

Calibration of snow albedo over Greenland with MODIS data

Nina Raoult, V. Bastrikov, S. Charbit, C. Dumas, F. Maignan, C. Ottlé

ORCHIDEE-dev snow meeting - 26 October 2023

Overview

- **Goal**: finding one set of parameters for the whole of Greenland
 - Challenges:
 - Large area with different behaviours at the edges and the middle
 - Gradual warming over the last decade
- **Approach**: Perform a calibration/validation study using ORCHIDAS the ORCHIDEE data assimilation system

DATA ASSIMILATION SYSTEM: parameter optimisation https://orchidas.lsce.ipsl.fr/

Principles of Data Assimilation

The parameters (x)

Parameters already extensively tuned

			Prior (x _b)	Min	Max
Sum to be the albedo of fresh snow	A _{aged}	SNOWA_AGED*	0.525	0.50	0.70
	B _{dec}	SNOWA_DEC*	0.349	0.10	0.40
Transformation time constant for snow on nobio/snowfall depth required to reset the snow age?	δ _c	SNOW_TRANS_NOBIO	1	0.2	2
Time constant of the albedo decay of snow on nobio (days) - snow age decay rate	τ _{dec}	TCST_SNOWA_NOBIO	2	1	10
Tuning constants for nobio areas	ω	OMG1	2.5	1	7
	β	OMG2	4	0.5	4
Maximum snow age	τ _{max}	MAX_SNOW_AGE	50	40	60
Ice albedo	α _{ICE}	ALB_ICE [†]	0.4	0.3	0.5

*parameters are PFT specific therefore optimising the PFT1 (bare soil) parameter. Also there sum must be less than or equal to 1 [†]this parameter takes two values which are both equal.

Observed and modelled albedo give different spatial patterns

Summer Albedo (averaged over time 2000-2017)

Using "reinf_slope" feature in ORCHIDEE, we can easily select the edges

reinf_slope = "fraction of rainfall re-infiltrated given the slope"

Middle Weight: 1

Edge Weight: 4 By optimising using three random years, we improve modelled abledo

Averaged over space

By optimising using three random years, we improve modelled abledo

Averaged over time

All points

Using PROMICE in situ data to validate

Different optimised parameters are found when focusing solely on the middle or edges

The impact of the new parameters on the surface mass balance

Surface Mass Balance

Runoff

Sublimation

We can use parameter sensitivity experiment to help set up future optimisations

Take home messages:

- By weighting the edges, we were able to improve modelled albedo over the whole GrIS
- Improvement also found when validated against independent data
- Albedo has a strong impact on other ice sheet model processes
- This work **influenced** important model **developments**
- Future steps include **multi-data stream calibrations**

Raoult, N., Charbit, S., Dumas, C., Maignan, F., Ottlé, C., and Bastrikov, V.: Improving modelled albedo over the Greenland ice sheet through parameter optimisation and MODIS snow albedo retrievals, The Cryosphere, 17, 2705–2724, https://doi.org/10.5194/tc-17-2705-2023, 2023.

The parameters in the context of albedo parameterisation

$$P_{snow}$$
 = snowfall
 T_{0} = melting temperature
 τ_{snow} = snow age

$$\tau_{snow}(t+dt) = \exp\left(-\frac{P_{snow}}{\delta_c}\right) \cdot \left[\tau_{snow}(t) + dt \cdot \left(1 - \frac{\tau_{snow}}{\tau_{max}}\right)\right] + \left[\frac{\exp\left(-\frac{P_{snow}}{\delta_c}\right) \cdot \left[\tau_{snow}(t) + dt \cdot \left(1 - \frac{\tau_{snow}}{\tau_{max}}\right)\right] \cdot -\tau_{snow}(t)}{1 + \left(\frac{\operatorname{Max}\left(T_0 - Tair, 0\right)}{\omega}\right)^{\beta}}\right]$$

The effect of low temperatures on

In red the seven albedo parameters to be calibrated against MODIS data (for non-ice surfaces only)

 $\alpha_{snow} = A_{aged} + B_{dec} \exp\left(-\frac{\tau_{snow}}{\tau_{dec}}\right)$

metamorphism

The observations, model and difference: y, M(x), (y - M(x))

Summer Albedo (averaged over time 2000-2017)