source: trunk/src/cor30a.pro @ 152

Last change on this file since 152 was 97, checked in by pinsard, 13 years ago

suppress blank lines trailing blank

  • Property svn:executable set to *
File size: 9.7 KB
Line 
1;+
2;
3; ==========
4; cor30a.pro
5; ==========
6;
7; .. function:: cor30a(u,us,ts,t,Qs,Q,Rs,Rl,rain,zi,P,zu,zt,zq,lat,jcool,jwave,twave,hwave)
8;
9; DESCRIPTION
10; ===========
11;
12; COARE v3 algorithm to compute fluxes
13;
14; version with shortened iteration  modified Rt and Rq
15;
16; uses wave information wave period in s and wave ht in m
17; no wave, standard coare 2.6 charnock:  jwave=0
18;
19; Oost et al.  zo=50/2/pi L (u*/c)^4.5 if jwave=1
20;
21; taylor and yelland  zo=1200 h*(L/h)^4.5 jwave=2
22;
23;     :param u: wind speed (m/s)  at height zu (m)
24;     :param us: surface current speed in the wind direction (m/s)
25;     :param ts: bulk water temperature (C) if jcool=1, interface water T if jcool=0
26;     :param t: bulk air temperature (C), height zt
27;     :param Qs: bulk water spec hum (g/kg) if jcool=1, ...
28;     :param Q: bulk air spec hum (g/kg), height zq
29;     :param Rs: downward solar flux (W/m^2)    (modified because of cool skin)
30;     :param Rl: downard IR flux (W/m^2)        (modified because of cool skin)
31;     :param rain: rain rate (mm/hr)
32;     :param zi: PBL depth (m)
33;     :param P: Atmos surface pressure (mb)
34;     :param zu: wind speed measurement height (m)
35;     :param zt: air T measurement height (m)
36;     :param zq: air q measurement height (m)
37;     :param lat: latitude (deg, N=+)
38;     :param jcool: implement cool calculation skin switch, 0=no, 1=yes
39;     :param jwave: implement wave dependent roughness model
40;     :param twave: wave period (s)
41;     :param hwave: wave height (m)
42;
43; EXAMPLES
44; ========
45;
46; ::
47;
48;                  u  us  ts  ta   qs   qa   Qsw IRd   r  pbl  Ps   zu   zt  zq lat
49;
50;    IDL> x=cor30a(5.5,0,28.7,27.2,24.2,18.5,141.,419.,0.,600.,1010.,15.,15.,15.,0.,1,1,5.,1.)
51;
52; Result with these sample values with Matlab code::
53;
54;      8.64830      101.640    0.0352910  2.17780e-05  0.000115000  0.000115000
55;     -29.5800     0.175430   -0.0423670 -0.000205610     0.250950  0.000351300
56;  0.000969740      0.00000  8.11390e-05  0.000997340   0.00121410   0.00121400
57;  0.000941350   0.00107910   0.00107910     0.780060
58;
59; Result obtained with this idl routine::
60;
61;      8.64829      101.640    0.0352913  2.17780e-05  0.000115000  0.000115000
62;     -29.5802     0.175432   -0.0423667 -0.000205610     0.250948  0.000351304
63;  0.000969737      0.00000  8.11394e-05  0.000997343   0.00121407   0.00121400
64;  0.000941351   0.00107908   0.00107908     0.780056
65;
66; Maximum error on any parameter: .002 %    validated!
67;
68; SEE ALSO
69; ========
70;
71; used by :ref:`TropFlux_19890101_20091231.pro`
72;
73; call :func:`psiu`, :func:`psit`.
74;
75; TODO
76; ====
77;
78; coding rules
79;
80; check for the new module provide by pk 20110811 by mail to fp
81; "You can use this coare algorithm in your depositary.  It is same as the one you
82; have, but with some functions activated, which will be useful in the next stage."
83;
84; EVOLUTIONS
85; ==========
86;
87; $Id$
88;
89; $URL$
90;
91; - fplod 20110830T085907Z aedon.locean-ipsl.upmc.fr (Darwin)
92;
93;   * add ug
94;
95; - fplod 20110822T085404Z aedon.locean-ipsl.upmc.fr (Darwin)
96;
97;   * add ref to psiu and psit called her and provided by pk today
98;
99; - fplod 20101214T093615Z aedon.locean-ipsl.upmc.fr (Darwin)
100;
101;   * minimal header
102;
103; - pbk 2008
104;
105;   * creation
106;
107;-
108function cor30a, u,us,ts,t,Qs,Q,Rs,Rl,rain,zi,P,zu,zt,zq,lat,jcool,jwave,twave,hwave
109
110Qs=Qs/1000.
111Q=Q/1000.
112
113;***********   set constants *************
114pi=!pi
115Beta=1.2
116von=0.4
117fdg=1.00
118tdk=273.16
119;grav=grv(lat)
120grav=9.8
121;*************  air constants ************
122Rgas=287.1
123LLe=(2.501-.00237*ts)*1e6
124cpa=1004.67
125cpv=cpa*(1+0.84*Q)
126rhoa=P*100/(Rgas*(t+tdk)*(1+0.61*Q))
127visa=1.326e-5*(1+6.542e-3*t+8.301e-6*t*t-4.84e-9*t*t*t)
128;************  cool skin constants  *******
129Al=2.1e-5*(ts+3.2)^0.79
130be=0.026
131cpw=4000
132rhow=1022
133visw=1e-6
134tcw=0.6
135bigc=16*grav*cpw*(rhow*visw)^3/(tcw*tcw*rhoa*rhoa)
136wetc=0.622*LLe*Qs/(Rgas*(ts+tdk)^2)
137
138;***************   wave parameters  *********
139lwave=grav/2/pi*twave^2
140cwave=grav/2/pi*twave
141
142;**************  compute aux stuff *******
143Rns=Rs*.945
144Rnl=0.97*(5.67e-8*(ts-0.3*jcool+tdk)^4-Rl)
145
146
147
148;***************   Begin bulk loop *******
149
150;***************  first guess ************
151du=u-us
152dt=ts-t-.0098*zt
153dq=Qs-Q
154ta=t+tdk
155ug=0.5
156dter=0.3
157dqer=wetc*dter
158ut=sqrt(du*du+ug*ug)
159u10=ut*alog(10./1e-4)/alog(zu/1e-4)
160usr=.035*u10
161zo10=0.011*usr*usr/grav+0.11*visa/usr
162Cd10=(von/alog(10./zo10))^2
163Ch10=0.00115
164Ct10=Ch10/sqrt(Cd10)
165zot10=10/exp(von/Ct10)
166Cd=(von/alog(zu/zo10))^2
167Ct=von/alog(zt/zot10)
168CC=von*Ct/Cd
169Ribcu=-zu/zi/.004/Beta^3
170Ribu=-grav*zu/ta*((dt-dter*jcool)+.61*ta*dq)/ut^2
171nits=3
172;if (Ribu le 0.) then begin
173;  zetu=CC*Ribu/(1+Ribu/Ribcu)
174;endif else begin
175;  zetu=CC*Ribu*(1+27./9*Ribu/CC)
176;endelse
177sw=(Ribu le 0.)
178zetu=sw*(CC*Ribu/(1+Ribu/Ribcu))+(1-sw)*(CC*Ribu*(1+27./9*Ribu/CC))
179;
180L10=zu/zetu
181;if (zetu gt 50 ) then nits=1
182usr=ut*von/(alog(zu/zo10)-psiu(zu/L10))
183tsr=-(dt-dter*jcool)*von*fdg/(alog(zt/zot10)-psit(zt/L10))
184qsr=-(dq-wetc*dter*jcool)*von*fdg/(alog(zq/zot10)-psit(zq/L10))
185
186tkt=.001
187
188;charn=0.011
189;if (ut gt 10.) then charn=0.011+(ut-10)/(18.-10)*(0.018-0.011)
190;if (ut gt 18.) then charn=0.018
191charn=(((0.011+(ut-10)/(18.-10)*(0.018-0.011)) > .011) < .018)
192;
193
194;***************  bulk loop ************
195for i=1,nits do begin
196  zet=von*grav*zu/ta*(tsr*(1+0.61*Q)+.61*ta*qsr)/(usr*usr)/(1+0.61*Q)
197  case jwave of
198    0: zo=charn*usr*usr/grav+0.11*visa/usr
199    1: zo=50./2/pi*lwave*(usr/cwave)^4.5+0.11*visa/usr ;Oost et al
200    2: zo=1200*hwave*(hwave/lwave)^4.5+0.11*visa/usr  ;Taylor and Yelland
201  endcase
202  rr=zo*usr/visa
203  L=zu/zet
204;zoq=min([1.15e-4,5.5e-5/rr^.6])
205  zoq=(5.5e-5/rr^.6 < 1.15e-4)
206;
207  zot=zoq
208  usr=ut*von/(alog(zu/zo)-psiu(zu/L))
209  tsr=-(dt-dter*jcool)*von*fdg/(alog(zt/zot)-psit(zt/L))
210  qsr=-(dq-wetc*dter*jcool)*von*fdg/(alog(zq/zoq)-psit(zq/L))
211  Bf=-grav/ta*usr*(tsr+.61*ta*qsr)
212;if (Bf gt 0) then begin
213;  ug=Beta*(Bf*zi)^.333
214;endif else begin
215;  ug=.2
216;endelse
217  sw=(Bf gt 0)
218  ug=sw*(Beta*(Bf*zi)^.333)+(1-sw)*.2
219;
220  ut=sqrt(du*du+ug*ug)
221  Rnl=0.97*(5.67e-8*(ts-dter*jcool+tdk)^4-Rl)
222  hsb=-rhoa*cpa*usr*tsr
223  hlb=-rhoa*LLe*usr*qsr
224  qout=Rnl+hsb+hlb
225  dels=Rns*(.065+11*tkt-6.6e-5/tkt*(1-exp(-tkt/8.0e-4)))        ; Eq.16 Shortwave
226  qcol=qout-dels
227  alq=Al*qcol+be*hlb*cpw/LLe                                    ; Eq. 7 Buoy flux water
228
229;  if (alq gt 0) then begin
230;    xlamx=6./(1+(bigc*alq/usr^4)^.75)^.333                     ; Eq 13 Saunders
231;    tkt=xlamx*visw/(sqrt(rhoa/rhow)*usr)                       ;Eq.11 Sub. thk
232;  endif else begin
233;    xlamx=6.0
234;  tkt=min([.01,xlamx*visw/(sqrt(rhoa/rhow)*usr)])              ;Eq.11 Sub. thk
235;    tkt=(xlamx*visw/(sqrt(rhoa/rhow)*usr) < .01)
236;
237;  endelse
238  sw=(alq gt 0)
239  xlamx=sw*(6./(1+(bigc*alq/usr^4)^.75)^.333)+(1-sw)*6.0
240  tkt=sw*(xlamx*visw/(sqrt(rhoa/rhow)*usr))+(1-sw)*(xlamx*visw/(sqrt(rhoa/rhow)*usr) < .01)
241;
242
243  dter=qcol*tkt/tcw ;  Eq.12 Cool skin
244  dqer=wetc*dter
245
246endfor      ;bulk iter loop
247
248tau=rhoa*usr*usr*du/ut                 ;stress
249hsb=-rhoa*cpa*usr*tsr                  ;sens
250hlb=-rhoa*LLe*usr*qsr                  ;lat
251                                       ; net solar Rns
252                                       ; net lw    Rnl
253
254;****************   rain heat flux ********
255dwat=2.11e-5*((t+tdk)/tdk)^1.94                         ;! water vapour diffusivity
256dtmp=(1.+3.309e-3*t-1.44e-6*t*t)*0.02411/(rhoa*cpa)     ;!heat diffusivity
257alfac= 1/(1+(wetc*LLe*dwat)/(cpa*dtmp))                 ;! wet bulb factor
258RF= rain*alfac*cpw*((ts-t-dter*jcool)+(Qs-Q-dqer*jcool)*LLe/cpa)/3600.
259
260
261;y=[[Rns],[-1.*Rnl],[-1.*hlb],[-1.*hsb],[-1.*RF],[tau]]
262
263;****************   Webb et al. correection  ************
264;wbar=1.61*hlb/LLe/(1+1.61*Q)/rhoa+hsb/rhoa/cpa/ta      ;formulation in hlb already includes webb
265;hl_webb=rhoa*wbar*Q*LLe
266;**************   compute transfer coeffs relative to ut @meas. ht **********
267;Cd=tau/rhoa/ut/max([.1,du])
268;Cd=tau/rhoa/ut/(du > .1)
269;
270Ch=-usr*tsr/ut/(dt-dter*jcool)
271Ce=-usr*qsr/(dq-dqer*jcool)/ut
272;************  10-m neutral coeff realtive to ut ********
273;Cdn_10=von*von/alog(10./zo)/alog(10./zo)
274;Chn_10=von*von*fdg/alog(10./zo)/alog(10./zot)
275;Cen_10=von*von*fdg/alog(10./zo)/alog(10./zoq)
276
277y=[[Rns],[-1.*Rnl],[-1.*hlb],[-1.*hsb],[-1.*RF],[tau],[Ch],[Ce],[ug]]
278;y=[hsb,hlb,tau,zo,zot,zoq,L,usr,tsr,qsr,dter,dqer,tkt,RF,wbar,Cd,Ch,Ce,Cdn_10,Chn_10,Cen_10,ug ]
279;   1   2   3   4  5   6  7  8   9  10   11   12  13  14  15  16 17 18    19      20    21  22
280;       hsb=                    sensible heat flux (w/m^2)
281;       hlb=                    latent heat flux (w/m^2)
282;       RF=                     rain heat flux(w/m^2)
283;       wbar=                   webb mean w (m/s)
284;       tau=                    stress (nt/m^2)
285;       zo=                     velocity roughness length (m)
286;       zot                     temperature roughness length (m)
287;       zoq=                    moisture roughness length (m)
288;       L=                      Monin_Obukhov stability length
289;       usr=                    turbulent friction velocity (m/s), including gustiness
290;       tsr                     temperature scaling parameter (K)
291;       qsr                     humidity scaling parameter (g/g)
292;       dter=                   cool skin temperature depression (K)
293;       dqer=                   cool skin humidity depression (g/g)
294;       tkt=                    cool skin thickness (m)
295;       Cd=                     velocity drag coefficient at zu, referenced to u
296;       Ch=                     heat transfer coefficient at zt
297;       Ce=                     moisture transfer coefficient at zq
298;       Cdn_10=                 10-m velocity drag coeeficient, including gustiness
299;       Chn_10=                 10-m heat transfer coeeficient, including gustiness
300;       Cen_10=                 10-m humidity transfer coeeficient, including gustiness
301
302return, y
303
304end
Note: See TracBrowser for help on using the repository browser.