Changeset 136


Ignore:
Timestamp:
02/21/12 18:51:10 (12 years ago)
Author:
jv
Message:

Typos, references and captions

Location:
trunk/adm/website
Files:
1 added
4 edited

Legend:

Unmodified
Added
Removed
  • trunk/adm/website/_templates/layout.html

    r131 r136  
    2525<div style="background-color: white; text-align: left; padding: 10px 10px 15px 15px"> 
    2626<p> 
    27 <a href="{{ pathto('overview') }}"><img src="{{pathto("_static/stress_netflux_clim_1989_2010_v3_jv.jpg", 1) }}" border="0" width="70%" alt="tropflux banner"/></a> 
     27<a href="{{ pathto('overview') }}"><img src="{{pathto("_static/stress_netflux_clim_1989_2010_v4_jv.jpg", 1) }}" border="0" width="70%" alt="tropflux banner"/></a> 
    2828</p> 
    2929<p> 
  • trunk/adm/website/motivation.rst

    r127 r136  
    9797:strong:`(McPhaden et al. 2010).` 
    9898 
     99 
     100References 
     101++++++++++++++ 
     102 
     103.. [McPhadenEtAL:Science:2006]_ 
     104 
     105McPhaden, M.J.,S. E. Zebiak, and, M.H. Glantz, 2006: *ENSO as an integrating concept in Earth science*, Science, `doi:10.1126/science.1132588 <http://dx.doi.org/10.1126/science.1132588>`_ 
     106 
     107.. [McPhadenEtAL:JC:2010]_ 
     108 
     109McPhaden, M.J., K. Ando, B. Bourles H.P. Freitag, R. Lumpkin, Y. Masumoto, V.S.N. Murty, P. Nobre, M. Ravichandran, J. Vialard, D. Vousden, and W. Yu, 2010: *The global tropical moored buoy array*, In Proceedings of the "OceanObs'09: Sustained Ocean Observations and Information for Society" Conference (Vol. 2), Venice, Italy, 21-25 September 2009, Hall, J., D.E. Harrison, and D. Stammer, Eds., ESA Publication WPP-306. 
     110 
     111.. [SajiEtAl:Nature:1999]_ 
     112 
     113Saji NH, Goswami BN, Vinayachandran PN, Yamagata T, 1999: *A dipole mode in the tropical Indian Ocean*, Nature, `doi:10.1038/43855 <http://dx.doi.org/10.1038/43855>`_ 
     114 
     115.. [SobelEtAl:NatureGeo:2008]_ 
     116 
     117Sobel, A.H., E.D. Maloney, G. Bellon and D.M. Frierson, 2008: *The role of surface fluxes in tropical intraseasonal oscillations*, Nature Geo., `10.1038/ngeo312 <http://dx.doi.org/10.1038/ngeo312>`_ 
     118 
     119.. [WebsterEtAl:NatureGeo:2008]_ 
     120 
     121Webster, P. J., Moore, A. M, Loschnigg, J. P, and Leben, R. R, 1999: *Coupled oceanic-atmospheric dynamics in the Indian Ocean during 1997-98*, Nature, `doi:10.1038/43848 <http://dx.doi.org/10.1038/43848>`_ 
  • trunk/adm/website/overview.rst

    r129 r136  
    1616.. $Id$ 
    1717.. $URL$ 
     18.. 
     19.. - jv    20120221 
     20.. 
     21..   * correct a few typos 
    1822.. 
    1923.. - fplod 20120219 
     
    4852available for the entire 1979 to September 2011 period. 
    4953We are currently working on a regular (~monthly) update of the 
    50 TropFLux product until 3-4 months behind realtime, which should be 
    51 available by 2012. 
     54TropFlux product until 3-4 months behind realtime, which should be 
     55available in 2012. 
    5256 
    5357TropFlux is largely derived from a combination of 
     
    5559re-analysis data for turbulent and longwave fluxes, and 
    5660`ISCCP <http://isccp.giss.nasa.gov/>`_ 
    57 surface radiation data for the shortwave flux. 
     61surface radiation data for shortwave flux. 
    5862All input products are bias- and amplitude-corrected on the basis of 
    5963`Global Tropical Moored Array <http://www.pmel.noaa.gov/tao/global/global.html>`_ 
     
    8185   updated ISCCP data. 
    8286 
    83 The TropFLux product has been developed under a collaboration between 
     87The TropFlux product has been developed under a collaboration between 
    8488`Institut Pierre Simon Laplace <http://www.ipsl.fr/>`_, France and 
    8589`National Institute of Oceanography/CSIR <http://www.nio.org/>`_, India. 
     90Bilateral scientific visits to France and India have been supported by  
     91`Institut de Recherche pour le Developpement <http://www.ird.fr/>`_, France.  
    8692 
  • trunk/adm/website/selected_results.rst

    r132 r136  
    99.. ==== 
    1010.. 
    11 .. transform all images to figures with caption and legend, rewrite text (jv) 
     11.. Why is there a blank space above figure 1? (jv) 
    1212.. 
    1313.. link to real images (the ones linked here have been provided by jv with no 
     
    2222.. 
    2323.. $URL$ 
     24.. 
     25.. - jv 20120221 
     26.. 
     27..   * image to figure and write all captions, modify text accordingly 
    2428.. 
    2529.. - fplod 20120221 
     
    4953In `Praveen Kumar et al. (2011) <http://www.locean-ipsl.upmc.fr/~tropflux/papers/TropFlux_paper_accepted_r.pdf>`_ and `Praveen Kumar et al. (submitted) <http://www.locean-ipsl.upmc.fr/~tropflux/papers/TropFlux_stress_paper_submitted_r.pdf>`_, we have evaluated various widely used surface heat flux / wind stress products (TropFlux, NCEP, NCEP2, ERA-I and OAFLUX / QuikSCAT) against surface fluxes derived from `global tropical moored buoy array <http://www.pmel.noaa.gov/tao/global/global.html>`_ data. While this does not constitute an independent validation (most of these products use `global tropical moored buoy array <http://www.pmel.noaa.gov/tao/global/global.html>`_ data in their derivation), this is at least a test of the capacity of each product to fit the largest repository of air-sea flux data in the tropics. 
    5054 
    51 .. image:: correlation.png 
     55.. figure:: correlation.png 
     56   :alt: Validation statistics to global tropical moored array data. 
     57   :align: center 
    5258 
    53 This figure shows the correlation and rms-difference of various daily net  
    54 heat flux / wind stress module products to  
    55 `global tropical moored buoy array <http://www.pmel.noaa.gov/tao/global/global.html>`_  
    56 data (computed at each site and then averaged across the sites).  
    57 For both wind stress and net heat fluxes, TropFlux is the product that  
     59   Caption figure 1 : correlation and rms-difference of various daily net 
     60   heat flux / wind stress module products to 
     61   global tropical moored buoy array daily data (computed at each site and then averaged across the sites). 
     62 
     63Figure 1 shows that, for both wind stress and net heat fluxes, TropFlux is the product that  
    5864displays the highest correlation and lowest rms-difference to observations  
    5965(closely followed by OAFlux heat fluxes and ERA-I wind stresses).  
     
    7783   :width: 80% 
    7884 
    79    Caption Figure xx : Net Heat Flux climatology from TropFlux (1989-2010) 
     85   Caption figure 2 : TropFlux net flux climatology (1989-2010). 
    8086 
    81    Legend Figure xx : Net Heat Flux climatology from TropFlux (1989-2010)  
    82  
    83 .. image:: stress_clim_1989_2010_website.jpg 
     87.. figure:: stress_clim_1989_2010_website.jpg 
    8488   :alt: Momentum Flux climatology from TropFlux (1989-2010) 
    8589   :align: center 
    8690   :width: 80% 
    8791 
    88 The two figures above show the 1989-2010 average TropFlux net heat fluxes 
    89 and wind stresses. 
    90 The main pattern visible on the heat flux map in the large heating of the 
     92   Caption figure 3 : TropFlux wind stress climatology (1989-2010). 
     93 
     94The main pattern visible on figure 2 is the large heating of the 
    9195Pacific and Atlantic cold tongues. 
    92 The wind stress maps shows very clearly the easterlies in the Tropical Pacific 
     96Figure 3 shows very clearly the easterlies in the Tropical Pacific 
    9397and Atlantic Oceans, the monsoon flow in the Indian Ocean, and very weak 
    9498winds in convergence zones (western Pacific, equatorial Indian Ocean, 
     
    96100 
    97101 
    98 .. image:: std_netflux_ano_1989_2010_website.jpg 
     102.. figure:: std_netflux_ano_1989_2010_website.jpg 
    99103   :alt: Std of monthly Net Heat Flux anomaly from TropFlux (1989-2010) 
    100104   :align: center  
    101105   :width: 80% 
    102106 
    103 .. image:: std_taux_ano_1989_2010_website.jpg 
     107   Caption figure 4 : Standard deviation of TropFlux net heat flux monthly anomalies  
     108   with respect to the mean seasonal cycle (1989-2010). 
     109 
     110.. figure:: std_taux_ano_1989_2010_website.jpg 
    104111   :alt: Std of monthly zonal wind stress anomaly from TropFlux (1989-2010) 
    105112   :align: center 
    106113   :width: 80% 
    107114 
    108 The two maps above show the standard deviation of monthly anomalies with 
    109 respect to the seasonal cycle (low frequency non-seasonal variability, 
    110 i.e. interannual variability). 
     115   Caption figure 5 : Standard deviation of TropFlux wind stress monthly anomalies  
     116   with respect to the mean seasonal cycle (1989-2010). 
     117 
     118Figures 4 and 5 show low frequency non-seasonal variability (i.e. interannual variability). 
    111119There is of course increased variance toward mid-latitudes due to the effect 
    112120of midlatitude stochastic forcing. But interannual wind stress and heat flux 
     
    115123In the eastern equatorial Indian ocean, there is also a clear interannual 
    116124wind stress variability associated with the Indian Ocean Dipole and remote 
    117 response to El Niño. 
     125response to El Nino. 
    118126 
    119 .. image:: interseasonal.png 
     127Intraseasonal variability 
     128+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
    120129 
    121 Finally, the figure to the right is an illustration of intraseasonal surface 
     130.. figure:: interseasonal.png 
     131   :alt: Wind stress and net heat flux perturbations associated with monsoon active/break phases.  
     132   :align: center 
     133 
     134   Caption figure 6 : 7-day low-passed a) Outgoing longwave radiation (a proxy of deep 
     135   atmospheric convection), b) wind stress and c) net air-sea flux at 
     136   the 15°N, 90°E RAMA mooring during the 2009 monsoon. 
     137   Low values in the first panel indicate deep atmospheric convection (monsoon 
     138   active phases, roughly outlined from the grey stripes). 
     139   The rain rate measured by the mooring is shown in red on panel a. 
     140   Panels b and c show the 
     141   `RAMA <http://www.pmel.noaa.gov/tao/rama/>`_ mooring-derived air-sea 
     142   fluxes estimates (thick, red curve) and estimates from the 
     143   other products in various colors. 
     144   The root-mean square difference of each product with TPR is indicated on panel 
     145   b (in  :math:`N.m^-2`) and c (in  :math:`W.m^-2`). 
     146 
     147Finally, figure 6 is an illustration of intraseasonal surface 
    122148fluxes variations captured by the TropFlux (and other) products. 
    123 It shows 7-day low-passed a) Outgoing longwave radiation (a proxy of deep 
    124 atmospheric convection), b) wind stress and c) net air-sea flux at 
    125 the 15°N, 90°E RAMA mooring during the 2009 monsoon. 
    126 Low values in the first panel indicate deep atmospheric convection (monsoon 
    127 active phases, roughly outlined from the grey stripes). 
    128 The rain rate measured by the mooring is shown in red on panel a. 
    129 Panels b and c show the 
    130 `RAMA <http://www.pmel.noaa.gov/tao/rama/>`_ mooring-derived air-sea 
    131 fluxes estimates (thick, red curve) and estimates from the 
    132 other products in various colors. 
    133 The root-mean square difference of each product with TPR is indicated on panel 
    134 b (in  :math:`N.m^-2`) and c (in  :math:`W.m^-2`). 
    135  
    136149The summer monsoon is associated with intraseasonal variations of the 
    137150convection, at a quasi bi-weekly and at a 30-50 days timescale 
     
    140153the Bay of Bengal (e.g. Vialard et al. 2012), which may feedback on the 
    141154atmospheric convection (e.g. Sobel et al. 2008). 
    142 The grey stripes on the figure are associated with "active" periods of 
     155The grey stripes on figure 6 are associated with "active" periods of 
    143156intense convection (local minima in OLR values). 
    144157During these periods, there are strong winds in the Bay of Bengal that result 
Note: See TracChangeset for help on using the changeset viewer.