source: trunk/src/cor30a.pro @ 81

Last change on this file since 81 was 81, checked in by pinsard, 13 years ago

progress on swr and olr processing

  • Property svn:executable set to *
File size: 9.5 KB
Line 
1;+
2;
3; ==========
4; cor30a.pro
5; ==========
6;
7; .. function:: cor30a(u,us,ts,t,Qs,Q,Rs,Rl,rain,zi,P,zu,zt,zq,lat,jcool,jwave,twave,hwave)
8;
9; DESCRIPTION
10; ===========
11;
12; COARE v3 algorithm to compute fluxes
13;
14; version with shortened iteration  modified Rt and Rq
15;
16; uses wave information wave period in s and wave ht in m
17; no wave, standard coare 2.6 charnock:  jwave=0
18;
19; Oost et al.  zo=50/2/pi L (u*/c)^4.5 if jwave=1
20;
21; taylor and yelland  zo=1200 h*(L/h)^4.5 jwave=2
22;
23;     :param u: wind speed (m/s)  at height zu (m)
24;     :param us: surface current speed in the wind direction (m/s)
25;     :param ts: bulk water temperature (C) if jcool=1, interface water T if jcool=0
26;     :param t: bulk air temperature (C), height zt
27;     :param Qs: bulk water spec hum (g/kg) if jcool=1, ...
28;     :param Q: bulk air spec hum (g/kg), height zq
29;     :param Rs: downward solar flux (W/m^2)    (modified because of cool skin)
30;     :param Rl: downard IR flux (W/m^2)        (modified because of cool skin)
31;     :param rain: rain rate (mm/hr)
32;     :param zi: PBL depth (m)
33;     :param P: Atmos surface pressure (mb)
34;     :param zu: wind speed measurement height (m)
35;     :param zt: air T measurement height (m)
36;     :param zq: air q measurement height (m)
37;     :param lat: latitude (deg, N=+)
38;     :param jcool: implement cool calculation skin switch, 0=no, 1=yes
39;     :param jwave: implement wave dependent roughness model
40;     :param twave: wave period (s)
41;     :param hwave: wave height (m)
42;
43; EXAMPLES
44; ========
45;
46; ::
47;
48;                  u  us  ts  ta   qs   qa   Qsw IRd   r  pbl  Ps   zu   zt  zq lat
49;
50;    IDL> x=cor30a(5.5,0,28.7,27.2,24.2,18.5,141.,419.,0.,600.,1010.,15.,15.,15.,0.,1,1,5.,1.)
51;
52; Result with these sample values with Matlab code::
53;
54;      8.64830      101.640    0.0352910  2.17780e-05  0.000115000  0.000115000
55;     -29.5800     0.175430   -0.0423670 -0.000205610     0.250950  0.000351300
56;  0.000969740      0.00000  8.11390e-05  0.000997340   0.00121410   0.00121400
57;  0.000941350   0.00107910   0.00107910     0.780060
58;
59; Result obtained with this idl routine::
60;
61;      8.64829      101.640    0.0352913  2.17780e-05  0.000115000  0.000115000
62;     -29.5802     0.175432   -0.0423667 -0.000205610     0.250948  0.000351304
63;  0.000969737      0.00000  8.11394e-05  0.000997343   0.00121407   0.00121400
64;  0.000941351   0.00107908   0.00107908     0.780056
65;
66; Maximum error on any parameter: .002 %    validated!
67;
68; SEE ALSO
69; ========
70;
71; used by :ref:`TropFlux_19890101_20091231.pro`
72;
73; TODO
74; ====
75;
76; coding rules
77;
78; check for the new module provide by pk 20110811 by mail to fp
79; "You can use this coare algorithm in your depositary.  It is same as the one you
80; have, but with some functions activated, which will be useful in the next stage."
81;
82; EVOLUTIONS
83; ==========
84;
85; $Id$
86;
87; $URL$
88;
89; - fplod 20101214T093615Z aedon.locean-ipsl.upmc.fr (Darwin)
90;
91;   * minimal header
92;
93; - pbk 2008
94;
95;   * creation
96;
97;-
98function cor30a, u,us,ts,t,Qs,Q,Rs,Rl,rain,zi,P,zu,zt,zq,lat,jcool,jwave,twave,hwave
99
100Qs=Qs/1000.
101Q=Q/1000.
102
103;***********   set constants *************
104pi=!pi
105Beta=1.2
106von=0.4
107fdg=1.00
108tdk=273.16
109;grav=grv(lat)
110grav=9.8
111;*************  air constants ************
112Rgas=287.1
113LLe=(2.501-.00237*ts)*1e6
114cpa=1004.67
115cpv=cpa*(1+0.84*Q)
116rhoa=P*100/(Rgas*(t+tdk)*(1+0.61*Q))
117visa=1.326e-5*(1+6.542e-3*t+8.301e-6*t*t-4.84e-9*t*t*t)
118;************  cool skin constants  *******
119Al=2.1e-5*(ts+3.2)^0.79
120be=0.026
121cpw=4000
122rhow=1022
123visw=1e-6
124tcw=0.6
125bigc=16*grav*cpw*(rhow*visw)^3/(tcw*tcw*rhoa*rhoa)
126wetc=0.622*LLe*Qs/(Rgas*(ts+tdk)^2)
127
128;***************   wave parameters  *********
129lwave=grav/2/pi*twave^2
130cwave=grav/2/pi*twave
131
132;**************  compute aux stuff *******
133Rns=Rs*.945
134Rnl=0.97*(5.67e-8*(ts-0.3*jcool+tdk)^4-Rl)
135
136
137
138;***************   Begin bulk loop *******
139
140;***************  first guess ************
141du=u-us
142dt=ts-t-.0098*zt
143dq=Qs-Q
144ta=t+tdk
145ug=0.5
146dter=0.3
147dqer=wetc*dter
148ut=sqrt(du*du+ug*ug)
149u10=ut*alog(10./1e-4)/alog(zu/1e-4)
150usr=.035*u10
151zo10=0.011*usr*usr/grav+0.11*visa/usr
152Cd10=(von/alog(10./zo10))^2
153Ch10=0.00115
154Ct10=Ch10/sqrt(Cd10)
155zot10=10/exp(von/Ct10)
156Cd=(von/alog(zu/zo10))^2
157Ct=von/alog(zt/zot10)
158CC=von*Ct/Cd
159Ribcu=-zu/zi/.004/Beta^3
160Ribu=-grav*zu/ta*((dt-dter*jcool)+.61*ta*dq)/ut^2
161nits=3
162;;if (Ribu le 0.) then begin
163;;  zetu=CC*Ribu/(1+Ribu/Ribcu)
164;;endif else begin
165;;  zetu=CC*Ribu*(1+27./9*Ribu/CC)
166;;endelse
167sw=(Ribu le 0.)
168zetu=sw*(CC*Ribu/(1+Ribu/Ribcu))+(1-sw)*(CC*Ribu*(1+27./9*Ribu/CC))
169;;
170L10=zu/zetu
171;;if (zetu gt 50 ) then nits=1
172usr=ut*von/(alog(zu/zo10)-psiu(zu/L10))
173tsr=-(dt-dter*jcool)*von*fdg/(alog(zt/zot10)-psit(zt/L10))
174qsr=-(dq-wetc*dter*jcool)*von*fdg/(alog(zq/zot10)-psit(zq/L10))
175
176tkt=.001
177
178;;charn=0.011
179;;if (ut gt 10.) then charn=0.011+(ut-10)/(18.-10)*(0.018-0.011)
180;;if (ut gt 18.) then charn=0.018
181charn=(((0.011+(ut-10)/(18.-10)*(0.018-0.011)) > .011) < .018)
182;;
183
184;***************  bulk loop ************
185for i=1,nits do begin
186  zet=von*grav*zu/ta*(tsr*(1+0.61*Q)+.61*ta*qsr)/(usr*usr)/(1+0.61*Q)
187  case jwave of
188    0: zo=charn*usr*usr/grav+0.11*visa/usr
189    1: zo=50./2/pi*lwave*(usr/cwave)^4.5+0.11*visa/usr ;Oost et al
190    2: zo=1200*hwave*(hwave/lwave)^4.5+0.11*visa/usr  ;Taylor and Yelland
191  endcase
192  rr=zo*usr/visa
193  L=zu/zet
194;;zoq=min([1.15e-4,5.5e-5/rr^.6])
195  zoq=(5.5e-5/rr^.6 < 1.15e-4)
196;;
197  zot=zoq
198  usr=ut*von/(alog(zu/zo)-psiu(zu/L))
199  tsr=-(dt-dter*jcool)*von*fdg/(alog(zt/zot)-psit(zt/L))
200  qsr=-(dq-wetc*dter*jcool)*von*fdg/(alog(zq/zoq)-psit(zq/L))
201  Bf=-grav/ta*usr*(tsr+.61*ta*qsr)
202;;if (Bf gt 0) then begin
203;;  ug=Beta*(Bf*zi)^.333
204;;endif else begin
205;;  ug=.2
206;;endelse
207  sw=(Bf gt 0)
208  ug=sw*(Beta*(Bf*zi)^.333)+(1-sw)*.2
209;;
210  ut=sqrt(du*du+ug*ug)
211  Rnl=0.97*(5.67e-8*(ts-dter*jcool+tdk)^4-Rl)
212  hsb=-rhoa*cpa*usr*tsr
213  hlb=-rhoa*LLe*usr*qsr
214  qout=Rnl+hsb+hlb
215  dels=Rns*(.065+11*tkt-6.6e-5/tkt*(1-exp(-tkt/8.0e-4)))        ; Eq.16 Shortwave
216  qcol=qout-dels
217  alq=Al*qcol+be*hlb*cpw/LLe                                    ; Eq. 7 Buoy flux water
218
219;;  if (alq gt 0) then begin
220;;    xlamx=6./(1+(bigc*alq/usr^4)^.75)^.333                    ; Eq 13 Saunders
221;;    tkt=xlamx*visw/(sqrt(rhoa/rhow)*usr)                      ;Eq.11 Sub. thk
222;;  endif else begin
223;;    xlamx=6.0
224;;;;  tkt=min([.01,xlamx*visw/(sqrt(rhoa/rhow)*usr)])           ;Eq.11 Sub. thk
225;;    tkt=(xlamx*visw/(sqrt(rhoa/rhow)*usr) < .01)
226;;;;
227;;  endelse
228  sw=(alq gt 0)
229  xlamx=sw*(6./(1+(bigc*alq/usr^4)^.75)^.333)+(1-sw)*6.0
230  tkt=sw*(xlamx*visw/(sqrt(rhoa/rhow)*usr))+(1-sw)*(xlamx*visw/(sqrt(rhoa/rhow)*usr) < .01)
231;;
232
233  dter=qcol*tkt/tcw ;  Eq.12 Cool skin
234  dqer=wetc*dter
235
236endfor      ;bulk iter loop
237
238tau=rhoa*usr*usr*du/ut                 ;stress
239hsb=-rhoa*cpa*usr*tsr                  ;sens
240hlb=-rhoa*LLe*usr*qsr                  ;lat
241                                       ; net solar Rns
242                                       ; net lw    Rnl
243
244;****************   rain heat flux ********
245dwat=2.11e-5*((t+tdk)/tdk)^1.94                         ;! water vapour diffusivity
246dtmp=(1.+3.309e-3*t-1.44e-6*t*t)*0.02411/(rhoa*cpa)     ;!heat diffusivity
247alfac= 1/(1+(wetc*LLe*dwat)/(cpa*dtmp))                 ;! wet bulb factor
248RF= rain*alfac*cpw*((ts-t-dter*jcool)+(Qs-Q-dqer*jcool)*LLe/cpa)/3600.
249
250
251;y=[[Rns],[-1.*Rnl],[-1.*hlb],[-1.*hsb],[-1.*RF],[tau]]
252
253;;****************   Webb et al. correection  ************
254;wbar=1.61*hlb/LLe/(1+1.61*Q)/rhoa+hsb/rhoa/cpa/ta      ;formulation in hlb already includes webb
255;hl_webb=rhoa*wbar*Q*LLe
256;;**************   compute transfer coeffs relative to ut @meas. ht **********
257;;Cd=tau/rhoa/ut/max([.1,du])
258;Cd=tau/rhoa/ut/(du > .1)
259;;;
260Ch=-usr*tsr/ut/(dt-dter*jcool)
261Ce=-usr*qsr/(dq-dqer*jcool)/ut
262;;************  10-m neutral coeff realtive to ut ********
263;Cdn_10=von*von/alog(10./zo)/alog(10./zo)
264;Chn_10=von*von*fdg/alog(10./zo)/alog(10./zot)
265;Cen_10=von*von*fdg/alog(10./zo)/alog(10./zoq)
266
267y=[[Rns],[-1.*Rnl],[-1.*hlb],[-1.*hsb],[-1.*RF],[tau],[Ch],[Ce]]
268;;y=[hsb,hlb,tau,zo,zot,zoq,L,usr,tsr,qsr,dter,dqer,tkt,RF,wbar,Cd,Ch,Ce,Cdn_10,Chn_10,Cen_10,ug ]
269;   1   2   3   4  5   6  7  8   9  10   11   12  13  14  15  16 17 18    19      20    21  22
270;       hsb=                    sensible heat flux (w/m^2)
271;       hlb=                    latent heat flux (w/m^2)
272;       RF=                     rain heat flux(w/m^2)
273;       wbar=                   webb mean w (m/s)
274;       tau=                    stress (nt/m^2)
275;       zo=                     velocity roughness length (m)
276;       zot                     temperature roughness length (m)
277;       zoq=                    moisture roughness length (m)
278;       L=                      Monin_Obukhov stability length
279;       usr=                    turbulent friction velocity (m/s), including gustiness
280;       tsr                     temperature scaling parameter (K)
281;       qsr                     humidity scaling parameter (g/g)
282;       dter=                   cool skin temperature depression (K)
283;       dqer=                   cool skin humidity depression (g/g)
284;       tkt=                    cool skin thickness (m)
285;       Cd=                     velocity drag coefficient at zu, referenced to u
286;       Ch=                     heat transfer coefficient at zt
287;       Ce=                     moisture transfer coefficient at zq
288;       Cdn_10=                 10-m velocity drag coeeficient, including gustiness
289;       Chn_10=                 10-m heat transfer coeeficient, including gustiness
290;       Cen_10=                 10-m humidity transfer coeeficient, including gustiness
291
292return, y
293
294end
Note: See TracBrowser for help on using the repository browser.