

Sujith Krishnakumar, Samuel Albani, Martin Ménégoz, Catherine Ottlé, Anne Cozic, & Yves Balkanski

Introduction of Light Absorbing Particles in **ORCHIDEE** snow model B

Light Absorbing Aerosols (LAP) in Snow

- 1. Major LAP presents in snow are Dust, Black Carbon (BC)/soot and Organic Carbon (OC)
- LAP influx to snow: Gravitational settling, Dry and Wet deposition, Scavenging due to convective activity.
- 3. Positive feedbacks with incorporation of LAP:
- Warmer snow increases snow grain size, which darkens snow (Flanner & Zender, 2006, JGR)
- Spring and summer melting increases concentration hydrophobic LAP at snow surface (Clarke and Noone, 1985, JGR)

Flow Chat of LAP mass tracer incorporation in snow

Flow Chat of LAP tracer incorporation in snow

dz-> thickness; z-> total depth; m-> mass of LAPs in kg/m2

Flow Chat of LAP tracer incorporation in snow

Discretisation of LAPs in nsnow layers w.r.t **Discretisation of Snow Depth**

Flushing of LAPs through **Snow Layers by melt** water Infiltration and **Removal at the bottom layer**

Removal of LAPs due to Rainfall

Flushing of LAPs through the layers

Removal of LAPs at the bottom

Removal(i)=ef(i)*snowmelt(nsnow)*mr(i,nsnow)

m(i,j)=m(i,j)+ef(i)*snowmelt(j-1)*mr(i,j-1) -ef(i)*snowmelt(j)*mr(i,j) i-> LAP species; j-> snow layer; ef-> flushing efficiency; mr-> mixing ratio of LAP = m/(snowdz*snowrho)

Removal of LAPs due to Rainfall

Removal(i)= $\Sigma_{j=1,nsnow}$ ef(i)*rainfall*mr(i,j)

1 1 1	and the second se	
	LAP	Flushing efficienc
	Dust r=1um	0.02
	Dust r=2.5um	0.015
Kin	Dust r=7um	0.01
	Dust r=22um	0.00
	Soot Hydrophobic	0.03
	Soot Hydrophylic	0.20
	O.Carbon Hydrophobic	0.03
	O.Carbon Hydrophylic	0.20

Yasunari et. al, 2014, SOLA

DUST: Merra Bins to INCA Modes

- MERRA2 have 5 bins with diameter range: 0.2-2, 2-3.6, 3.6-6, 6-12, 12-20µm
- INCA has 4 log-normal modes with mean diameters of 1.0, 2.5, 7.0, 22.0µm

Site Simulation with ColdePorte

Expriment

ORCHv2.2(PFT10)

WW80_KSS_Puresnow

WW80_KSS_LAPs

Description

ORCHIDEE 2.2 with albedo of PFT10

Development with Warren wiscombe radiative transfer scheme (WW80) and Kokhanswky snow optical properties and No LAP

Same as above but with LAPs including 4 dust modes, 2 soot and 2 organic carbon (OC)

Site Simulation with ColdePorte: LAP content and mass conservation

Wiscombe & Warren Snow Radiative transfer scheme

≻Function of

- Solar zenith angle
- Ratio of diffuse incident flux to total (diffuse+direct) incident flux
- Albedo of surface underneath
- Optical properties of snow

≻Which are

- τ optical depth (extinction)
- ω single scattering albedo
- g asymmetry factor

(Wiscombe & Warren, 1980, JGR)

Specification of incorporation to ORCHIDEE

- Scheme is implemented over bio PFTS
- Albedo is calculated for each layer of snow
- Direct and Diffused albedo calculations

Snow Optical Properties from Kokhanovsky Scheme

ractior

- 1. Basically this scheme use refractive index of ice, that depends on wavelength (Warren & Brandt, 2008, **JGR-A**)
- **Correction to imaginary** 2. part for wavelength < 600nm by Picard 2016.

 $m = n - i\chi$

Snow Optical Properties from Kokhanovsky Scheme

However, B0 is taken as 1.6 after Libois et al, 2014. g00=0.86 as per Picard et al., 2009

2. Single Scattering Albedo

$$(1-\omega) = \frac{1}{2}(1-W(n))(1-e^{-\psi(n,s)c})$$

$$\psi(n,s) = \frac{2}{3} \frac{B(n,s)}{1 - W(n)}$$

$$W(n) = 0.0611 + 0.17 * (n - 1.3)$$

B(n) = 1.22 + 0.4(n - 1.3).

Mass extinction (MEE), single scattering albedo (w) and asymmetry factor (g) are taken from LMDZ for 6 RRTM bands 0.18-0.25 μ m, 0.25-0.44 μ m, 0.44-0.69 μ m $0.69-1.19 \ \mu m$, $1.19-2.38 \ \mu m$, $2.38-4.00 \ \mu m$

LAP: Optical Properties from LMDZ

Site Simulation with ColdePorte

Sub snow layer Light Penetration and Absorption

Possible pathways for SW downwelling flux:

NEW VERSION

Bast 1

Transmission forward scattering Backward scattering (albedo) absorption

Light penetration and subsurface Snow heating 1.

- Difference sensitivity experiments to quantify effects of flushing, different 2. **LAP** species
- 3. 1D simulation all the 8 Snow-ESMmip sites and one site over High Mountain Asia.
- Coupling with LMDZ-OR-INCA6.2.2 which has four modes of Dust. 4.

THANK YOU

