wiki:DevelopmentActivities/ORCHIDEE-CN/NH3

Version 32 (modified by nvuilsce, 7 years ago) (diff)

--

Work of Thomas on NH3

Evaluation of ammonia emissions results calculated by the model (Fertilizer =0)

This has been done with rev 4164

Sites and PFT

PFT Sites
2 BR-Sa3 ; ID-Pag
4 IL-Yat ; ES-ES1 ; IT-SRo ; US-Blo ; US-Me4 ; US-SP2 ; US-SP3 ; US-SP4 ; DE-Bay ; DE-Tha ; FR-LBr
5 FR-Pue ; IT-Cpz ; IT-Lec ; PT-Esp ; PT-Mi1 ; AU-Tum ; AU-Wac
6 IT-Col ; IT-Non ; IT-PT1 ; IT-Ro2 ; US-MMS ; US-MOz ; DK-Sor ; FR-Fon ; UK-PL3 ; IS-Gun ; IT-Ro1 ; US-WBW ; DE-Hai ; FR-Hes ; UK-Ham ; US-Bar ; US-Ha1 ; US-Oho ; US-UMB ; US-WCr
7 CA-Man ; CA-NS2 ; CA-NS4 ; CA-Qcu ; CA-Qfo ; CA-SF1 ; CA-SF2 ; FI-Hyy ; FI-Sod ; SE-Fla
12 FR-Gri ; DK-Ris ; NL-Lut
13 NL-Lan ; US-Bo1 ; US-Ne1 ; US-Ne2 ; US-Ne3

Sites we have not looked at :

AT-Neu ; CA-NS1 ; CA-NS3 ; CA-NS5 ; CH-Oe1 ; CZ-BK1 ; DE-Gri ; DE-Meh ; DE-Wet ; DK-Lva ; ES-VDA ; FR-Lq1 ; FR-Lqr2 ; HU-Bug ; ID-Dri ; IT-Amp ; IT-Lav ; IT-Lma ; IT-Lmal ; IT-Mbor ; IT-Ren ; NL-Ca1 ; NL-Haar ; NL-Hor ; NL-Loo ; PT-Mi2 ; RU-Fyo ; RU-Ha1 ; RU-Ha2 ; RU-Ha3 ; RU-Zot ; SE-Nor ; SE-SK1 ; SE-Sk2 ; SK-Tat ; UK-EBu ; UK-Gri ; UK-Tad ; US-Aud ; US-Bkg ; US-FPe ; US-Goo ; US-Ho1 ; US-Ho2 ; US-SP1 ; US-Var ; US-Wci0 ; US-Wi1 ; US-Wi2 ; US-Wi4 ; US-Wi5 ; US-Wi8 ; US-Wi9

  • Parameters studied
    • Temperature
    • Humidity
    • pH

path : /home/users/taudoux/documents/Results/Parameters/

Nitrogen Pools (Soil_NH4, Soil_NO3, Soil_NOX and Soil_N2O)
path : /home/users/taudoux/documents/Results/Pools/

Emissions (NH3) and Depositions (NHX)
path : /home/users/taudoux/documents/Results/Emission-Deposition/

  • Files

. The script "script_calcul_parameters.ksh" used in order to create files of Temperature, Humidity and pH of each site in function of time listed in :
/home/users/taudoux/documents/Results/Parameters/T2M/SITES/;
/home/users/taudoux/documents/Results/Parameters/LITTERHUM/SITES/;
/home/users/taudoux/documents/Results/Parameters/pH/SITES/.

. The script "script_calcul_pools.ksh" used in order to create files of soil_NH4+, Soil_NO3-, Soil_NOX and Soil_N2O for each site in function of time listed in :
/home/users/taudoux/documents/Results/Pools/SOIL_NH4/SITES/ ;
/home/users/taudoux/documents/Results/Pools/SOIL_NO3/SITES/ ;
/home/users/taudoux/documents/Results/Pools/SOIL_NOX/SITES/ ;
/home/users/taudoux/documents/Results/Pools/SOIL_N2O/SITES/ .

. The Script "script_calcul_emission-deposition.ksh" used in order to create files of NH3 emission and NHX deposition for each site in function of time in :
/home/users/taudoux/documents/Results/Emission-Deposition/NH3_EMISSION/Sites/ ;
/home/users/taudoux/documents/Results/Emission-Deposition/NHX_DEPOSITION/Sites/.

For each parameter are listed :

. Figure of correlation with NH3 emissions (except pH) obtained using "script_calcul_r2.ksh" to obtain the R2 and then bar_plot.py in order to create the figure ;
. Average emission of ammonia on each site in function of the parameter studied using "scatterplot.py" ;
. Text documents in which are listed the different values.

  • Comparison with data used by LMDz-INCA model

path : /home/users/taudoux/documents/Results/Comparison/

Figure, created using "bar_plot_donnees.py", in which for each site are listed the average emission of NH3 for both model.

Average emission of ammonia (g(NH3-N).m⁻².day⁻¹) on each site in function of the parameter considered
Temperature (K) Humidity (-) pH (-) Deposition g(NHx).m-2
SOIL NH4 g(NH4).m-2 SOIL N2O g(N2O).m-2 SOIL NOX g(NOx).m-2 SOIL NO3 g(NO3).m-2


Correlation with NH3 emissions (g(NH3-N).m⁻².day⁻¹)
Temperature (K) Humidity (-) Deposition g(NHx).m-2
SOIL NH4 g(NH4).m-2 SOIL N2O g(N2O).m-2 SOIL NOX g(NOx).m-2 SOIL NO3 g(NO3).m-2


Comparison with LMDz-INCA model's data



Bibliography on ammonia emission factor

Bouwman et al., 1997 : A global high-resolution emission inventory for ammonia
Behera et al., 2013 : Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies.

Evaluation of ammonia emissions results calculated by the model (Fertilizer added)

. Scripts used to generate the files.txt are in the folder :
/home/users/taudoux/documents/Results/B/Script
For the script : script_delta_X.ksh
X depends on the simulation we are analyzing.
arg1= Name of the site
arg2= PFT
arg3= Last Time Step

Others scripts don't need arguments and generate files.txt according to their appellation :
. 0.5 --> Simuls_ratio0.5_v1/ ; 0.8 --> Simuls_ratio0.8_v1/
. e --> EFe/ ; f --> EFf ; g --> EFg etc.

.Scripts python used to generate graphics are in the folder :
/home/users/taudoux/documents/Results/B/barplot_X.py

X depends on the simulation we are analyzing.

. files.txt are in the folders :
/home/users/taudoux/documents/Results/B/Simuls_ratio0.5_v1/
/home/users/taudoux/documents/Results/B/Simuls_ratio0.5_v2/
/home/users/taudoux/documents/Results/B/Simuls_ratio0.8_v1/
/home/users/taudoux/documents/Results/B/Simuls_ratio0.8_v2/
/home/users/taudoux/documents/Results/B/Simuls_ratio_init/
/home/users/taudoux/documents/Results/B/RundBis/

Code was changed : separation of nitrogen input. Initially fertilizer, bnf and atmospheric deposition were in the same loop.

Multiple simulations were run with different amount of fertilizer (0 , 0.015, 0.0225, 0.03, 0.0375, 0.045 , 0.0525, 0.06 and 0.1 g.m-2.day-1). Each simulation were run with two different ratio of NH4 in the fertilizer : 0.5 and 0.8.

We obtain same results when nfert=0 or when nfert is not precised.

  • Sites we looked at and their PFT :
PFT Sites
12 FR-Gri ; DK-Ris ; NL-Lut
13 NL-Lan ; US-Bo1 ; US-Ne1 ; US-Ne2 ; US-Ne3
  • Parameters studied

General path : path : /home/users/taudoux/documents/Results/B/Simul_ratio0.5_v1/ or /home/users/taudoux/documents/Results/B/Simul_ratio0.8_v1/
Temperature, Humidity in the folder Parameters/

Nitrogen Pools (Soil_NH4, Soil_NO3, Soil_NOX and Soil_N2O) and Leaching (NH4 and NO3) in the folder Pools_fluxes/

Emissions (NH3, N2, N2O, NOx) in the folder NH3_EM/

GPP in the folder GPP/

Nitrogen input summed (fertiliser, NHx and NOx depositions) in the folder DEP_FERT/

We looked at how those parameters evolved in each site with the amount of fertilizer with both of ammonium's percentage in the fertilizer (0.5 and 0.8).
Script used : scatterplot_X.py in the folders
/home/users/taudoux/documents/Results/B/Simuls_ratio0.5_v1/Graph/
/home/users/taudoux/documents/Results/B/Simuls_ratio0.8_v1/Graph/
X = em_n2 ; em_n2o ; em_nh3 ; em_nox ; GPP ; leaching_nh4 ; leaching_no3 ; pools_n2 ; pools_n2o ; pools_nh4 ; pools_no3 ; pools_nox.

N2 emission N2O emission NH3 emission NOx emission
0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8
Soil N2 Soil N2O Soil NH4 Soil NOx
0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8
NH4 leaching NO3 leaching Soil NO3 GPP
0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8

Legend :
. Red = DK-Ris
. Yellow = FR-Gri
. Green = NL-Lan
. Blue= NL-Lut
. Black= US-Bo1
. Gray = US-Ne1
. Orange = US-Ne2
. Purple = US-Ne3

We calculated emission factor (EF) of different fluxes of nitrogen (NH3, N2, N2O and NOx emission, but also NH4 and NO3 leaching) with different methods :
. The first (A.) consisted to normalized the fluxes minus emissions when nfert=0 by the amount of fertiliser added ;
. The second (B.) consisted to normalized the fluxes by the amount of fertiliser added ;
. The third (C.) consisted to normalized the fluxes by the amount of all nitrogen inputs.
. The third (C.) consisted to normalized the fluxes by all nitrogen inputs.

  1. EF of each parameters on each site for NH4%=0.5 and 0.8

path : /home/users/taudoux/documents/Results/B/EF/ Python : barplot.py using files.txt in which values of nitrogen emissions and leaching are listed in order to plot EF in function of fertilizer added. arg1= Name of the site
The first (A.) consisted to normalized the fluxes minus emissions when nfert=0 by the amount of fertiliser added.

DK-Ris
0.5 0.8
FR-Gri
0.5 0.8
NL-Lan
0.5 0.8
NL-Lut
0.5 0.8
US-Bo1
0.5 0.8
US-Ne1
0.5 0.8
US-Ne2
0.5 0.8
US-Ne3
0.5 0.8
  1. EF of each parameters on each site for NH4%=0.5 and 0.8

path : /home/users/taudoux/documents/Results/B/EFb/

The second (B.) consisted to normalized the fluxes by the amount of fertiliser added.

DK-Ris
0.5 0.8
FR-Gri
0.5 0.8
NL-Lan
0.5 0.8
NL-Lut
0.5 0.8
US-Bo1
0.5 0.8
US-Ne1
0.5 0.8
US-Ne2
0.5 0.8
US-Ne3
0.5 0.8
  1. EF of each parameters on each site for NH4%=0.5 and 0.8

path : /home/users/taudoux/documents/Results/B/EFc/
Python : barplot_c.py (arg1= Name of the site) using files.txt in which values of nitrogen emissions and leaching are listed in order to plot EF in function of nitrogen inputs (fertilizer, NHx and NOx depositions).

DK-Ris
0.5 0.8
FR-Gri
0.5 0.8
NL-Lan
0.5 0.8
NL-Lut
0.5 0.8
US-Bo1
0.5 0.8
US-Ne1
0.5 0.8
US-Ne2
0.5 0.8
US-Ne3
0.5 0.8

The sum of those EF is not equal to 1 for each site. So we looked at the difference between nitrogen pools (soil_nh4, soil_n2, soil_n2o, soil_no3 and soil_nox) at day1 and nitrogen pools on the last day.

path : /home/users/taudoux/documents/Results/B/EFd/
python : barplot_d.py arg1=name of the site Difference between nitrogen pools normalized by the amount of all nitrogen inputs (fertilizer, NHx and NOx deposition).

DK-Ris
0.5 0.8
FR-Gri
0.5 0.8
NL-Lan
0.5 0.8
NL-Lut
0.5 0.8
US-Bo1
0.5 0.8
US-Ne1
0.5 0.8
US-Ne2
0.5 0.8
US-Ne3
0.5 0.8

In order to know if the loops are closed :
Loop at inorganic nitrogen scale : we stacked in barplot all the nitrogen outputs (N2, N2O, NH3, NOX emissions ; NH4 and NO3 Leaching; NH4 and NO3 Plant Uptake ; difference between nitrogen pools shown previously) divided by all nitrogen inputs (NOX and NHX deposition; Mineralisation but also Fertilizer)
path : /home/users/taudoux/documents/Results/B/EFe/
python : barplot_e.py arg1=name of the site

Values in abscissa are all the nitrogen inputs but the fertilization is for each point : 0 , 54.8 , 82.2 , 109.6 , 140 , 164.4 , 191.8 , 219.2 , 365.25 kg/ha/y.

DK-Ris
0.5 0.8
FR-Gri
0.5 0.8
NL-Lan
0.5 0.8
NL-Lut
0.5 0.8
US-Bo1
0.5 0.8
US-Ne1
0.5 0.8
US-Ne2
0.5 0.8
US-Ne3
0.5 0.8

Loop at ORCHIDEE scale : we stacked in barplot all the nitrogen outputs (N2, N2O, NH3, NOX emissions ; NH4 and NO3 Leaching; ; difference between nitrogen pools shown previously + difference between SOIL_ACTIVE_N , SOIL_SURF_N , SOIL_SLOW_N , SOIL_PASSIVE_N , TOTAL_M_N LITTER_STR_AB_N , LITTER_MET_AB_N , LITTER_STR_BE_N , LITTER_MET_BE_N , LITTER_WOD_AB_N , LITTER_WOD_BE_N); divided by all nitrogen inputs (NOX and NHX deposition and Fertilizer)
path : /home/users/taudoux/documents/Results/B/EFebis/
barplot_ebis.py arg1=name of the site

DK-Ris
0.5 0.8
FR-Gri
0.5 0.8
NL-Lan
0.5 0.8
NL-Lut
0.5 0.8
US-Bo1
0.5 0.8
US-Ne1
0.5 0.8
US-Ne2
0.5 0.8
US-Ne3
0.5 0.8

We can see that there is a problem with NO3 stocks that are continually increasing or leached. It must be a problem with the denitrification. So we looked at the parameterization and saw that a variable called "anvf" takes an important role about denitrifiers. In order to know its effect, we ran a simulation in which this variable was deleted.
Here are the results :
path : /home/users/taudoux/documents/Results/B/EFi/
python : barplot_init.py arg1=name of the site

FR-Gri
0.8
US-Ne1
0.8
US-Ne2
0.8
US-Ne3
0.8

Code was whanged : run_off, the variable "harvest_above_n" were added and the denitrifiers activity was changed (UPPER BOUND).

path of files.txt : /home/users/taudoux/documents/Results/B/Simul We looked again at the differents loops.

Loop at inorganic nitrogen scale : we stacked in barplot all the nitrogen outputs (N2, N2O, NH3, NOX emissions ; NH4 and NO3 Leaching; NH4 and NO3 Plant Uptake ; difference between nitrogen pools shown previously) divided by all nitrogen inputs (NOX and NHX deposition; Mineralisation but also Fertilizer)

path : /home/users/taudoux/documents/Results/B/EFf/ python : barplot_f.py arg1=name of the site

Values in abscissa are all the nitrogen inputs but the fertilization is for each point : 0 , 54.8 , 82.2 , 109.6 , 140 , 164.4 , 191.8 , 219.2 , 365.25 kg/ha/y.

DK-Ris
0.5
FR-Gri
0.5
NL-Lan
0.5
NL-Lut
0.5
US-Bo1
0.5
US-Ne1
0.5
US-Ne2
0.5
US-Ne3
0.5

Loop at ORCHIDEE scale : we stacked in barplot all the nitrogen outputs (N2, N2O, NH3, NOX emissions ; NH4 and NO3 Leaching; ; difference between nitrogen pools shown previously + difference between SOIL_ACTIVE_N , SOIL_SURF_N , SOIL_SLOW_N , SOIL_PASSIVE_N , TOTAL_M_N LITTER_STR_AB_N , LITTER_MET_AB_N , LITTER_STR_BE_N , LITTER_MET_BE_N , LITTER_WOD_AB_N , LITTER_WOD_BE_N) and the variable harvest_above_n; divided by all nitrogen inputs (NOX and NHX deposition and Fertilizer)
path : /home/users/taudoux/documents/Results/B/EFg/
python : barplot_g.py arg1=name of the site

DK-Ris
0.5
FR-Gri
0.5
NL-Lan
0.5
NL-Lut
0.5
US-Bo1
0.5
US-Ne1
0.5
US-Ne2
0.5
US-Ne3
0.5

Code was changed : the denitrifiers activity was changed (LOWER BOUND) path of files.txt : /home/users/taudoux/documents/Results/B/RundBis

We looked again at the differents loops.

Loop at inorganic nitrogen scale : we stacked in barplot all the nitrogen outputs (N2, N2O, NH3, NOX emissions ; NH4 and NO3 Leaching; NH4 and NO3 Plant Uptake ; difference between nitrogen pools shown previously) divided by all nitrogen inputs (NOX and NHX deposition; Mineralisation but also Fertilizer)

path : /home/users/taudoux/documents/Results/B/EFfbis/
python : barplot_fbis.py arg1=name of the site

Values in abscissa are all the nitrogen inputs but the fertilization is for each point : 0 , 54.8 , 82.2 , 109.6 , 140 , 164.4 , 191.8 , 219.2 , 365.25 kg/ha/y.

DK-Ris
0.5
FR-Gri
0.5
NL-Lan
0.5
NL-Lut
0.5
US-Bo1
0.5
US-Ne1
0.5
US-Ne2
0.5
US-Ne3
0.5

Loop at ORCHIDEE scale : we stacked in barplot all the nitrogen outputs (N2, N2O, NH3, NOX emissions ; NH4 and NO3 Leaching; ; difference between nitrogen pools shown previously + difference between SOIL_ACTIVE_N , SOIL_SURF_N , SOIL_SLOW_N , SOIL_PASSIVE_N , TOTAL_M_N LITTER_STR_AB_N , LITTER_MET_AB_N , LITTER_STR_BE_N , LITTER_MET_BE_N , LITTER_WOD_AB_N , LITTER_WOD_BE_N) and the variable harvest_above_n; divided by all nitrogen inputs (NOX and NHX deposition and Fertilizer)

path : /home/users/taudoux/documents/Results/B/EFgbis/
python : barplot_gbis.py arg1=name of the site

DK-Ris
0.5
=|
FR-Gri
0.5
NL-Lan
0.5
NL-Lut
0.5
US-Bo1
0.5
US-Ne1
0.5
US-Ne2
0.5
US-Ne3
0.5

Those results seem to suit good compared to others. So, in order to compare values of the emission with data we can find in the literature we calculate the emission factors of different fluxes. Plot EF in function of nitrogen inputs (fertilizer, NHx and NOx depositions)

path : /home/users/taudoux/documents/Results/B/EFz/
python : barplot_EF.py arg1=name of the site

DK-Ris
0.5
FR-Gri
0.5
NL-Lan
0.5
NL-Lut
0.5
US-Bo1
0.5
US-Ne1
0.5
US-Ne2
0.5
US-Ne3
0.5

Globally, by comparing with the first simulation, we can see that NH3 and NOx Emission Factor decreased in favor of NO3 and NH4 leaching. Moreover, the nitrogen seems to no longer be blocked at the nitrate state making it possible to be denitrified and emitted by N2, N2O, NOx emissions or to be leached as NOx.

Attachments (208)