Land surface hydrology in ORCHIDEE

Agnès Ducharne

CNRS scientist, UMR METIS-IPSL agnes.ducharne@upmc.fr

Outline

1. Introduction

Scope of this specific training

2. The multi-layer soil hydrology scheme

- Processes (soil moisture diffusion, boundary fluxes)
- Parameters and options

3. Surface forcing conditions

Soil texture, vegetation / land cover

How to parameterize your simulations

More details on the Wiki

http://forge.ipsl.jussieu.fr/orchidee/attachment/wiki/Documentation/egs hydrol.pdf

Reference papers: de Rosnay et al., 2000; de Rosnay et al., 2002; d'Orgeval et al., 2008; Campoy et al., 2013 ; Tafasca et al., 2020

PhD theses: de Rosnay, 1999; d'Orgeval, 2006; Campoy, 2013; Tafasca, 2020

4. A glance at the routing scheme

Land surface hydrology

Soil hydrology and water budget

We will focus on soil water and the related water fluxes (soil hydrology)

No interception, no snow, no soil water freezing today

What is modeled?

How is SM diffusion modeled?

1. We assume 1D vertical water flow below a flat surface

 θ : volumetric water content in m³.m⁻³

q: flux density in m. s-1

s: transpiration sink in m³.m⁻³.s⁻¹

K: hydraulic conductivity in m.s⁻¹

h: hydraulic potential in m

2. Continuity:

$$\frac{\partial \theta}{\partial t} + \frac{\partial q}{\partial z} = -s$$

3. Motion = diffusion equation because of low velocities in porous medium

Richards equation

$$q(z) = -K(z)\frac{\partial h}{\partial z}$$

4. Hydraulic head h quantifies the gravity and pressure potentials

$$h=$$
 - $z+\psi$ ψ is the matric potential (in m, <0)

5. K and ψ depend on θ (unsaturated soils)

$$q(z) = -K(\theta) \left[\frac{\partial \psi}{\partial z} - 1 \right]$$

$$q(z) = -D(\theta)\frac{\partial \theta}{\partial z} + K(\theta)$$

$$D(\theta) = K(\theta) rac{\partial \psi}{\partial \theta}$$
 D is the diffusivity (in m².s-¹)

Finite difference integration

• The differential equations of continuity and motion are solved using finite differences:

$$\frac{W_i(t+dt) - W_i(t)}{dt} = Q_{i-1}(t+dt) - Q_i(t+dt) - S_i$$

$$\frac{Q_i}{A} = -\frac{D(\theta_{i-1}) + D(\theta_i)}{2} \underbrace{\frac{\theta_i - \theta_{i-1}}{\Delta Z_i}} + \frac{K(\theta_{i-1}) + K(\theta_i)}{2}$$

- The soil column is discretized using N **nodes**, where we calculate θ **i**
- Each node is contained in one layer, with a total water content Wi
- The fluxes **Qi** are calculated at the **interface** between two layers

Si = transpiration sink

A: grid-cell area

tridiagonal matrix

Wi is obtained by vertical integration of $\theta(z)$ in layer i, assuming a linear variation of $\theta(z)$ between 2 nodes

$$W_{i} = [\Delta Z_{i} (3 \theta_{i} + \theta_{i-1}) + \Delta Z_{i+1} (3 \theta_{i} + \theta_{i+1})]/8$$

$$W_{1} = [\Delta Z_{2} (3 \theta_{1} + \theta_{2})]/8$$

$$W_{N} = [\Delta Z_{N} (3 \theta_{N} + \theta_{N-1})]/8$$

Vertical discretization

- The vertical discretization must permit an accurate calculation of θ i and the related water fluxes Qi
- We need thin layers where θ is likely to exhibit sharp vertical gradients (to better approximate the local derivative)
- Vertical discretization and boundary conditions must be decided together!

By default, in hydrol, we use:

- 2-m soil
- 11 nodes (layers) with geometric increase of internode distance

(cf. de Rosnay et al., 2000)

i	≈ hi (mm)	
1	1	
2	3	
3	6	
4	12	
5	23,5	
6	47	
7	94	
8	188	
9	375	
10	751	
11	500	

Vertical discretization

- The vertical discretization must permit an accurate calculation of θ i and the related water fluxes Qi
- We need thin layers where θ is likely to exhibit sharp vertical gradients (to better approximate the local derivative)
- Vertical discretization and boundary conditions must be decided together!

Alternative discretizations can be defined by externalized parameters (run.def)

DEPTH_MAX_H	2.0	m	Maximum depth of soil moisture	Maximum depth of soil for soil moisture (CWRR).
DEPTH_MAX_T	10.0	m	Maximum depth of the soil thermodynamics	Maximum depth of soil for temperature.
DEPTH_TOPTHICK	9.77517107e-04	m	Thickness of upper most Layer	Thickness of top hydrology layer for soil moisture (CWRR).
DEPTH_CSTTHICK	DEPTH_MAX_H	m	Depth at which constant layer thickness start	Depth at which constant layer thickness start (smaller than zmaxh/2)
DEPTH_GEOM	DEPTH_MAX_H	m	Depth at which we resume geometrical increases for temperature	Depth at which the thickness increases again for temperature.

The hydrodynamic parameters

- K and D depend on saturated properties (measured on saturated soils) and on $oldsymbol{ heta}$
- Their dependance on θ is very non linear
- In ORCHIDEE, this is decribed by the so-called Van Genuchten-Mualem relationships:

Modifications of Ks with depth

Modifications of Ks with depth

To sum up water diffusion

- The soil is assumed to be unsaturated
- The prognostic variables are θi (at the nodes)
- They are updated simultaneously (by solving a tridiagonal matrix)
- Their evolution is driven by
 - the soil properties K(z) and D(z)
 - the vertical discretization (soil depth and layer definition)
 - four boundary fluxes
 - transpiration sink s_i
 - top and bottom boundary conditions:

$$Q_0 = I - E_g$$
 and $Q_N = D$

I: infiltration

E_g: soil evaporation

D: drainage

Which all depend on soil moisture

Drainage

By default :
$$Q_N$$

$$Q_N = K(\theta_N)$$

Based on the motion equation, this corresponds to a situation where θ does not show any vertical variations below the modeled soil

$$q(z) = -D(\theta) \frac{\partial \theta}{\partial z} + K(\theta)$$

The code is also apt to use reduced drainage:

$$Q_N = F.K(\theta_N)$$
 F in [0,1]

F is externalized by FREE_DRAIN_COEF = 1.,1.,1.

With F=0, you get an impermeable bottom:

- like in a bucket scheme
- leading to build a water table

But you need to adapt the vertical discretization!

Drainage

By default :
$$Q_N = K(\theta_N)$$

Based on the motion equation, this corresponds to a situation where θ does not show any vertical variations below the modeled soil

$$q(z) = -D(\theta) \frac{\partial \theta}{\partial z} + K(\theta)$$

F

M

Drainage

Simulations ORCHIDEE-LMDZ en zoomé-guidé au SIRTA Comparaison à des mesures locales

S

0

N

D

M

A

- At the soil surface, throughfall can either infiltrate or run off (surface runoff)
- The routing scheme can also produce water to infiltrate (return flow, irrigation, etc.)
- The modeling of infiltration relies on gravitational fluxes: $q(z) = K(\theta)$ Soil absorption is neglected
- With wetting front propagation based on time splitting procedure and sub-grid-variability of K (because the grid-cells are large)

Idealized result from some field experiment

Iterative saturation of the layers from top to bottom

The infiltration rate in layer i depends $K(\theta_i)$ but it is reduced to account for subgrid variability

We consider an exponential distribution of K with a mean of $K(\theta_i)$

- K_{eff} is the mean of K values < P₀
- Runoff production where P₀ > K

The time to saturate a layer depends on K_{eff} and soil moisture deficit ($W_{sat} - W$)

Stop when P₀ fully infiltrated or time step is over

• Surface runoff can reinfiltrate in flat areas, after ponding

Reinfiltration fraction

Very simple in practice

• Surface runoff can reinfiltrate in flat areas, after ponding

Reinfiltration fraction

 p_{max} is externalized as SLOPE_NOREINF = 0.5 [%] You can also force a uniform γ_p REINF_SLOPE = 0.1 [-]

Soil evaporation (E_g)

- 1. The soil evaporation involved in the surface boundary flux ($Q_0 = I E_g$) is given by the energy budget, given water stress β_g^{t-dt} from previous time step
- 2. Another issue is to calculate the stress function $\beta_g^{\ t}$ to calculate soil evaporation at the next time step
- 3. This is done in hydrol by a supply/demand approach based on the soil moisture at the end of the time step

E_g can proceed at potential rate unless the soil cannot supply it

$$E_g = \min(E_{\text{pot}}^*, Q_{\text{up}})$$

Soil evaporation (E_g)

- 1. The soil evaporation involved in the surface boundary flux ($Q_0 = I E_g$) is given by the energy budget, given water stress β_g^{t-dt} from previous time step
- 2. Another issue is to calculate the stress function β_g^t to calculate soil evaporation at the next time step
- 3. This is done in hydrol by a supply/demand approach based on the soil moisture at the end of the time step

E_g can proceed at potential rate unless the soil cannot supply it

$$E_g = \min(E_{\text{pot}}^*, Q_{\text{up}})$$

$$E_{\text{pot}}^{*} = \frac{\rho}{r_a} \left(q_{\text{sat}}(T_w) - q_{\text{a}} \right) \leq E_{\text{pot}} = \frac{\rho}{r_a} \left(q_{\text{sat}}(T_s) - q_{\text{a}} \right)$$
$$\beta_g = E_g / E_{\text{pot}}$$

Q_{up} is calculated by 1 or 2 integrations of the water diffusion:

- (a) We apply E^*_{pot} as a boundary flux at the top, and test if θ_i remains above θ_r If it does, then $Q_{up} = E^*_{pot} = E_g$
- (b) Else, we force $\theta_1 = \theta_r$ and this drives an upward flux: the surface value Q_0 gives Q_{up}

Soil evaporation (E_g)

- 1. The soil evaporation involved in the surface boundary flux ($Q_0 = I E_g$) is given by the energy budget
- 2. Another issue is to calculate the stress function β_g to calculate soil evaporation at the next time step
- **3.** This is done in hydrol by a supply/demand approach based on the soil moisture at the end of the time step

E_g can proceed at potential rate unless cannot supply it

4. We can reduce the demand using a soil resistance (Sellers et al., 1992)

$$r_{\text{soil}} = \exp(8.206 - 4.255L/L_s)$$

L is the soil moisture in the 4 top layers Ls is the equivalent at saturation

$$E_g = \min \left(\frac{q_{sat}(T_w) - q_a}{r_a + r_{soil}}, Q_{up} \right)$$

The minimum is still found via 1 or 2 integrations of the water diffusion

Soil evaporation (Eg)

Cheruy et al., 2020 → simulations with LMDZOR to prepare CMIP6

Transpiration depends on soil moisture

The dependance of transpiration on soil moisture is conveyed by the water stress u_s

$$u_s(i) = (W_i - W_w)/(W_w - W_w) * n_{root}$$

W_%: moisture at which u_s becomes 1 (no stress)

$$W_{\%} = W_{W} + p_{\%} AWC$$

The smaller $p_{\%}$ the smaller the water stress

n_{root}: mean root density in layer i

W_w = wilting point

 W_f = field capacity

 $AWC = W_f - W_w$

The dependance of transpiration on soil moisture is conveyed by the water stress u_s

$$u_s(i) = (W_i-W_w)/(W_{\%}-W_w) * n_{root}$$

 $W_{\%}$: moisture at which u_s becomes 1 (no stress)

$$W_{\%} = W_{W} + p_{\%} AWC$$

The smaller p_% the smaller the water stress

p_% is externalized as
WETNESS_TRANSPIR_MAX
= 0.8, 0.8, ..., 0.8
(13 times as for soil texture classes)

The dependance of transpiration on soil moisture is conveyed by u_s(i)

U_s = Σ_iu_s is used to calculate the stomatal resistance r_{st}

$$T_r = \rho \left(1 - \frac{I}{I_{max}}\right) \frac{q_{sat}(T_s) - q_{air}}{r_a + r_c + r_{st}}$$

r_{st} also depends on light, CO₂, LAI, air temperature and vpd, and on nitrogen limitation in the trunk (CN)

In the code: U_s = humrel

u_s is used to distribute Tr between the soil layers

$$T_r = \sum S_i$$

$$U_s = \sum u s_i$$

$$S_i = T_r u s_i / U_s$$

Outline

1. Introduction

Scope of this specific training

2. The multi-layer soil hydrology scheme

- Processes (soil moisture diffusion, boundary fluxes)
- Parameters and options

3. Surface forcing conditions

- Soil texture
- Vegetation / land cover

4. A glance at the routing scheme

The role of soil texture

- In hydrol, the main soil properties are:
 - Van Genuchten parameters: $\theta_s = \theta_r = K_s^{ref} = n = \alpha (= -1/\psi_{ae})$
 - derived field capacity and wilting point: $\theta_{\mathbf{w}}$ $\theta_{\mathbf{f}}$
 - clay_fraction for stomate, and thermal properties for thermosoil
- They are defined based on soil texture (in the real world, they can depend on other factors, as soil structure, OMC, etc.)
- Soil texture is defined by the % of sand, silt, clay particles in a soil sample (granulometry)
- It can be summarized by soil textural classes
- By default, ORCHIDEE reads texture from the 1°x1° map of Zobler (1986) with 3 USDA classes: Sandy Loam, Loam, Clay Loam
- Alternative soil maps with 12 USDA classes:
 - 1/12° map of Reynolds et al. (2000)
 - 0.5°map from SoilGrids (Hengl et al. 2014)
- In each grid-cell, we use the dominant texture

The role of soil texture

Dominant texture in each ORCHIDEE grid-cell:defining the hydraulic properties

Sub-grid scale heterogenity:

3 soil columns based on PFTs with independent water budget

but same texture

1: Bare soil PFT

2: All Forest PFTs

3: All grassland and cropland PFTs

3. Forcing conditions

The role of soil texture

Variability of simulated variables over land surface (excluding Antarctica and Greenland) within each soil texture class. Reynolds soil map, with GSWP3 meteorological forcing over 1980–2010.

The role of soil texture

The influence of the soil texture map is much smaller than the one of the atmospheric forcing

The role of soil texture

Soil hydraulic and thermal properties are defined from soil texture, with now 13 classes (12 USDA + Clay Oxisols)

You can also force the value of soil properties:

- Either to uniform values

Or by reading maps of soil parameters

Details on https://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/Ancillary

Other controls of soil parameters

What was said before about texture is for MINERAL soils (no organic matter)

- This is the default in the trunk
- If you set OK_SOIL_CARBON_DISCRETIZATION = y then
 - θ_s and K_s^{ref} will depend on soil organic carbon but only for thermosoil (not for hydrol) → This is a bug and it is being corrected
 - The other soil parameters (θ_r , n, $\alpha = -1/\psi_{ae}$) do not depend on soil organic carbon as in MICT (Guimberteau, Zhu, et al., 2018)

Soil freezing also impacts soil hydraulic and thermic parameters

- Reduced θ_s and K_s^{ref}
- Impacts on infiltration, water redistrinution, and all water fluxes

Interactions with the vegetation/LC

1. Horizontally, PFTs define soil tiles with independent water budget (below ground tiling)

Interactions with the vegetation/LC

2. Vertically, ORCHIDEE defines a root density profile

They control:

(1) the water stress us on transpiration in each soil layer i $u_s(i) = (W_i - W_w)/(W_w - W_w) * n_{root}$

(2) the increase of Ks towards the surface

In the code, c_j is called humcste and defined in constantes_mtc.f90

It is externalized as HYDROL_HUMCSTE

= 5.0, 0.8, 0.8, 1.0, 0.8, 0.8, 1.0, 1.0, 0.8, 4.0, 4.0, 4.0, 4.0 (for 13 MTCs)

Which maps are used for hydrology?

Soil vs « catchment » hydrology

Overview of the standard version

Separate basins/HTUs in each grid-cell with 3 reservoirs for streams, hillslopes and GW

Residence times $\tau_i = g_i \Delta x / Vslope$

Cascade of stream reservoirs along the river network

River network based on 0.5° topography

See slides of M. Guimberteau, Training 2016

Polcher 2003; Ngo-Duc et al. 2007; Guimberteau et al., 2012

Results for CMIP6

- Land-atmosphere simulations over 1981-2010 with prescribed SST from AMIP
- Resolution 144 x 143 (2.5x1.25°) x 79
- Comparison of IPSL-CM6A (6Actrl) to IPSL-CM5 (APchoi) and other configurations
- River discharge at the outlet of 14 major river basins against observed record (GRDC)

Cheruy et al., 2020

4. A glance at the routing scheme

Improvement of **simulated discharge** from IPSL-CM6A (6Actrl) to IPSL-CM5 (APchoi) in most river basins Mostly related to improvements of simulated precipitation

+ Freezing in Yenisei and Lena

Work in progress for a higher resolution routing

River network based on **0.5° topography**

Only valid if ORCHIDEE resolution ≥ 0.5°

ROUTING_METHOD = standard (default)

Residence times independent from ORCHIDEE resolution - But can be defined in run.def

Options for irrigation and flooding

Higher resolution river network based on **HydroSHEDS (1 km) or MERIT-Hydro (2km)**

2 versions of the routing scheme able to deal with high resolution topography

ROUTING_METHOD = highres (Polcher et al., 2023)
With options for irrigation and flooding

ROUTING_METHOD = native Evaluation work in progress

Soil hydrology in a nutshell

During a time step, the soil hydrology scheme :

- Updates the soil moisture as a function of precipitation and evapotranspiration
- Calculates the related fluxes (infiltration, surface runoff, drainage)
- Calculates the water stresses for transpiration and soil evaporation of the next time step
- Calculates some soil moisture metrics for thermosoil and stomate

The equations can be complex, but the parametrization is intended to work without intervention

- Default input maps are defined in COMP/sechiba.card
- Defaults parameters are defined in PARAM/run.def and code
- Lots of debugging over the past years

You can adapt the behavior of the soil hydrology scheme

- Easy: change externalised parameters in PARAM/run.def
- A bit less easy: use different input maps (you need to comply to the format)
- More difficult: change the code (welcome to orchidee-dev!)

Routing scheme is quickly evolving

Thank you for your attention Questions?

