Changes between Version 11 and Version 12 of Documentation/OrchideeParameters


Ignore:
Timestamp:
2012-12-05T12:00:41+01:00 (11 years ago)
Author:
dsolyga
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • Documentation/OrchideeParameters

    v11 v12  
    66For the version 1.9.6 and after, almost 400 parameters are externalized (but representing more than a thousand possibility) to configure ORCHIDEE.[[BR]] 
    77Some tools were done in order to extract the informations about these parameters. Unhappily, some informations are incomplete. [[BR]] 
    8 Here is given the list of all the parameters classified by flags :  
     8Here is given the list of all the parameters of the trunk rev 1082 classified by flags :  
    99 
    1010 || Config Key|| Config Def || Config Units || Config Desc || Config Help || Config If || 
     
    4343 ||  SPLIT_DT  ||  12  ||  [-]  ||  splits the timestep imposed by the forcing  ||  With this value the time step of the forcing will be devided. In principle this can be run  in explicit mode but it is strongly suggested  to use the implicit method so that the  atmospheric forcing has a smooth evolution.   ||  NOT(WEATHERGEN) ||  
    4444 ||  RELAX_A  ||  1.0  ||  [days?]  ||  Time constant of the relaxation layer  ||  The time constant associated to the atmospheric conditions which are going to be computed  in the relaxed layer. To avoid too much  damping the value should be larger than 1000.   ||  RELAXATION ||  
     45 ||  GET_SLOPE  ||  .FALSE.  ||  [FLAG]  ||  Read slopes from file and do the interpolation  ||  Needed for reading the slopesfile and doing the interpolation. This will be  ||  ||  
    4546 ||  ORCHIDEE_WATCHOUT  ||  n  ||  [FLAG]  ||  ORCHIDEE will write out its forcing to a file  ||  This flag allows to write to a file all the variables which are used to force the land-surface. The file  has exactly the same format than a normal off-line forcing  and thus this forcing can be used for forcing ORCHIDEE.   ||  ||  
    4647 ||  ALLOW_WEATHERGEN  ||  n  ||  [FLAG]  ||  Allow weather generator to create data  ||  This flag allows the forcing-reader to generate synthetic data if the data in the file is too sparse  and the temporal resolution would not be enough to  run the model.   ||   ||  
    47  ||  FORCE_CO2_VEG  ||  n  ||  [FLAG]  ||  Flag to force the value of atmospheric CO2 for vegetation.  ||  If this flag is set to true, the ATM_CO2 parameter is used to prescribe the atmospheric CO2.  This Flag is only use in couple mode.   ||  [-] ||  
    48  ||  FORCE_CO2_VEG  ||  n  ||  [FLAG]  ||  Flag to force the value of atmospheric CO2 for vegetation.  ||  If this flag is set to true, the ATM_CO2 parameter is used to prescribe the atmospheric CO2.  This Flag is only use in couple mode.   ||  [-] ||  
     48 ||  SLOPE_NOREINF  ||  0.5  ||  [-]  ||  See slope_noreinf above  ||  The slope above which there is no reinfiltration  ||  ||  
     49 ||  TOPOGRAPHY_FILE  ||  cartepente2d_15min.nc  ||  [FILE]  ||  Name of file from which the topography map is to be read  ||  The name of the file to be opened to read the orography map is to be given here. Usualy SECHIBA runs with a 2'  map which is derived from the NGDC one.   ||  ||  
    4950 ||  FORCING_FILE  ||  forcing_file.nc  ||  [FILE]   ||  Name of file containing the forcing data  ||  This is the name of the file which should be opened for reading the forcing data of the dim0 model.  The format of the file has to be netCDF and COADS  compliant.   ||  [-] ||  
    5051 ||  CANOPY_MULTILAYER  ||  n  ||  [FLAG]  ||  Use canopy radiative transfer model with multi-layers  ||  set to TRUE if canopy radiative transfer model is with multiple layers   ||  CANOPY_EXTINCTION  ||  
     
    7071 ||  NOx_FERTILIZERS_USE  ||  n  ||  [FLAG]   ||  Calculate NOx emissions with fertilizers use?  ||  set to TRUE if NOx emissions are calculated with fertilizers use Fertilizers use effect on NOx soil emissions   ||  DIFFUCO_OK_INCA  ||  
    7172 ||  NOx_RAIN_PULSE  ||  n  ||  [FLAG]  ||  Calculate NOx emissions with pulse?  ||  set to TRUE if NOx rain pulse is taken into account  ||  DIFFUCO_OK_INCA  ||  
    72  ||  ATM_CO2  ||  350.  ||  [ppm]  ||  Value for atm CO2   ||  Value to prescribe the atm CO2. For pre-industrial simulations, the value is 286.2 .  348. for 1990 year.   ||  FORCE_CO2_VEG (in not forced mode) ||  
    73  ||  ATM_CO2  ||  350.  ||  [ppm]  ||  Value for atm CO2   ||  Value to prescribe the atm CO2. For pre-industrial simulations, the value is 286.2 .  348. for 1990 year.   ||  FORCE_CO2_VEG (in not forced mode) ||  
     73 ||  FLOOD_CRI  ||  2000.  ||  [mm]   ||  Potential height for which all the basin is flooded  ||    ||  DO_FLOODPLAINS or DO_PONDS ||  
     74 ||  POND_CRI  ||  2000.  ||  [mm]   ||  Potential height for which all the basin is a pond  ||    ||  DO_FLOODPLAINS or DO_PONDS ||  
     75 ||  IRRIGATION_FILE  ||  floodplains.nc  ||  [FILE]  ||  Name of file which contains the map of irrigated areas  ||  The name of the file to be opened to read the field with the area in m^2 of the area irrigated within each  0.5 0.5 deg grid box. The map currently used is the one  developed by the Center for Environmental Systems Research  in Kassel (1995).   ||  DO_IRRIGATION OR DO_FLOODPLAINS ||  
     76 ||  CHECK_CWRR  ||  FALSE  ||  [FLAG]  ||  Should we check detailed CWRR water balance ?  ||  This parameters allows the user to check the detailed water balance in each time step  of CWRR.   ||  HYDROL_CWRR ||  
     77 ||  CWRR_A_VANGENUCHTEN  ||  0.0075, 0.0036, 0.0019  ||  [1/mm]    ||  Van genuchten coefficient a  ||  This parameter will be constant over the entire  simulated domain, thus independent from soil  texture.   ||  HYDROL_CWRR ||  
     78 ||  CWRR_N_VANGENUCHTEN  ||  1.89, 1.56, 1.31  ||  [-]  ||  Van genuchten coefficient n  ||  This parameter will be constant over the entire  simulated domain, thus independent from soil  texture.   ||  HYDROL_CWRR ||  
     79 ||  DO_PONDS  ||  FALSE  ||  [FLAG]  ||  Should we include ponds   ||  This parameters allows the user to ask the model to take into account the ponds and return  the water into the soil moisture. If this is  activated, then there is no reinfiltration  computed inside the hydrol module.   ||  HYDROL_CWRR ||  
     80 ||  DRAINAGE_FACTOR_F  ||  1.0, 1.0, 1.0   ||  [-]     ||  Max value of the permeability coeff at the bottom of the soil   ||  This parameter is independent from soil texture for the time being.   ||  HYDROL_CWRR ||  
     81 ||  OK_THROUGHFALL_PFT  ||  FALSE  ||  [FLAG]  ||  Activate use of PERCENT_THROUGHFALL_PFT  ||  If NOT OFF_LINE_MODE it is always TRUE (coupled with a GCM)  ||  HYDROL_CWRR ||  
     82 ||  VWC_FC   ||  0.32, 0.32, 0.32  ||  [-]     ||  Volumetric water content field capacity  ||  This parameter is independent from soil texture for the time being.   ||  HYDROL_CWRR ||  
     83 ||  VWC_MAX_FOR_DRY_ALB  ||  0.1, 0.1, 0.1  ||  [-]     ||  Vol. wat. cont. below which albedo is cst  ||  This parameter is independent from soil texture for the time being.   ||  HYDROL_CWRR ||  
     84 ||  VWC_MIN_FOR_WET_ALB  ||  0.25, 0.25, 0.25  ||  [-]    ||  Vol. wat. cont. above which albedo is cst  ||  This parameter is independent from soil texture for the time being.   ||  HYDROL_CWRR ||  
     85 ||  VWC_RESIDUAL  ||  0.065, 0.078, 0.095  ||  [mm]    ||  Residual soil water content  ||  This parameter will be constant over the entire  simulated domain, thus independent from soil  texture.   ||  HYDROL_CWRR ||  
     86 ||  VWC_SAT  ||  0.41, 0.43, 0.41  ||  [-]    ||  Saturated soil water content  ||  This parameter will be constant over the entire  simulated domain, thus independent from soil  texture.   ||  HYDROL_CWRR ||  
     87 ||  VWC_WP  ||  0.10, 0.10, 0.10   ||  [-]     ||  Volumetric water content Wilting pt  ||  This parameter is independent from soil texture for the time being.   ||  HYDROL_CWRR ||  
     88 ||  WETNESS_TRANSPIR_MAX  ||  0.5, 0.5, 0.5  ||  [-]      ||  Soil moisture above which transpir is max  ||  This parameter is independent from soil texture for the time being.   ||  HYDROL_CWRR ||  
     89 ||  CWRR_AKS_A0   ||  0.53  ||  [-]  ||  fitted value for relation log((n-n0)/(n_ref-n0))   ||   ||  HYDROL_CWRR  ||  
     90 ||  CWRR_AKS_POWER  ||  0.  ||  [-]  ||  fitted value for relation log((n-n0)/(n_ref-n0))   ||   ||  HYDROL_CWRR  ||  
     91 ||  CWRR_KS   ||  1060.8, 249.6, 62.4  ||  [mm/d]     ||  Hydraulic conductivity Saturation  ||  This parameter will be constant over the entire  simulated domain, thus independent from soil  texture.   ||  HYDROL_CWRR  ||  
     92 ||  CWRR_NKS_N0   ||  0.95  ||  [-]  ||  fitted value for relation log((n-n0)/(n_ref-n0))   ||   ||  HYDROL_CWRR  ||  
     93 ||  CWRR_NKS_POWER  ||  0.34  ||  [-]  ||  fitted value for relation log((n-n0)/(n_ref-n0))   ||   ||  HYDROL_CWRR  ||  
     94 ||  KFACT_DECAY_RATE  ||  2.0  ||  [-]  ||  Factor for Ks decay with depth  ||     ||  HYDROL_CWRR  ||  
     95 ||  KFACT_MAX  ||  10.0  ||  [-]  ||  Maximum Factor for Ks increase due to vegetation  ||   ||  HYDROL_CWRR  ||  
     96 ||  KFACT_STARTING_DEPTH  ||  0.3  ||  [-]  ||  Depth for compacted value of Ks   ||     ||  HYDROL_CWRR  ||  
     97 ||  EVAPNU_SOIL  ||  0.0  ||   ||  Bare soil evap on each soil if not found in restart  ||  The initial value of bare soils evap if its value is not found in the restart file. This should only be used if the model is  started without a restart file.   ||  HYDROL_CWRR   ||  
     98 ||  WATER_TO_INFILT  ||  0.0  ||   ||  Water to be infiltrated on top of the soil  ||  The initial value of free drainage if its value is not found in the restart file. This should only be used if the model is  started without a restart file.   ||  HYDROL_CWRR     ||  
     99 ||  FREE_DRAIN_COEF  ||  1.0, 1.0, 1.0  ||   ||  Coefficient for free drainage at bottom  ||  The initial value of free drainage if its value is not found in the restart file. This should only be used if the model is  started without a restart file.   ||  HYDROL_CWRR        ||  
     100 ||  HYDROL_MOISTURE_CONTENT  ||  0.3  ||   ||  Soil moisture on each soil tile and levels  ||  The initial value of mc if its value is not found in the restart file. This should only be used if the model is  started without a restart file.   ||  HYDROL_CWRR        ||  
     101 ||  US_INIT  ||  0.0  ||   ||  US_NVM_NSTM_NSLM  ||  The initial value of us (relative moisture) if its value is not found in the restart file. This should only be used if the model is  started without a restart file.   ||  HYDROL_CWRR        ||  
    74102 ||  HYDROL_TAU_HDIFF  ||  one_day  ||  [seconds]  ||  time scale (s) for horizontal diffusion of water  ||  Defines how fast diffusion occurs horizontally between the individual PFTs' water reservoirs. If infinite, no  diffusion.   ||  HYDROL_OK_HDIFF ||  
    75103 ||  CONDVEG_ALBNIR  ||  0.25  ||  [-]    ||  SW near infrared albedo for the surface  ||  Surface albedo in near infrared wavelengths to be used  on the point if a 0-dim version of SECHIBA is used.  Look at the description of the forcing data for  the correct value.   ||  IMPOSE_AZE ||  
     
    78106 ||  CONDVEG_Z0  ||  0.15  ||  [m]  ||  Surface roughness  ||  Surface rougness to be used on the point if a 0-dim version of SECHIBA is used. Look at the description of the forcing  data for the correct value.   ||  IMPOSE_AZE ||  
    79107 ||  ROUGHHEIGHT  ||  0.0  ||  [m]   ||  Height to be added to the height of the first level  ||  ORCHIDEE assumes that the atmospheric level height is counted from the zero wind level. Thus to take into account the roughness  of tall vegetation we need to correct this by a certain fraction  of the vegetation height. This is called the roughness height in  ORCHIDEE talk.   ||  IMPOSE_AZE ||  
     108 ||  SOILTYPE_CLASSIF  ||  zobler  ||  [-]  ||  Type of classification used for the map of soil types   ||  The classification used in the file that we use here  There are three classification supported:  FAO (3 soil types), Zobler (7 converted to 3) and USDA (12)   ||  !IMPOSE_VEG ||  
    80109 ||  IMPOSE_SOILT  ||  n  ||  [FLAG]  ||  Should the soil type be prescribed ?  ||  This flag allows the user to impose a soil type distribution. It is espacially interesting for 0D  simulations. On the globe it does not make too much sense as  it imposes the same soil everywhere   ||  IMPOSE_VEG ||  
     110 ||  REINF_SLOPE  ||  0.1  ||  [-]  ||  Slope coef for reinfiltration   ||  Determines the reinfiltration ratio in the grid box due to flat areas  ||  IMPOSE_VEG ||  
    81111 ||  SECHIBA_FRAC_NOBIO  ||  0.0  ||  [-]  ||  Fraction of other surface types within the mesh (0-dim mode)  ||  The fraction of ice, lakes, etc. is read from the restart file. If it is not found there we will use the values provided here.  For the moment, there is only ice.   ||  IMPOSE_VEG ||  
    82112 ||  SECHIBA_LAI  ||  0., 8., 8., 4., 4.5, 4.5, 4., 4.5, 4., 2., 2., 2., 2.  ||  [-]  ||  LAI for all vegetation types (0-dim mode)  ||  The maximum LAI used in the 0dim mode. The values should be found in the restart file. The new values of LAI will be computed anyway  at the end of the current day. The need for this variable is caused  by the fact that the model may stop during a day and thus we have not  yet been through the routines which compute the new surface conditions.   ||  IMPOSE_VEG ||  
    83  ||  SECHIBA_VEG  ||  0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0  ||  [-]  ||  Vegetation distribution within the mesh (0-dim mode)  ||  The fraction of vegetation is read from the restart file. If it is not found there we will use the values provided here.   ||  IMPOSE_VEG ||  
    84113 ||  SECHIBA_VEGMAX  ||  0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0  ||  [-]  ||  Maximum vegetation distribution within the mesh (0-dim mode)  ||  The fraction of vegetation is read from the restart file. If it is not found there we will use the values provided here.   ||  IMPOSE_VEG ||  
    85114 ||  CLAY_FRACTION  ||  0.2  ||  [-]   ||  Fraction of the clay fraction (0-dim mode)  ||  Determines the fraction of clay in the grid box.  ||  IMPOSE_VEG and IMPOSE_SOIL ||  
    86  ||  SOIL_FRACTIONS  ||  0.28, 0.52, 0.20  ||  [-]  ||  Fraction of the 3 soil types (0-dim mode)  ||  Determines the fraction for the 3 soil types in the mesh in the following order : sand loam and clay.   ||  IMPOSE_VEG and IMPOSE_SOILT ||  
    87  ||  IRRIGATION_FILE  ||  irrigated.nc  ||  [FILE]  ||  Name of file which contains the map of irrigated areas  ||  The name of the file to be opened to read the field with the area in m^2 of the area irrigated within each  0.5 0.5 deg grid box. The map currently used is the one  developed by the Center for Environmental Systems Research  in Kassel (1995).   ||  IRRIGATE ||  
     115 ||  SOIL_FRACTIONS  ||  undef_sechiba  ||  [-]  ||  Fraction of the 3 soil types (0-dim mode)  ||  Determines the fraction for the 3 soil types in the mesh in the following order : sand loam and clay.   ||  IMPOSE_VEG and IMPOSE_SOILT ||  
    88116 ||  LAI_FILE  ||  lai2D.nc  ||  [FILE]  ||  Name of file from which the vegetation map is to be read  ||  The name of the file to be opened to read the LAI map is to be given here. Usualy SECHIBA runs with a 5kmx5km  map which is derived from a Nicolas VIOVY one.   ||  LAI_MAP ||  
     117 ||  RENORM_LAI  ||  n  ||  [FLAG]  ||  flag to force LAI renormelization  ||  If true, the laimap will be renormalize between llaimin and llaimax parameters.  ||  LAI_MAP ||  
    89118 ||  SLOWPROC_LAI_OLD_INTERPOL  ||  n  ||  [FLAG]  ||  Flag to use old "interpolation" of LAI  ||  If you want to recover the old (ie orchidee_1_2 branch)  "interpolation" of LAI map.   ||  LAI_MAP ||  
    90119 ||  LAND_COVER_CHANGE  ||  n  ||  [FLAG]   ||  treat land use modifications  ||  With this variable, you can use a Land Use map to simulate anthropic modifications such as  deforestation.   ||  LAND_USE ||  
     
    94123 ||  VEGET_YEAR  ||  1  ||  [FLAG]   ||  Year of the land_use vegetation map to be read  ||  First year for landuse vegetation (2D map by pft). If VEGET_YEAR is set to 0, this means there is no time axis.   ||  LAND_USE ||  
    95124 ||  SOILALB_FILE  ||  soils_param.nc  ||  [FILE]  ||  Name of file from which the bare soil albedo  ||  The name of the file to be opened to read the soil types from  which we derive then the bare soil albedos. This file is 1x1  deg and based on the soil colors defined by Wilson and Henderson-Seller.   ||  NOT(IMPOSE_AZE) ||  
    96  ||  SOILTYPE_FILE  ||  soils_param.nc  ||  [FILE]  ||  Name of file from which soil types are read  ||  The name of the file to be opened to read the soil types.  The data from this file is then interpolated to the grid of  of the model. The aim is to get fractions for sand loam and  clay in each grid box. This information is used for soil hydrology  and respiration.   ||  NOT(IMPOSE_VEG) ||  
     125 ||  SOILCLASS_FILE  ||  soils_param.nc  ||  [FILE]  ||  Name of file from which soil types are read  ||  The name of the file to be opened to read the soil types.  The data from this file is then interpolated to the grid of  of the model. The aim is to get fractions for sand loam and  clay in each grid box. This information is used for soil hydrology  and respiration.   ||  NOT(IMPOSE_VEG) ||  
    97126 ||  VEGETATION_FILE  ||  carteveg5km.nc  ||  [FILE]  ||  Name of file from which the vegetation map is to be read  ||  The name of the file to be opened to read the vegetation map is to be given here. Usualy SECHIBA runs with a 5kmx5km  map which is derived from the IGBP one. We assume that we have  a classification in 87 types. This is Olson modified by Viovy.   ||  NOT(IMPOSE_VEG) ||  
    98127 ||  VEGETATION_FILE  ||  carteveg5km.nc  ||  [FILE]  ||  Name of file from which the vegetation map is to be read  ||  The name of the file to be opened to read the vegetation map is to be given here. Usualy SECHIBA runs with a 5kmx5km  map which is derived from the IGBP one. We assume that we have  a classification in 87 types. This is Olson modified by Viovy.   ||  NOT(IMPOSE_VEG) ||  
     
    117146 ||  KO_Q10   ||  0.085   ||  [-]    ||  Exponential factor for calculating Kc and Ko   ||  Exponential factor for calculating the Michaelis-Menten coefficients Kc and Ko   ||  OK_CO2  ||  
    118147 ||  GSOFFSET  ||  0.0, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.03, 0.01, 0.03  ||  [-]   ||  intercept of the gs/A relation (Ball & al.)  ||   ||  OK_CO2 or OK_STOMATE ||  
    119  ||  AVAN  ||  0.0075, 0.0036, 0.0019  ||  [1/mm]    ||  Van genuchten coefficient a  ||    ||  OK_CWRR ||  
    120  ||  FREE_DRAIN_MAX   ||  1.0, 1.0, 1.0   ||  [-]     ||  Max value of the permeability coeff at the bottom of the soil   ||    ||  OK_CWRR ||  
    121  ||  MC_ADRY  ||  0.1, 0.1, 0.1  ||  [-]     ||  Vol. wat. cont. below which albedo is cst  ||    ||  OK_CWRR ||  
    122  ||  MC_AWET  ||  0.25, 0.25, 0.25  ||  [-]     ||  Vol. wat. cont. above which albedo is cst  ||    ||  OK_CWRR ||  
    123  ||  MCF   ||  0.32, 0.32, 0.32  ||  [-]     ||  Volumetric water content field capacity  ||    ||  OK_CWRR ||  
    124  ||  MCR   ||  0.065, 0.078, 0.095  ||  [mm]    ||  Residual soil water content  ||    ||  OK_CWRR ||  
    125  ||  MCS  ||  0.41, 0.43, 0.41  ||  [-]    ||  Saturated soil water content  ||    ||  OK_CWRR ||  
    126  ||  MCW  ||  0.10, 0.10, 0.10   ||  [-]     ||  Volumetric water content Wilting pt  ||    ||  OK_CWRR ||  
    127  ||  NVAN  ||  1.89, 1.56, 1.31  ||  [-]  ||  Van genuchten coefficient n  ||    ||  OK_CWRR ||  
    128  ||  PCENT  ||  0.5, 0.5, 0.5  ||  [-]      ||  Soil moisture above which transpir is max  ||    ||  OK_CWRR ||  
    129  ||  W_TIME   ||  1.  ||  [-]  ||  Time weighting for discretisation  ||    ||  OK_CWRR ||  
    130  ||  KS   ||  1060.8, 249.6, 62.4  ||  [mm/d]     ||  Hydraulic conductivity Saturation  ||    ||  OK_CWRR  ||  
    131148 ||  ANNUAL_INCREASE  ||  y  ||  [FLAG]  ||  for diagnosis of fpc increase, compare today's fpc to last year's maximum (T) or to fpc of last time step (F)?  ||    ||  OK_DGVM ||  
    132149 ||  ESTAB_MAX_GRASS  ||  0.12   ||  [-]    ||  Maximum grass establishment rate  ||    ||  OK_DGVM ||  
     
    142159 ||  MAX_TREE_COVERAGE   ||  0.98  ||  [-]   ||    ||    ||  OK_DGVM  ||  
    143160 ||  RESIDENCE_TIME  ||  undef, 30.0, 30.0, 40.0, 40.0, 40.0, 80.0, 80.0, 80.0, 0.0, 0.0, 0.0, 0.0   ||  [years]  ||  residence time of trees  ||   ||  OK_DGVM and NOT(LPJ_GAP_CONST_MORT) ||  
    144  ||  CROP_COEF   ||  1.5  ||  [-]    ||  Parameter for the Kassel irrigation parametrization linked to the crops  ||  Empirical crop coefficient dependent on vegetation characteristics according to Kassel irrigation parametrization.  When potential transpiration is used this coefficient has another interpretation   ||  OK_ROUTING ||  
    145161 ||  ALB_BARE_MODEL  ||  n  ||  [FLAG]  ||  Switch bare soil albedo dependent (if TRUE) on soil wetness  ||  If TRUE, the model for bare soil albedo is the old formulation. Then it depend on the soil dry or wetness. If FALSE, it is the  new computation that is taken, it is the mean of soil albedo.   ||  OK_SECHIBA ||  
    146162 ||  ALB_ICE  ||  0.60, 0.20  ||  [-]    ||  albedo of ice, VIS+NIR  ||    ||  OK_SECHIBA ||  
     
    150166 ||  CDRAG_FROM_GCM  ||  y  ||  [FLAG]  ||  Keep cdrag coefficient from gcm.  ||  Set to .TRUE. if you want q_cdrag coming from GCM (if q_cdrag on initialization is non zero). Keep cdrag coefficient from gcm for latent and sensible heat fluxes.   ||  OK_SECHIBA ||  
    151167 ||  CHECKTIME  ||  n  ||  [FLAG]  ||  ORCHIDEE will print messages on time  ||  This flag permits to print debug messages on the time.  ||  OK_SECHIBA ||  
     168 ||  CHECK_WATERBAL  ||  FALSE  ||  [FLAG]    ||  Should we check the global water balance   ||  This parameters allows the user to check the integrated water balance at the end  of each time step   ||  OK_SECHIBA ||  
    152169 ||  CONDVEG_SNOWA  ||  1.E+20  ||  [-]  ||  The snow albedo used by SECHIBA  ||  This option allows the user to impose a snow albedo. Default behaviour is to use the model of snow albedo  developed by Chalita (1993).   ||  OK_SECHIBA ||  
    153170 ||  DEW_VEG_POLY_COEFF  ||  0.887773, 0.205673, 0.110112, 0.014843, 0.000824, 0.000017   ||  [-]     ||  coefficients of the polynome of degree 5 for the dew  ||    ||  OK_SECHIBA ||  
    154171 ||  DIFFUCO_LEAFCI  ||  233.  ||  [ppm]  ||  Initial leaf CO2 level if not found in restart  ||  The initial value of leaf_ci if its value is not found in the restart file. This should only be used if the model is  started without a restart file.   ||  OK_SECHIBA ||  
    155172 ||  DIFFUCO_OK_INCA  ||  n  ||  [FLAG]  ||  Activate DIFFUCO_INCA?  ||  set to TRUE if biogenic emissions calculation is to be activated  ||  OK_SECHIBA ||  
     173 ||  DRY_SOIL_HEAT_COND  ||  0.40   ||  [W.m^{-2}.K^{-1}]   ||  Dry soil Thermal Conductivity of soils  ||  Values taken from : PIELKE,'MESOSCALE METEOROLOGICAL MODELING',P.384.  ||  OK_SECHIBA ||  
    156174 ||  HYDROL_CWRR  ||  n  ||  [FLAG]  ||  Allows to switch on the multilayer hydrology of CWRR  ||  This flag allows the user to decide if the vertical hydrology should be treated using the multi-layer  diffusion scheme adapted from CWRR by Patricia de Rosnay.  by default the Choisnel hydrology is used.   ||  OK_SECHIBA ||  
    157  ||  HYDROL_HUMCSTE  ||  5., .4, .4, 1., .8, .8, 1., 1., .8, 4., 1., 4., 1.  ||  [m]  ||  Root profile  ||  Default values were defined for 4 meters soil depth. For 2 meters soil depth, you may use those ones :  5., .8, .8, 1., .8, .8, 1., 1., .8, 4., 4., 4., 4.   ||  OK_SECHIBA ||  
     175 ||  HYDROL_HUMCSTE  ||  5., .4, .4, 1., .8, .8, 1., 1., .8, 4., 1., 4., 1.   ||  [m]  ||  Root profile  ||  Default values were defined for 4 meters soil depth. For 2 meters soil depth, you may use those ones :  5., .8, .8, 1., .8, .8, 1., 1., .8, 4., 4., 4., 4.   ||  OK_SECHIBA ||  
     176 ||  HYDROL_QSV  ||  0.0  ||   ||  Initial water on canopy if not found in restart  ||  The initial value of moisture on canopy if its value  is not found in the restart file. This should only be used if  the model is started without a restart file.   ||  OK_SECHIBA ||  
     177 ||  HYDROL_SNOW  ||  0.0  ||   ||  Initial snow mass if not found in restart  ||  The initial value of snow mass if its value is not found in the restart file. This should only be used if the model is  started without a restart file.   ||  OK_SECHIBA ||  
    158178 ||  HYDROL_SNOW  ||  0.0  ||  [kg/m^2]  ||  Initial snow mass if not found in restart  ||  The initial value of snow mass if its value is not found in the restart file. This should only be used if the model is  started without a restart file.   ||  OK_SECHIBA ||  
     179 ||  HYDROL_SNOWAGE  ||  0.0  ||   ||  Initial snow age if not found in restart  ||  The initial value of snow age if its value is not found in the restart file. This should only be used if the model is  started without a restart file.   ||  OK_SECHIBA ||  
     180 ||  HYDROL_SNOW_NOBIO  ||  0.0  ||   ||  Initial snow amount on ice, lakes, etc. if not found in restart  ||  The initial value of snow if its value is not found in the restart file. This should only be used if the model is  started without a restart file.   ||  OK_SECHIBA ||  
     181 ||  HYDROL_SNOW_NOBIO_AGE  ||  0.0  ||   ||  Initial snow age on ice, lakes, etc. if not found in restart  ||  The initial value of snow age if its value is not found in the restart file. This should only be used if the model is  started without a restart file.   ||  OK_SECHIBA ||  
    159182 ||  IMPOSE_AZE  ||  n  ||  [FLAG]  ||  Should the surface parameters be prescribed  ||  This flag allows the user to impose the surface parameters (Albedo Roughness and Emissivity). It is espacially interesting for 0D  simulations. On the globe it does not make too much sense as  it imposes the same vegetation everywhere   ||  OK_SECHIBA ||  
    160183 ||  IS_BOREAL   ||  n, n, n, n, n, n, y, y, y, n, n, n, n  ||  [BOOLEAN]  ||  Is PFT boreal ?  ||   ||  OK_SECHIBA ||  
     
    186209 ||  SNOW_TRANS  ||  0.3  ||  [m]     ||  Transformation time constant for snow  ||    ||  OK_SECHIBA ||  
    187210 ||  TYPE_OF_LAI  ||  inter, inter, inter, inter, inter, inter, inter, inter, inter, inter, inter, inter, inter  ||  [-]  ||  Type of behaviour of the LAI evolution algorithm   ||   ||  OK_SECHIBA ||  
     211 ||  WET_SOIL_HEAT_CAPACITY  ||  3.03e+6  ||  [J.m^{-3}.K^{-1}]  ||  Wet soil Heat capacity of soils   ||    ||  OK_SECHIBA ||  
    188212 ||  WMAX_VEG  ||  150., 150., 150., 150., 150., 150., 150.,150., 150., 150., 150., 150., 150.  ||  [kg/m^3]  ||  Maximum field capacity for each of the vegetations (Temporary): max quantity of water  ||   ||  OK_SECHIBA ||  
    189213 ||  WRITE_STEP  ||  one_day  ||  [seconds]  ||  Frequency in seconds at which to WRITE output  ||  This variables gives the frequency the output of the model should be written into the netCDF file.  It does not affect the frequency at which the  operations such as averaging are done.  That is IF the coding of the calls to histdef  are correct !   ||  OK_SECHIBA ||  
     
    193217 ||  ALBSOIL_VIS  ||  0.18, 0.16, 0.16, 0.15, 0.12, 0.105, 0.09, 0.075, 0.25  ||  [-]    ||    ||    ||  OK_SECHIBA  ||  
    194218 ||  CLAYFRACTION_DEFAULT  ||  0.2   ||  [-]     ||  default fraction of clay  ||    ||  OK_SECHIBA  ||  
     219 ||  DRY_SOIL_HEAT_CAPACITY  ||  1.80e+6  ||  [J.m^{-3}.K^{-1}]   ||  Dry soil Heat capacity of soils  ||  Values taken from : PIELKE,'MESOSCALE METEOROLOGICAL MODELING',P.384.  ||  OK_SECHIBA  ||  
    195220 ||  HEIGHT_DISPLACEMENT  ||  0.75  ||  [m]    ||  Magic number which relates the height to the displacement height.  ||    ||  OK_SECHIBA  ||  
    196221 ||  HYDROL_BQSB  ||  999999.   ||  [kg/m^2]  ||  Initial restart deep soil moisture if not found in restart  ||  The initial value of deep soil moisture if its value is not found in the restart file. This should only be used if the model is  started without a restart file. Default behaviour is a saturated soil.   ||  OK_SECHIBA  ||  
     
    203228 ||  HYDROL_SNOW_NOBIO  ||  0.0  ||  [m]  ||  Initial snow amount on ice, lakes, etc. if not found in restart  ||  The initial value of snow if its value is not found in the restart file. This should only be used if the model is  started without a restart file.   ||  OK_SECHIBA  ||  
    204229 ||  HYDROL_SNOW_NOBIO_AGE  ||  0.0  ||  [days]  ||  Initial snow age on ice, lakes, etc. if not found in restart  ||  The initial value of snow age if its value is not found in the restart file. This should only be used if the model is  started without a restart file.   ||  OK_SECHIBA  ||  
    205  ||  HYDROL_SOIL_DEPTH  ||  4.  ||  [m]  ||  Total depth of soil reservoir  ||   ||  OK_SECHIBA  ||  
     230 ||  HYDROL_SOIL_DEPTH  ||  4./ 2. (if HYDROL_CWRR)  ||  [m]  ||  Total depth of soil reservoir  ||  By default, ORCHIDEE uses the AR5 configuration (Choisnel-4m).  ||  OK_SECHIBA  ||  
    206231 ||  MIN_VEGFRAC   ||  0.001   ||  [-]    ||  Minimal fraction of mesh a vegetation type can occupy   ||    ||  OK_SECHIBA  ||  
    207  ||  MX_EAU_EAU  ||  150.  ||  [kg/m^3]    ||  Maximum quantity of water   ||    ||  OK_SECHIBA  ||  
    208232 ||  NIR_DRY  ||  0.48, 0.44, 0.40, 0.36, 0.32, 0.28, 0.24, 0.20, 0.55  ||  [-]     ||  The correspondance table for the soil color numbers and their albedo   ||    ||  OK_SECHIBA  ||  
    209233 ||  NIR_WET  ||  0.24, 0.22, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10, 0.31  ||  [-]      ||  The correspondance table for the soil color numbers and their albedo   ||    ||  OK_SECHIBA  ||  
    210234 ||  SECHIBA_QSINT   ||  0.1  ||  [m]  ||  Interception reservoir coefficient  ||  Transforms leaf area index into size of interception reservoir for slowproc_derivvar or stomate   ||  OK_SECHIBA  ||  
     235 ||  SECHIBA_QSINT   ||  0.1  ||  [m]  ||  Interception reservoir coefficient  ||  Transforms leaf area index into size of interception reservoir for slowproc_derivvar or stomate   ||  OK_SECHIBA  ||  
    211236 ||  SECHIBA_restart_in  ||  NONE  ||  [FILE]  ||  Name of restart to READ for initial conditions  ||  This is the name of the file which will be opened to extract the initial values of all prognostic  values of the model. This has to be a netCDF file.  Not truly COADS compliant. NONE will mean that  no restart file is to be expected.   ||  OK_SECHIBA  ||  
    212  ||  SOILTYPE_DEFAULT  ||  0.0, 1.0, 0.0  ||  [-]     ||  Default soil texture distribution in the following order : sand, loam and clay  ||    ||  OK_SECHIBA  ||  
     237 ||  SNOW_DENSITY  ||  330.0  ||  [-]   ||  Snow density for the soil thermodynamics   ||    ||  OK_SECHIBA  ||  
    213238 ||  STEMPDIAG_BID   ||  280.  ||  [K]  ||  only needed for an initial LAI if there is no restart file  ||    ||  OK_SECHIBA  ||  
    214239 ||  STOMATE_OK_CO2  ||  n  ||  [FLAG]  ||  Activate CO2?  ||  set to TRUE if photosynthesis is to be activated  ||  OK_SECHIBA  ||  
     
    216241 ||  TCST_SNOWA  ||  5.0   ||  [days]  ||  Time constant of the albedo decay of snow  ||    ||  OK_SECHIBA  ||  
    217242 ||  VIS_DRY  ||  0.24, 0.22, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10, 0.27  ||  [-]    ||  The correspondance table for the soil color numbers and their albedo   ||    ||  OK_SECHIBA  ||  
     243 ||  WET_SOIL_HEAT_COND  ||  1.89   ||  [W.m^{-2}.K^{-1}]  ||  Wet soil Thermal Conductivity of soils  ||    ||  OK_SECHIBA  ||  
    218244 ||  XC4_1   ||  0.83  ||  [-]     ||  Factor in the first Collatz equation for C4 plants   ||    ||  OK_SECHIBA  ||  
    219245 ||  XC4_2  ||  0.93  ||  [-]     ||  Factor in the second Collatz equation for C4 plants  ||    ||  OK_SECHIBA  ||  
     
    221247 ||  Z0_ICE  ||  0.001  ||  [m]     ||  ice roughness length  ||    ||  OK_SECHIBA  ||  
    222248 ||  Z0_OVER_HEIGHT  ||  1/16.  ||  [-]     ||  to get z0 from height   ||    ||  OK_SECHIBA  ||  
     249 ||  SNOW_HEAT_COND  ||  0.3  ||  [W.m^{-2}.K^{-1}]  ||  Thermal Conductivity of snow  ||    ||  OK_SECHIBA   ||  
    223250 ||  VIS_WET   ||  0.12, 0.11, 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.15  ||  [-]     ||  The correspondance table for the soil color numbers and their albedo  ||    ||  OK_SECHIBA   ||  
    224251 ||  SECHIBA_HISTLEVEL  ||  5  ||  [-]  ||  SECHIBA history output level (0..10)  ||  Chooses the list of variables in the history file.  Values between 0: nothing is written; 10: everything is  written are available More details can be found on the web under documentation.   ||  OK_SECHIBA and HF ||  
    225  ||  EXP_DRAIN  ||  1.5  ||  [-]  ||  The exponential in the diffusion law  ||    ||  OK_SECHIBA and .NOT.(OK_CWRR) ||  
    226  ||  MAX_DRAIN  ||  0.1  ||  [kg/m^2/dt]  ||  Diffusion constant for the fast regime  ||    ||  OK_SECHIBA and .NOT.(OK_CWRR) ||  
    227  ||  MIN_DRAIN  ||  0.001  ||  [kg/m^2/dt]  ||  Diffusion constant for the slow regime  ||    ||  OK_SECHIBA and .NOT.(OK_CWRR) ||  
    228  ||  MIN_RESDIS  ||  2.e-5  ||  [m]  ||  The minimal size we allow for the upper reservoir  ||    ||  OK_SECHIBA and .NOT.(OK_CWRR) ||  
    229  ||  QWILT  ||  5.0  ||  [-]  ||  Wilting point  ||  Has a numerical role for the moment  ||  OK_SECHIBA and .NOT.(OK_CWRR) ||  
    230  ||  RSOL_CSTE  ||  33.E3  ||  [s/m^2]  ||  Constant in the computation of resistance for bare  soil evaporation   ||    ||  OK_SECHIBA and .NOT.(OK_CWRR) ||  
    231  ||  HCRIT_LITTER  ||  0.08   ||  [m]  ||  Scaling depth for litter humidity  ||    ||  OK_SECHIBA and .NOT.(OK_CWRR)  ||  
    232  ||  HYDROL_OK_HDIFF  ||  n  ||  [FLAG]  ||  do horizontal diffusion?  ||  If TRUE, then water can diffuse horizontally between the PFTs' water reservoirs.   ||  OK_SECHIBA and .NOT.(OK_CWRR)   ||  
     252 ||  CHOISNEL_DIFF_EXP  ||  1.5  ||  [-]  ||  The exponential in the diffusion law  ||    ||  OK_SECHIBA and .NOT.(HYDROL_CWRR) ||  
     253 ||  CHOISNEL_DIFF_MAX  ||  0.1  ||  [kg/m^2/dt]  ||  Diffusion constant for the fast regime  ||    ||  OK_SECHIBA and .NOT.(HYDROL_CWRR) ||  
     254 ||  CHOISNEL_DIFF_MIN  ||  0.001  ||  [kg/m^2/dt]  ||  Diffusion constant for the slow regime  ||    ||  OK_SECHIBA and .NOT.(HYDROL_CWRR) ||  
     255 ||  CHOISNEL_RSOL_CSTE  ||  33.E3  ||  [s/m^2]  ||  Constant in the computation of resistance for bare  soil evaporation   ||    ||  OK_SECHIBA and .NOT.(HYDROL_CWRR) ||  
     256 ||  NOBIO_WATER_CAPAC_VOLUMETRI  ||  150.  ||  [s/m^2]  ||    ||    ||  OK_SECHIBA and .NOT.(HYDROL_CWRR) ||  
     257 ||  HCRIT_LITTER  ||  0.08   ||  [m]  ||  Scaling depth for litter humidity  ||    ||  OK_SECHIBA and .NOT.(HYDROL_CWRR)  ||  
     258 ||  HYDROL_OK_HDIFF  ||  n  ||  [FLAG]  ||  do horizontal diffusion?  ||  If TRUE, then water can diffuse horizontally between the PFTs' water reservoirs.   ||  OK_SECHIBA and .NOT.(HYDROL_CWRR)   ||  
    233259 ||  SECHIBA_ZCANOP  ||  0.5  ||  [m]  ||  Soil level used for canopy development (if STOMATE disactivated)  ||  The temperature at this soil depth is used to determine the LAI when STOMATE is not activated.   ||  OK_SECHIBA and .NOT. OK_STOMATE   ||  
    234260 ||  CO2_TMAX_FIX  ||  0., 55., 55., 38., 48., 38.,38., 38., 38., 45., 55., 45., 55.  ||  [C]  ||  values used for photosynthesis tmax when STOMATE is not activated   ||   ||  OK_SECHIBA and NOT(OK_STOMATE) ||  
     
    240266 ||  IS_C3  ||  n, n, n, n, n, n, n, n, n, y, n, y, n  ||  [BOOLEAN]  ||  is PFT C3 ?  ||   ||  OK_SECHIBA, OK_STOMATE ||  
    241267 ||  NATURAL  ||  y, y, y, y, y, y, y, y, y, y, y, n, n   ||  [BOOLEAN]  ||  natural?   ||   ||  OK_SECHIBA, OK_STOMATE ||  
     268 ||  MAXMASS_GLACIER  ||  3000.  ||  [kg/m^2]    ||  The maximum mass of a glacier  ||    ||  OK_SECHIBA or HYDROL_CWRR ||  
     269 ||  SNOWCRI  ||  1.5  ||  [kg/m^2]    ||  Sets the amount above which only sublimation occures   ||    ||  OK_SECHIBA or HYDROL_CWRR ||  
     270 ||  PERCENT_THROUGHFALL_PFT  ||  30. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30.  ||  [%]  ||  Percent by PFT of precip that is not intercepted by the canopy  ||  During one rainfall event, PERCENT_THROUGHFALL_PFT% of the incident rainfall will get directly to the ground without being intercepted, for each PFT.   ||  OK_SECHIBA OR HYDROL_CWRR ||  
    242271 ||  LLAIMIN  ||  0., 8., 0., 4., 4.5, 0., 4., 0., 0., 0., 0., 0., 0.  ||  [m^2/m^2]  ||  laimin for minimum lai(see also type of lai interpolation)  ||  Minimum values of lai used for interpolation of the lai map  ||  OK_SECHIBA or IMPOSE_VEG ||  
    243272 ||  SECHIBA_LAI  ||  0., 8., 8., 4., 4.5, 4.5, 4., 4.5, 4., 2., 2., 2., 2.  ||  [m^2/m^2]  ||  laimax for maximum lai(see also type of lai interpolation)  ||  Maximum values of lai used for interpolation of the lai map  ||  OK_SECHIBA or IMPOSE_VEG ||  
    244  ||  MAXMASS_GLACIER  ||  3000.  ||  [kg/m^2]    ||  The maximum mass of a glacier  ||    ||  OK_SECHIBA or OK_CWRR ||  
    245  ||  SNOWCRI  ||  1.5  ||  [kg/m^2]    ||  Sets the amount above which only sublimation occures   ||    ||  OK_SECHIBA or OK_CWRR ||  
    246  ||  PERCENT_THROUGHFALL_PFT  ||  30. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30.  ||  [%]  ||  Percent by PFT of precip that is not intercepted by the canopy  ||  During one rainfall event, PERCENT_THROUGHFALL_PFT% of the incident rainfall will get directly to the ground without being intercepted, for each PFT.   ||  OK_SECHIBA OR OK_CWRR ||  
    247273 ||  AGRICULTURE  ||  y  ||  [FLAG]  ||  agriculture allowed?  ||  With this variable, you can determine whether agriculture is allowed   ||  OK_SECHIBA or OK_STOMATE ||  
    248274 ||  EXT_COEFF  ||  .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5  ||  [-]  ||  extinction coefficient of the Monsi&Seaki relationship (1953)  ||   ||  OK_SECHIBA or OK_STOMATE ||  
     
    255281 ||  PFT_NAME  ||  bare ground, tropical broad-leaved evergreen, tropical broad-leaved raingreen,   ||  [-]  ||  Name of a PFT  ||  the user can name the new PFTs he/she introducing for new species  ||  OK_SECHIBA or OK_STOMATE ||  
    256282 ||  PFT_TO_MTC  ||  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13  ||  [-]  ||  correspondance array linking a PFT to MTC  ||   ||  OK_SECHIBA or OK_STOMATE ||  
    257  ||  PREF_SOIL_VEG_CLAY  ||  3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1   ||  [-]          ||  Table which contains the correlation between the soil types and vegetation type  ||  third layer of the soil   ||  OK_SECHIBA or OK_STOMATE ||  
    258  ||  PREF_SOIL_VEG_LOAN  ||  2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3  ||  [-]  ||  Table which contains the correlation between the soil types and vegetation type  ||  second layer of the soil  ||  OK_SECHIBA or OK_STOMATE ||  
    259  ||  PREF_SOIL_VEG_SAND  ||  1, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2  ||  [-]  ||  Table which contains the correlation between the soil types and vegetation type  ||  first layer of the soil  ||  OK_SECHIBA or OK_STOMATE ||  
     283 ||  PREF_SOIL_VEG  ||  1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3  ||  [-]          ||  The soil tile number for each vegetation  ||  Gives the number of the soil tile on which we will put each vegetation. This allows to divide the hydrological column   ||  OK_SECHIBA or OK_STOMATE ||  
    260284 ||  ALLOC_MAX  ||  undef, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, undef, undef, undef, undef  ||  [-]  ||  maximum allocation above/below   ||   ||  OK_STOMATE ||  
    261285 ||  ALLOC_MIN  ||  undef, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, undef, undef, undef, undef   ||  [-]  ||  minimum allocation above/below   ||   ||  OK_STOMATE ||  
     
    310334 ||  SENESCENCE_TYPE  ||  none, none, dry, none, none, cold, none, cold, cold, mixed, mixed, mixed, mixed   ||  [-]  ||  type of senescence, tabulated  ||   ||  OK_STOMATE ||  
    311335 ||  SLA  ||  1.5E-2, 1.53E-2, 2.6E-2, 9.26E-3, 2E-2, 2.6E-2, 9.26E-3, 2.6E-2, 1.9E-2, 2.6E-2, 2.6E-2, 2.6E-2, 2.6E-2  ||  [m^2/gC]  ||  specif leaf area   ||   ||  OK_STOMATE ||  
    312  ||  STOMATE_CFORCING_NAME  ||  NONE  ||  [FILE]  ||  Name of STOMATE's carbon forcing file  ||  Name that will be given to STOMATE's carbon offline forcing file  ||  OK_STOMATE ||  
     336 ||  STOMATE_CFORCING_NAME  ||  NONE  ||  [FILE]  ||  Name of STOMATE's carbon forcing file  ||  Name that will be given to STOMATE's carbon offline forcing file  Compatible with Nicolas Viovy's driver  ||  OK_STOMATE ||  
    313337 ||  STOMATE_FORCING_MEMSIZE  ||  50  ||  [MegaBytes]  ||  Size of STOMATE forcing data in memory   ||  This variable determines how many forcing states will be kept in memory.  Must be a compromise between memory  use and frequeny of disk access.   ||  OK_STOMATE ||  
    314  ||  STOMATE_FORCING_NAME  ||  NONE  ||  [FILE]  ||  Name of STOMATE's forcing file  ||  Name that will be given to STOMATE's offline forcing file  ||  OK_STOMATE ||  
     338 ||  STOMATE_FORCING_NAME  ||  NONE  ||  [FILE]  ||  Name of STOMATE's forcing file  ||  Name that will be given to STOMATE's offline forcing file  Compatible with Nicolas Viovy's driver  ||  OK_STOMATE ||  
    315339 ||  STOMATE_HIST_DT  ||  10.  ||  [days]  ||  STOMATE history time step  ||  Time step of the STOMATE history file  ||  OK_STOMATE ||  
    316340 ||  STOMATE_HISTLEVEL  ||  10  ||  [-]  ||  STOMATE history output level (0..10)  ||  0: nothing is written; 10: everything is written  ||  OK_STOMATE ||  
     
    321345 ||  TAU_FRUIT  ||  undef, 90., 90., 90., 90., 90., 90., 90., 90., undef, undef, undef, undef  ||  [days]  ||  fruit lifetime  ||   ||  OK_STOMATE ||  
    322346 ||  TAU_SAP  ||  undef, 730., 730., 730., 730., 730., 730., 730., 730., undef, undef, undef, undef  ||  [days]  ||  sapwood -> heartwood conversion time  ||   ||  OK_STOMATE ||  
    323  ||  TCM_CRIT  ||  undef, undef, undef, 5.0, 15.5, 15.5, -8.0, -8.0, -8.0, undef, undef, undef  ||  [C]  ||  critical tcm, tabulated   ||   ||  OK_STOMATE ||  
     347 ||  TCM_CRIT  ||  undef, undef, undef, 5.0, 15.5, 15.5, -8.0, -8.0, -8.0, undef, undef, undef, undef  ||  [C]  ||  critical tcm, tabulated   ||   ||  OK_STOMATE ||  
    324348 ||  TMIN_CRIT  ||  undef,  0.0, 0.0, -30.0, -14.0, -30.0, -45.0, -45.0, undef, undef, undef, undef, undef  ||  [C]  ||  critical tmin, tabulated  ||    ||  OK_STOMATE ||  
    325349 ||  TOO_LONG   ||  5.  ||  [days]     ||  longest sustainable time without regeneration (vernalization)  ||    ||  OK_STOMATE ||  
     
    434458 ||  PRECIP_CRIT   ||  100.  ||  [mm/year]    ||  minimum precip  ||    ||  OK_STOMATE  ||  
    435459 ||  R0  ||  0.3   ||  [-]    ||  Standard root allocation   ||    ||  OK_STOMATE  ||  
    436  ||  REF_GREFF  ||  0.035  ||  [1/year]    ||    ||    ||  OK_STOMATE  ||  
     460 ||  REF_GREFF  ||  0.035  ||  [1/year]    ||  Asymptotic maximum mortality rate  ||  Set asymptotic maximum mortality rate from Sitch 2003 (they use 0.01) (year^{-1})   ||  OK_STOMATE  ||  
    437461 ||  RESERVE_TIME_GRASS   ||  20.   ||  [days]     ||  maximum time during which reserve is used (grasses)   ||    ||  OK_STOMATE  ||  
    438462 ||  RESERVE_TIME_TREE   ||  30.  ||  [days]      ||  maximum time during which reserve is used (trees)   ||    ||  OK_STOMATE  ||  
     
    464488 ||  DT_WATCHOUT  ||  dt  ||  [seconds]  ||  ORCHIDEE will write out with this frequency  ||  This flag indicates the frequency of the write of the variables.   ||  ORCHIDEE_WATCHOUT ||  
    465489 ||  WATCHOUT_FILE  ||  orchidee_watchout.nc  ||  [FILE]  ||  Filenane for the ORCHIDEE forcing file  ||  This is the name of the file in which the forcing used here will be written for later use.   ||  ORCHIDEE_WATCHOUT ||  
     490 ||  RIVER_DESC_FILE  ||  river_desc.txt  ||  [FILE]  ||  Filename in which we write the description of the rivers. If suffix is ".nc" a netCDF file is created  ||  File name where we will write the information. If the suffix is ".nc" a netCDF file is generated. Else a simple text file will contain some information. The netCDF file is valuable for post-processing the   ||  RIVER_DESC ||  
     491 ||  DO_FLOODINFILT  ||  FALSE  ||  [FLAG]  ||  Should floodplains reinfiltrate into the soil   ||  This parameters allows the user to ask the model to take into account the flood plains reinfiltration  into the soil moisture. It then can go  back to the slow and fast reservoirs   ||  RIVER_ROUTING ||  
     492 ||  DO_PONDS  ||  FALSE  ||  [FLAG]  ||  Should we include ponds   ||  This parameters allows the user to ask the model to take into account the ponds and return  the water into the soil moisture. It then can go  back to the atmopshere. This tried to simulate  little ponds especially in West Africa.   ||  RIVER_ROUTING ||  
     493 ||  DO_SWAMPS  ||  FALSE  ||  [FLAG]  ||  Should we include swamp parameterization   ||  This parameters allows the user to ask the model to take into account the swamps and return  the water into the bottom of the soil. It then can go  back to the atmopshere. This tried to simulate  internal deltas of rivers.   ||  RIVER_ROUTING ||  
     494 ||  FLOOD_BETA  ||  2.0  ||  [-]   ||  Parameter to fix the shape of the floodplain    ||  Parameter to fix the shape of the floodplain (>1 for convex edges, <1 for concave edges)   ||  RIVER_ROUTING ||  
     495 ||  FLOOD_TCST  ||  4.0  ||  [days]  ||  Time constant for the flood reservoir   ||  This parameters allows the user to fix the  time constant (in days) of the flood reservoir  in order to get better river flows for  particular regions.   ||  RIVER_ROUTING ||  
     496 ||  POND_BETAP  ||  0.5  ||  [-]   ||  Ratio of the basin surface intercepted by ponds and the maximum surface of ponds  ||    ||  RIVER_ROUTING ||  
     497 ||  RIVER_DESC  ||  n  ||  [FLAG]  ||  Writes out a description of the rivers  ||  This flag allows to write out a file containing the list of  rivers which are beeing simulated. It provides location of outflow  drainage area, name and ID.   ||  RIVER_ROUTING ||  
    466498 ||  ROUTING_FILE  ||  routing.nc  ||  [FILE]  ||  Name of file which contains the routing information  ||  The file provided here should alow the routing module to read the high resolution grid of basins and the flow direction  from one mesh to the other.   ||  RIVER_ROUTING ||  
    467499 ||  ROUTING_RIVERS  ||  50  ||  [-]  ||  Number of rivers   ||  This parameter chooses the number of largest river basins which should be treated as independently as rivers and not  flow into the oceans as diffusion coastal flow.   ||  RIVER_ROUTING ||  
    468500 ||  ROUTING_TIMESTEP  ||  one_day  ||  [seconds]  ||  Time step of the routing scheme  ||  This values gives the time step in seconds of the routing scheme.  It should be multiple of the main time step of ORCHIDEE. One day  is a good value.   ||  RIVER_ROUTING ||  
    469  ||  DO_FLOODPLAINS  ||  n  ||  [FLAG]  ||  Should we include floodplains   ||  This parameters allows the user to ask the model to take into account the flood plains and return  the water into the soil moisture. It then can go  back to the atmopshere. This tried to simulate  internal deltas of rivers.   ||  RIVER_ROUTING  ||  
     501 ||  STREAM_TCST  ||  FALSE  ||  [days]  ||  Time constant for the stream reservoir   ||  This parameters allows the user to fix the  time constant (in days) of the stream reservoir  in order to get better river flows for  particular regions.   ||  RIVER_ROUTING ||  
     502 ||  SWAMP_CST  ||  0.2  ||  [-]  ||  Fraction of the river that flows back to swamps   ||  This parameters allows the user to fix the  fraction of the river transport  that flows to swamps   ||  RIVER_ROUTING ||  
     503 ||  DO_FLOODPLAINS  ||  n  ||  [FLAG]    ||  Should we include floodplains   ||  This parameters allows the user to ask the model to take into account the flood plains and return  the water into the soil moisture. It then can go  back to the atmopshere. This tried to simulate  internal deltas of rivers.   ||  RIVER_ROUTING  ||  
    470504 ||  DO_IRRIGATION  ||  n  ||  [FLAG]  ||  Should we compute an irrigation flux   ||  This parameters allows the user to ask the model to compute an irigation flux. This performed for the  on very simple hypothesis. The idea is to have a good  map of irrigated areas and a simple function which estimates  the need to irrigate.   ||  RIVER_ROUTING  ||  
     505 ||  FAST_TCST  ||  FALSE  ||  [days]  ||  Time constant for the fast reservoir   ||  This parameters allows the user to fix the  time constant (in days) of the fast reservoir  in order to get better river flows for  particular regions.   ||  RIVER_ROUTING  ||  
     506 ||  SLOW_TCST  ||  FALSE  ||  [days]  ||  Time constant for the slow reservoir   ||  This parameters allows the user to fix the  time constant (in days) of the slow reservoir  in order to get better river flows for  particular regions.   ||  RIVER_ROUTING  ||  
    471507 ||  SECHIBA_HISTLEVEL2  ||  1  ||  [-]   ||  SECHIBA history 2 output level (0..10)  ||  Chooses the list of variables in the history file.  Values between 0: nothing is written; 10: everything is  written are available More details can be found on the web under documentation.  web under documentation.  First level contains all ORCHIDEE outputs.   ||  SECHIBA_HISTFILE2 ||  
    472508 ||  SECHIBA_OUTPUT_FILE2  ||  sechiba_out_2.nc  ||  [FILE]  ||  Name of file in which the output number 2 is going to be written  ||  This file is going to be created by the model and will contain the output 2 from the model.   ||  SECHIBA_HISTFILE2 ||