significance between CCI/SMOS (period 2).

TIME : 31-DEC-2010 19:00 to 31-DEC-2014 19:00 NOLEAP

 $Q_{0,t}$: observed time series $Q_{m,t}$: simulated time series $Q_{0,t}$: temporal average of observation * NSE < 0 is also shown as 0.0 in the colorscale.

RMSE btw. CL5 and observation ave. (mm/d)

1.6

1.4

1.3

RMSE btw. FG3 and observation ave. (mm/d)

Small ET region: positive bias Large ET region: negative bias

VS ET (mm/d) itself

 $ET \leq 1.0:$ et0 1.0 < $ET \leq 2.0:$ et1 2.0 < $ET \leq 3.0:$ et2 3.0 < $ET \leq 4.0:$ et3

FG3

TIME : 31-DEC-1985 19:00 to 31-DEC-2006 19:00 NOLEAP

Correlation between CCI and CL5

Significantly correlated area btw. FG3 and obs.

Significantly correlated area btw. CL5 and obs.

TIME : 31-DEC-2000 19:00 to 31-DEC-2009 19:00 (averaged) NOLEAP

Correlation between CL5 and MODIS in $\ensuremath{\mathrm{VIS}}$

TIME : 31-DEC-2000 19:00 to 31-DEC-2009 19:00 NOLEAP

Correlation between CL5 and MODIS in NIR

