1 | MODULE sbcrnf |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE sbcrnf *** |
---|
4 | !! Ocean forcing: river runoff |
---|
5 | !!===================================================================== |
---|
6 | !! History : OPA ! 2000-11 (R. Hordoir, E. Durand) NetCDF FORMAT |
---|
7 | !! NEMO 1.0 ! 2002-09 (G. Madec) F90: Free form and module |
---|
8 | !! 3.0 ! 2006-07 (G. Madec) Surface module |
---|
9 | !! 3.2 ! 2009-04 (B. Lemaire) Introduce iom_put |
---|
10 | !! 3.3 ! 2010-10 (R. Furner, G. Madec) runoff distributed over ocean levels |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | !! sbc_rnf : monthly runoffs read in a NetCDF file |
---|
15 | !! sbc_rnf_init : runoffs initialisation |
---|
16 | !! rnf_mouth : set river mouth mask |
---|
17 | !!---------------------------------------------------------------------- |
---|
18 | USE dom_oce ! ocean space and time domain |
---|
19 | USE phycst ! physical constants |
---|
20 | USE sbc_oce ! surface boundary condition variables |
---|
21 | USE sbcisf ! PM we could remove it I think |
---|
22 | USE closea ! closed seas |
---|
23 | USE fldread ! read input field at current time step |
---|
24 | USE in_out_manager ! I/O manager |
---|
25 | USE iom ! I/O module |
---|
26 | USE lib_mpp ! MPP library |
---|
27 | USE eosbn2 |
---|
28 | USE wrk_nemo ! Memory allocation |
---|
29 | |
---|
30 | IMPLICIT NONE |
---|
31 | PRIVATE |
---|
32 | |
---|
33 | PUBLIC sbc_rnf ! routine call in sbcmod module |
---|
34 | PUBLIC sbc_rnf_div ! routine called in divcurl module |
---|
35 | PUBLIC sbc_rnf_alloc ! routine call in sbcmod module |
---|
36 | PUBLIC sbc_rnf_init ! (PUBLIC for TAM) |
---|
37 | ! !!* namsbc_rnf namelist * |
---|
38 | CHARACTER(len=100) :: cn_dir !: Root directory for location of rnf files |
---|
39 | LOGICAL :: ln_rnf_depth !: depth river runoffs attribute specified in a file |
---|
40 | LOGICAL :: ln_rnf_depth_ini !: depth river runoffs computed at the initialisation |
---|
41 | REAL(wp) :: rn_rnf_max !: maximum value of the runoff climatologie ( ln_rnf_depth_ini = .true ) |
---|
42 | REAL(wp) :: rn_dep_max !: depth over which runoffs is spread ( ln_rnf_depth_ini = .true ) |
---|
43 | INTEGER :: nn_rnf_depth_file !: create (=1) a runoff depth file or not (=0) |
---|
44 | LOGICAL :: ln_rnf_tem !: temperature river runoffs attribute specified in a file |
---|
45 | LOGICAL , PUBLIC :: ln_rnf_sal !: salinity river runoffs attribute specified in a file |
---|
46 | TYPE(FLD_N) , PUBLIC :: sn_rnf !: information about the runoff file to be read |
---|
47 | TYPE(FLD_N) :: sn_cnf !: information about the runoff mouth file to be read |
---|
48 | TYPE(FLD_N) :: sn_s_rnf !: information about the salinities of runoff file to be read |
---|
49 | TYPE(FLD_N) :: sn_t_rnf !: information about the temperatures of runoff file to be read |
---|
50 | TYPE(FLD_N) :: sn_dep_rnf !: information about the depth which river inflow affects |
---|
51 | LOGICAL , PUBLIC :: ln_rnf_mouth !: specific treatment in mouths vicinity |
---|
52 | REAL(wp) :: rn_hrnf !: runoffs, depth over which enhanced vertical mixing is used |
---|
53 | REAL(wp) , PUBLIC :: rn_avt_rnf !: runoffs, value of the additional vertical mixing coef. [m2/s] |
---|
54 | REAL(wp) , PUBLIC :: rn_rfact !: multiplicative factor for runoff |
---|
55 | |
---|
56 | LOGICAL , PUBLIC :: l_rnfcpl = .false. ! runoffs recieved from oasis |
---|
57 | |
---|
58 | INTEGER , PUBLIC :: nkrnf = 0 !: nb of levels over which Kz is increased at river mouths |
---|
59 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rnfmsk !: river mouth mask (hori.) |
---|
60 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: rnfmsk_z !: river mouth mask (vert.) |
---|
61 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: h_rnf !: depth of runoff in m |
---|
62 | INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: nk_rnf !: depth of runoff in model levels |
---|
63 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: rnf_tsc_b, rnf_tsc !: before and now T & S runoff contents [K.m/s & PSU.m/s] |
---|
64 | |
---|
65 | TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_rnf ! structure: river runoff (file information, fields read) |
---|
66 | TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_s_rnf ! structure: river runoff salinity (file information, fields read) |
---|
67 | TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_t_rnf ! structure: river runoff temperature (file information, fields read) |
---|
68 | |
---|
69 | !! * Substitutions |
---|
70 | # include "domzgr_substitute.h90" |
---|
71 | !!---------------------------------------------------------------------- |
---|
72 | !! NEMO/OPA 3.3 , NEMO Consortium (2010) |
---|
73 | !! $Id: sbcrnf.F90 7963 2017-04-24 16:28:04Z clem $ |
---|
74 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
75 | !!---------------------------------------------------------------------- |
---|
76 | CONTAINS |
---|
77 | |
---|
78 | INTEGER FUNCTION sbc_rnf_alloc() |
---|
79 | !!---------------------------------------------------------------------- |
---|
80 | !! *** ROUTINE sbc_rnf_alloc *** |
---|
81 | !!---------------------------------------------------------------------- |
---|
82 | ALLOCATE( rnfmsk(jpi,jpj) , rnfmsk_z(jpk) , & |
---|
83 | & h_rnf (jpi,jpj) , nk_rnf (jpi,jpj) , & |
---|
84 | & rnf_tsc_b(jpi,jpj,jpts) , rnf_tsc (jpi,jpj,jpts) , STAT=sbc_rnf_alloc ) |
---|
85 | ! |
---|
86 | IF( lk_mpp ) CALL mpp_sum ( sbc_rnf_alloc ) |
---|
87 | IF( sbc_rnf_alloc > 0 ) CALL ctl_warn('sbc_rnf_alloc: allocation of arrays failed') |
---|
88 | END FUNCTION sbc_rnf_alloc |
---|
89 | |
---|
90 | |
---|
91 | SUBROUTINE sbc_rnf( kt ) |
---|
92 | !!---------------------------------------------------------------------- |
---|
93 | !! *** ROUTINE sbc_rnf *** |
---|
94 | !! |
---|
95 | !! ** Purpose : Introduce a climatological run off forcing |
---|
96 | !! |
---|
97 | !! ** Method : Set each river mouth with a monthly climatology |
---|
98 | !! provided from different data. |
---|
99 | !! CAUTION : upward water flux, runoff forced to be < 0 |
---|
100 | !! |
---|
101 | !! ** Action : runoff updated runoff field at time-step kt |
---|
102 | !!---------------------------------------------------------------------- |
---|
103 | INTEGER, INTENT(in) :: kt ! ocean time step |
---|
104 | ! |
---|
105 | INTEGER :: ji, jj ! dummy loop indices |
---|
106 | INTEGER :: z_err = 0 ! dummy integer for error handling |
---|
107 | !!---------------------------------------------------------------------- |
---|
108 | REAL(wp), DIMENSION(:,:), POINTER :: ztfrz ! freezing point used for temperature correction |
---|
109 | ! |
---|
110 | CALL wrk_alloc( jpi,jpj, ztfrz) |
---|
111 | ! |
---|
112 | ! !-------------------! |
---|
113 | ! ! Update runoff ! |
---|
114 | ! !-------------------! |
---|
115 | ! |
---|
116 | IF( .NOT. l_rnfcpl ) CALL fld_read ( kt, nn_fsbc, sf_rnf ) ! Read Runoffs data and provide it at kt |
---|
117 | IF( ln_rnf_tem ) CALL fld_read ( kt, nn_fsbc, sf_t_rnf ) ! idem for runoffs temperature if required |
---|
118 | IF( ln_rnf_sal ) CALL fld_read ( kt, nn_fsbc, sf_s_rnf ) ! idem for runoffs salinity if required |
---|
119 | ! |
---|
120 | IF( MOD( kt - 1, nn_fsbc ) == 0 ) THEN |
---|
121 | ! |
---|
122 | IF( .NOT. l_rnfcpl ) rnf(:,:) = rn_rfact * ( sf_rnf(1)%fnow(:,:,1) ) ! updated runoff value at time step kt |
---|
123 | ! |
---|
124 | ! ! set temperature & salinity content of runoffs |
---|
125 | IF( ln_rnf_tem ) THEN ! use runoffs temperature data |
---|
126 | rnf_tsc(:,:,jp_tem) = ( sf_t_rnf(1)%fnow(:,:,1) ) * rnf(:,:) * r1_rau0 |
---|
127 | WHERE( sf_t_rnf(1)%fnow(:,:,1) == -999._wp ) ! if missing data value use SST as runoffs temperature |
---|
128 | rnf_tsc(:,:,jp_tem) = sst_m(:,:) * rnf(:,:) * r1_rau0 |
---|
129 | END WHERE |
---|
130 | WHERE( sf_t_rnf(1)%fnow(:,:,1) == -222._wp ) ! where fwf comes from melting of ice shelves or iceberg |
---|
131 | ztfrz(:,:) = -1.9 !tfreez( sss_m(:,:) ) !PM to be discuss (trouble if sensitivity study) |
---|
132 | rnf_tsc(:,:,jp_tem) = ztfrz(:,:) * rnf(:,:) * r1_rau0 - rnf(:,:) * lfusisf * r1_rau0_rcp |
---|
133 | END WHERE |
---|
134 | ELSE ! use SST as runoffs temperature |
---|
135 | ! rnf_tsc(:,:,jp_tem) = sst_m(:,:) * rnf(:,:) * r1_rau0 |
---|
136 | rnf_tsc(:,:,jp_tem) = MAX( sst_m(:,:), 0._wp ) * rnf(:,:) * r1_rau0 |
---|
137 | ENDIF |
---|
138 | ! ! use runoffs salinity data |
---|
139 | IF( ln_rnf_sal ) rnf_tsc(:,:,jp_sal) = ( sf_s_rnf(1)%fnow(:,:,1) ) * rnf(:,:) * r1_rau0 |
---|
140 | ! ! else use S=0 for runoffs (done one for all in the init) |
---|
141 | IF( iom_use('runoffs') ) CALL iom_put( 'runoffs' , rnf(:,:) ) ! output runoff mass flux |
---|
142 | IF( iom_use('hflx_rnf_cea') ) CALL iom_put( 'hflx_rnf_cea', rnf_tsc(:,:,jp_tem) * rau0 * rcp ) ! output runoff sensible heat (W/m2) |
---|
143 | ENDIF |
---|
144 | ! |
---|
145 | ! ! ---------------------------------------- ! |
---|
146 | IF( kt == nit000 ) THEN ! set the forcing field at nit000 - 1 ! |
---|
147 | ! ! ---------------------------------------- ! |
---|
148 | IF( ln_rstart .AND. & !* Restart: read in restart file |
---|
149 | & iom_varid( numror, 'rnf_b', ldstop = .FALSE. ) > 0 ) THEN |
---|
150 | IF(lwp) WRITE(numout,*) ' nit000-1 runoff forcing fields red in the restart file' |
---|
151 | CALL iom_get( numror, jpdom_autoglo, 'rnf_b', rnf_b ) ! before runoff |
---|
152 | CALL iom_get( numror, jpdom_autoglo, 'rnf_hc_b', rnf_tsc_b(:,:,jp_tem) ) ! before heat content of runoff |
---|
153 | CALL iom_get( numror, jpdom_autoglo, 'rnf_sc_b', rnf_tsc_b(:,:,jp_sal) ) ! before salinity content of runoff |
---|
154 | ELSE !* no restart: set from nit000 values |
---|
155 | IF(lwp) WRITE(numout,*) ' nit000-1 runoff forcing fields set to nit000' |
---|
156 | rnf_b (:,: ) = rnf (:,: ) |
---|
157 | rnf_tsc_b(:,:,:) = rnf_tsc(:,:,:) |
---|
158 | ENDIF |
---|
159 | ENDIF |
---|
160 | ! ! ---------------------------------------- ! |
---|
161 | IF( lrst_oce ) THEN ! Write in the ocean restart file ! |
---|
162 | ! ! ---------------------------------------- ! |
---|
163 | IF(lwp) WRITE(numout,*) |
---|
164 | IF(lwp) WRITE(numout,*) 'sbcrnf : runoff forcing fields written in ocean restart file ', & |
---|
165 | & 'at it= ', kt,' date= ', ndastp |
---|
166 | IF(lwp) WRITE(numout,*) '~~~~' |
---|
167 | CALL iom_rstput( kt, nitrst, numrow, 'rnf_b' , rnf ) |
---|
168 | CALL iom_rstput( kt, nitrst, numrow, 'rnf_hc_b', rnf_tsc(:,:,jp_tem) ) |
---|
169 | CALL iom_rstput( kt, nitrst, numrow, 'rnf_sc_b', rnf_tsc(:,:,jp_sal) ) |
---|
170 | ENDIF |
---|
171 | ! |
---|
172 | CALL wrk_dealloc( jpi,jpj, ztfrz) |
---|
173 | ! |
---|
174 | END SUBROUTINE sbc_rnf |
---|
175 | |
---|
176 | |
---|
177 | SUBROUTINE sbc_rnf_div( phdivn ) |
---|
178 | !!---------------------------------------------------------------------- |
---|
179 | !! *** ROUTINE sbc_rnf *** |
---|
180 | !! |
---|
181 | !! ** Purpose : update the horizontal divergence with the runoff inflow |
---|
182 | !! |
---|
183 | !! ** Method : |
---|
184 | !! CAUTION : rnf is positive (inflow) decreasing the |
---|
185 | !! divergence and expressed in m/s |
---|
186 | !! |
---|
187 | !! ** Action : phdivn decreased by the runoff inflow |
---|
188 | !!---------------------------------------------------------------------- |
---|
189 | REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: phdivn ! horizontal divergence |
---|
190 | !! |
---|
191 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
192 | REAL(wp) :: zfact ! local scalar |
---|
193 | !!---------------------------------------------------------------------- |
---|
194 | ! |
---|
195 | zfact = 0.5_wp |
---|
196 | ! |
---|
197 | IF( ln_rnf_depth .OR. ln_rnf_depth_ini ) THEN !== runoff distributed over several levels ==! |
---|
198 | IF( lk_vvl ) THEN ! variable volume case |
---|
199 | DO jj = 1, jpj ! update the depth over which runoffs are distributed |
---|
200 | DO ji = 1, jpi |
---|
201 | h_rnf(ji,jj) = 0._wp |
---|
202 | DO jk = 1, nk_rnf(ji,jj) ! recalculates h_rnf to be the depth in metres |
---|
203 | h_rnf(ji,jj) = h_rnf(ji,jj) + fse3t(ji,jj,jk) ! to the bottom of the relevant grid box |
---|
204 | END DO |
---|
205 | ! ! apply the runoff input flow |
---|
206 | DO jk = 1, nk_rnf(ji,jj) |
---|
207 | phdivn(ji,jj,jk) = phdivn(ji,jj,jk) - ( rnf(ji,jj) + rnf_b(ji,jj) ) * zfact * r1_rau0 / h_rnf(ji,jj) |
---|
208 | END DO |
---|
209 | END DO |
---|
210 | END DO |
---|
211 | ELSE ! constant volume case : just apply the runoff input flow |
---|
212 | DO jj = 1, jpj |
---|
213 | DO ji = 1, jpi |
---|
214 | DO jk = 1, nk_rnf(ji,jj) |
---|
215 | phdivn(ji,jj,jk) = phdivn(ji,jj,jk) - ( rnf(ji,jj) + rnf_b(ji,jj) ) * zfact * r1_rau0 / h_rnf(ji,jj) |
---|
216 | END DO |
---|
217 | END DO |
---|
218 | END DO |
---|
219 | ENDIF |
---|
220 | ELSE !== runoff put only at the surface ==! |
---|
221 | IF( lk_vvl ) THEN ! variable volume case |
---|
222 | h_rnf(:,:) = fse3t(:,:,1) ! recalculate h_rnf to be depth of top box |
---|
223 | ENDIF |
---|
224 | phdivn(:,:,1) = phdivn(:,:,1) - ( rnf(:,:) + rnf_b(:,:) ) * zfact * r1_rau0 / fse3t(:,:,1) |
---|
225 | ENDIF |
---|
226 | ! |
---|
227 | END SUBROUTINE sbc_rnf_div |
---|
228 | |
---|
229 | |
---|
230 | SUBROUTINE sbc_rnf_init |
---|
231 | !!---------------------------------------------------------------------- |
---|
232 | !! *** ROUTINE sbc_rnf_init *** |
---|
233 | !! |
---|
234 | !! ** Purpose : Initialisation of the runoffs if (ln_rnf=T) |
---|
235 | !! |
---|
236 | !! ** Method : - read the runoff namsbc_rnf namelist |
---|
237 | !! |
---|
238 | !! ** Action : - read parameters |
---|
239 | !!---------------------------------------------------------------------- |
---|
240 | CHARACTER(len=32) :: rn_dep_file ! runoff file name |
---|
241 | INTEGER :: ji, jj, jk, jm ! dummy loop indices |
---|
242 | INTEGER :: ierror, inum ! temporary integer |
---|
243 | INTEGER :: ios ! Local integer output status for namelist read |
---|
244 | INTEGER :: nbrec ! temporary integer |
---|
245 | REAL(wp) :: zacoef |
---|
246 | REAL(wp), DIMENSION(12) :: zrec ! times records |
---|
247 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: zrnfcl |
---|
248 | REAL(wp), DIMENSION(:,: ), ALLOCATABLE :: zrnf |
---|
249 | ! |
---|
250 | NAMELIST/namsbc_rnf/ cn_dir , ln_rnf_depth, ln_rnf_tem, ln_rnf_sal, & |
---|
251 | & sn_rnf, sn_cnf , sn_s_rnf , sn_t_rnf , sn_dep_rnf, & |
---|
252 | & ln_rnf_mouth , rn_hrnf , rn_avt_rnf, rn_rfact, & |
---|
253 | & ln_rnf_depth_ini , rn_dep_max , rn_rnf_max, nn_rnf_depth_file |
---|
254 | !!---------------------------------------------------------------------- |
---|
255 | ! |
---|
256 | ! !== allocate runoff arrays |
---|
257 | IF( sbc_rnf_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_rnf_alloc : unable to allocate arrays' ) |
---|
258 | ! |
---|
259 | IF( .NOT. ln_rnf ) THEN ! no specific treatment in vicinity of river mouths |
---|
260 | ln_rnf_mouth = .FALSE. ! default definition needed for example by sbc_ssr or by tra_adv_muscl |
---|
261 | nkrnf = 0 |
---|
262 | rnf (:,:) = 0.0_wp |
---|
263 | rnf_b (:,:) = 0.0_wp |
---|
264 | rnfmsk (:,:) = 0.0_wp |
---|
265 | rnfmsk_z(:) = 0.0_wp |
---|
266 | RETURN |
---|
267 | ENDIF |
---|
268 | ! |
---|
269 | ! ! ============ |
---|
270 | ! ! Namelist |
---|
271 | ! ! ============ |
---|
272 | ! |
---|
273 | REWIND( numnam_ref ) ! Namelist namsbc_rnf in reference namelist : Runoffs |
---|
274 | READ ( numnam_ref, namsbc_rnf, IOSTAT = ios, ERR = 901) |
---|
275 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_rnf in reference namelist', lwp ) |
---|
276 | |
---|
277 | REWIND( numnam_cfg ) ! Namelist namsbc_rnf in configuration namelist : Runoffs |
---|
278 | READ ( numnam_cfg, namsbc_rnf, IOSTAT = ios, ERR = 902 ) |
---|
279 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_rnf in configuration namelist', lwp ) |
---|
280 | IF(lwm) WRITE ( numond, namsbc_rnf ) |
---|
281 | ! |
---|
282 | ! ! Control print |
---|
283 | IF(lwp) THEN |
---|
284 | WRITE(numout,*) |
---|
285 | WRITE(numout,*) 'sbc_rnf : runoff ' |
---|
286 | WRITE(numout,*) '~~~~~~~ ' |
---|
287 | WRITE(numout,*) ' Namelist namsbc_rnf' |
---|
288 | WRITE(numout,*) ' specific river mouths treatment ln_rnf_mouth = ', ln_rnf_mouth |
---|
289 | WRITE(numout,*) ' river mouth additional Kz rn_avt_rnf = ', rn_avt_rnf |
---|
290 | WRITE(numout,*) ' depth of river mouth additional mixing rn_hrnf = ', rn_hrnf |
---|
291 | WRITE(numout,*) ' multiplicative factor for runoff rn_rfact = ', rn_rfact |
---|
292 | ENDIF |
---|
293 | ! ! ================== |
---|
294 | ! ! Type of runoff |
---|
295 | ! ! ================== |
---|
296 | ! |
---|
297 | IF( .NOT. l_rnfcpl ) THEN |
---|
298 | ALLOCATE( sf_rnf(1), STAT=ierror ) ! Create sf_rnf structure (runoff inflow) |
---|
299 | IF(lwp) WRITE(numout,*) |
---|
300 | IF(lwp) WRITE(numout,*) ' runoffs inflow read in a file' |
---|
301 | IF( ierror > 0 ) THEN |
---|
302 | CALL ctl_stop( 'sbc_rnf: unable to allocate sf_rnf structure' ) ; RETURN |
---|
303 | ENDIF |
---|
304 | ALLOCATE( sf_rnf(1)%fnow(jpi,jpj,1) ) |
---|
305 | IF( sn_rnf%ln_tint ) ALLOCATE( sf_rnf(1)%fdta(jpi,jpj,1,2) ) |
---|
306 | CALL fld_fill( sf_rnf, (/ sn_rnf /), cn_dir, 'sbc_rnf_init', 'read runoffs data', 'namsbc_rnf' ) |
---|
307 | ENDIF |
---|
308 | ! |
---|
309 | IF( ln_rnf_tem ) THEN ! Create (if required) sf_t_rnf structure |
---|
310 | IF(lwp) WRITE(numout,*) |
---|
311 | IF(lwp) WRITE(numout,*) ' runoffs temperatures read in a file' |
---|
312 | ALLOCATE( sf_t_rnf(1), STAT=ierror ) |
---|
313 | IF( ierror > 0 ) THEN |
---|
314 | CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_t_rnf structure' ) ; RETURN |
---|
315 | ENDIF |
---|
316 | ALLOCATE( sf_t_rnf(1)%fnow(jpi,jpj,1) ) |
---|
317 | IF( sn_t_rnf%ln_tint ) ALLOCATE( sf_t_rnf(1)%fdta(jpi,jpj,1,2) ) |
---|
318 | CALL fld_fill (sf_t_rnf, (/ sn_t_rnf /), cn_dir, 'sbc_rnf_init', 'read runoff temperature data', 'namsbc_rnf' ) |
---|
319 | ENDIF |
---|
320 | ! |
---|
321 | IF( ln_rnf_sal ) THEN ! Create (if required) sf_s_rnf and sf_t_rnf structures |
---|
322 | IF(lwp) WRITE(numout,*) |
---|
323 | IF(lwp) WRITE(numout,*) ' runoffs salinities read in a file' |
---|
324 | ALLOCATE( sf_s_rnf(1), STAT=ierror ) |
---|
325 | IF( ierror > 0 ) THEN |
---|
326 | CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_s_rnf structure' ) ; RETURN |
---|
327 | ENDIF |
---|
328 | ALLOCATE( sf_s_rnf(1)%fnow(jpi,jpj,1) ) |
---|
329 | IF( sn_s_rnf%ln_tint ) ALLOCATE( sf_s_rnf(1)%fdta(jpi,jpj,1,2) ) |
---|
330 | CALL fld_fill (sf_s_rnf, (/ sn_s_rnf /), cn_dir, 'sbc_rnf_init', 'read runoff salinity data', 'namsbc_rnf' ) |
---|
331 | ENDIF |
---|
332 | ! |
---|
333 | IF( ln_rnf_depth ) THEN ! depth of runoffs set from a file |
---|
334 | IF(lwp) WRITE(numout,*) |
---|
335 | IF(lwp) WRITE(numout,*) ' runoffs depth read in a file' |
---|
336 | rn_dep_file = TRIM( cn_dir )//TRIM( sn_dep_rnf%clname ) |
---|
337 | IF( .NOT. sn_dep_rnf%ln_clim ) THEN ; WRITE(rn_dep_file, '(a,"_y",i4)' ) TRIM( rn_dep_file ), nyear ! add year |
---|
338 | IF( sn_dep_rnf%cltype == 'monthly' ) WRITE(rn_dep_file, '(a,"m",i2)' ) TRIM( rn_dep_file ), nmonth ! add month |
---|
339 | ENDIF |
---|
340 | CALL iom_open ( rn_dep_file, inum ) ! open file |
---|
341 | CALL iom_get ( inum, jpdom_data, sn_dep_rnf%clvar, h_rnf ) ! read the river mouth array |
---|
342 | CALL iom_close( inum ) ! close file |
---|
343 | ! |
---|
344 | nk_rnf(:,:) = 0 ! set the number of level over which river runoffs are applied |
---|
345 | DO jj = 1, jpj |
---|
346 | DO ji = 1, jpi |
---|
347 | IF( h_rnf(ji,jj) > 0._wp ) THEN |
---|
348 | jk = 2 |
---|
349 | DO WHILE ( jk /= mbkt(ji,jj) .AND. gdept_0(ji,jj,jk) < h_rnf(ji,jj) ) ; jk = jk + 1 |
---|
350 | END DO |
---|
351 | nk_rnf(ji,jj) = jk |
---|
352 | ELSEIF( h_rnf(ji,jj) == -1._wp ) THEN ; nk_rnf(ji,jj) = 1 |
---|
353 | ELSEIF( h_rnf(ji,jj) == -999._wp ) THEN ; nk_rnf(ji,jj) = mbkt(ji,jj) |
---|
354 | ELSE |
---|
355 | CALL ctl_stop( 'sbc_rnf_init: runoff depth not positive, and not -999 or -1, rnf value in file fort.999' ) |
---|
356 | WRITE(999,*) 'ji, jj, h_rnf(ji,jj) :', ji, jj, h_rnf(ji,jj) |
---|
357 | ENDIF |
---|
358 | END DO |
---|
359 | END DO |
---|
360 | DO jj = 1, jpj ! set the associated depth |
---|
361 | DO ji = 1, jpi |
---|
362 | h_rnf(ji,jj) = 0._wp |
---|
363 | DO jk = 1, nk_rnf(ji,jj) |
---|
364 | h_rnf(ji,jj) = h_rnf(ji,jj) + fse3t(ji,jj,jk) |
---|
365 | END DO |
---|
366 | END DO |
---|
367 | END DO |
---|
368 | ! |
---|
369 | ELSE IF( ln_rnf_depth_ini ) THEN ! runoffs applied at the surface |
---|
370 | ! |
---|
371 | IF(lwp) WRITE(numout,*) |
---|
372 | IF(lwp) WRITE(numout,*) ' depth of runoff computed once from max value of runoff' |
---|
373 | IF(lwp) WRITE(numout,*) ' max value of the runoff climatologie (over global domain) rn_rnf_max = ', rn_rnf_max |
---|
374 | IF(lwp) WRITE(numout,*) ' depth over which runoffs is spread rn_dep_max = ', rn_dep_max |
---|
375 | IF(lwp) WRITE(numout,*) ' create (=1) a runoff depth file or not (=0) nn_rnf_depth_file = ', nn_rnf_depth_file |
---|
376 | |
---|
377 | CALL iom_open( TRIM( sn_rnf%clname ), inum ) ! open runoff file |
---|
378 | CALL iom_gettime( inum, zrec, kntime=nbrec) |
---|
379 | ALLOCATE( zrnfcl(jpi,jpj,nbrec) ) ; ALLOCATE( zrnf(jpi,jpj) ) |
---|
380 | DO jm = 1, nbrec |
---|
381 | CALL iom_get( inum, jpdom_data, TRIM( sn_rnf%clvar ), zrnfcl(:,:,jm), jm ) |
---|
382 | END DO |
---|
383 | CALL iom_close( inum ) |
---|
384 | zrnf(:,:) = MAXVAL( zrnfcl(:,:,:), DIM=3 ) ! maximum value in time |
---|
385 | DEALLOCATE( zrnfcl ) |
---|
386 | ! |
---|
387 | h_rnf(:,:) = 1. |
---|
388 | ! |
---|
389 | zacoef = rn_dep_max / rn_rnf_max ! coef of linear relation between runoff and its depth (150m for max of runoff) |
---|
390 | ! |
---|
391 | WHERE( zrnf(:,:) > 0._wp ) h_rnf(:,:) = zacoef * zrnf(:,:) ! compute depth for all runoffs |
---|
392 | ! |
---|
393 | DO jj = 1, jpj ! take in account min depth of ocean rn_hmin |
---|
394 | DO ji = 1, jpi |
---|
395 | IF( zrnf(ji,jj) > 0._wp ) THEN |
---|
396 | jk = mbkt(ji,jj) |
---|
397 | h_rnf(ji,jj) = MIN( h_rnf(ji,jj), gdept_0(ji,jj,jk ) ) |
---|
398 | ENDIF |
---|
399 | END DO |
---|
400 | END DO |
---|
401 | ! |
---|
402 | nk_rnf(:,:) = 0 ! number of levels on which runoffs are distributed |
---|
403 | DO jj = 1, jpj |
---|
404 | DO ji = 1, jpi |
---|
405 | IF( zrnf(ji,jj) > 0._wp ) THEN |
---|
406 | jk = 2 |
---|
407 | DO WHILE ( jk /= mbkt(ji,jj) .AND. gdept_0(ji,jj,jk) < h_rnf(ji,jj) ) ; jk = jk + 1 |
---|
408 | END DO |
---|
409 | nk_rnf(ji,jj) = jk |
---|
410 | ELSE |
---|
411 | nk_rnf(ji,jj) = 1 |
---|
412 | ENDIF |
---|
413 | END DO |
---|
414 | END DO |
---|
415 | ! |
---|
416 | DEALLOCATE( zrnf ) |
---|
417 | ! |
---|
418 | DO jj = 1, jpj ! set the associated depth |
---|
419 | DO ji = 1, jpi |
---|
420 | h_rnf(ji,jj) = 0._wp |
---|
421 | DO jk = 1, nk_rnf(ji,jj) |
---|
422 | h_rnf(ji,jj) = h_rnf(ji,jj) + fse3t(ji,jj,jk) |
---|
423 | END DO |
---|
424 | END DO |
---|
425 | END DO |
---|
426 | ! |
---|
427 | IF( nn_rnf_depth_file == 1 ) THEN ! save output nb levels for runoff |
---|
428 | IF(lwp) WRITE(numout,*) ' create runoff depht file' |
---|
429 | CALL iom_open ( TRIM( sn_dep_rnf%clname ), inum, ldwrt = .TRUE., kiolib = jprstlib ) |
---|
430 | CALL iom_rstput( 0, 0, inum, 'rodepth', h_rnf ) |
---|
431 | CALL iom_close ( inum ) |
---|
432 | ENDIF |
---|
433 | ELSE ! runoffs applied at the surface |
---|
434 | nk_rnf(:,:) = 1 |
---|
435 | h_rnf (:,:) = fse3t(:,:,1) |
---|
436 | ENDIF |
---|
437 | ! |
---|
438 | rnf(:,:) = 0._wp ! runoff initialisation |
---|
439 | rnf_tsc(:,:,:) = 0._wp ! runoffs temperature & salinty contents initilisation |
---|
440 | ! |
---|
441 | ! ! ======================== |
---|
442 | ! ! River mouth vicinity |
---|
443 | ! ! ======================== |
---|
444 | ! |
---|
445 | IF( ln_rnf_mouth ) THEN ! Specific treatment in vicinity of river mouths : |
---|
446 | ! ! - Increase Kz in surface layers ( rn_hrnf > 0 ) |
---|
447 | ! ! - set to zero SSS damping (ln_ssr=T) |
---|
448 | ! ! - mixed upstream-centered (ln_traadv_cen2=T) |
---|
449 | ! |
---|
450 | IF ( ln_rnf_depth ) CALL ctl_warn( 'sbc_rnf_init: increased mixing turned on but effects may already', & |
---|
451 | & 'be spread through depth by ln_rnf_depth' ) |
---|
452 | ! |
---|
453 | nkrnf = 0 ! Number of level over which Kz increase |
---|
454 | IF( rn_hrnf > 0._wp ) THEN |
---|
455 | nkrnf = 2 |
---|
456 | DO WHILE( nkrnf /= jpkm1 .AND. gdepw_1d(nkrnf+1) < rn_hrnf ) ; nkrnf = nkrnf + 1 |
---|
457 | END DO |
---|
458 | IF( ln_sco ) CALL ctl_warn( 'sbc_rnf: number of levels over which Kz is increased is computed for zco...' ) |
---|
459 | ENDIF |
---|
460 | IF(lwp) WRITE(numout,*) |
---|
461 | IF(lwp) WRITE(numout,*) ' Specific treatment used in vicinity of river mouths :' |
---|
462 | IF(lwp) WRITE(numout,*) ' - Increase Kz in surface layers (if rn_hrnf > 0 )' |
---|
463 | IF(lwp) WRITE(numout,*) ' by ', rn_avt_rnf,' m2/s over ', nkrnf, ' w-levels' |
---|
464 | IF(lwp) WRITE(numout,*) ' - set to zero SSS damping (if ln_ssr=T)' |
---|
465 | IF(lwp) WRITE(numout,*) ' - mixed upstream-centered (if ln_traadv_cen2=T)' |
---|
466 | ! |
---|
467 | CALL rnf_mouth ! set river mouth mask |
---|
468 | ! |
---|
469 | ELSE ! No treatment at river mouths |
---|
470 | IF(lwp) WRITE(numout,*) |
---|
471 | IF(lwp) WRITE(numout,*) ' No specific treatment at river mouths' |
---|
472 | rnfmsk (:,:) = 0._wp |
---|
473 | rnfmsk_z(:) = 0._wp |
---|
474 | nkrnf = 0 |
---|
475 | ENDIF |
---|
476 | ! |
---|
477 | END SUBROUTINE sbc_rnf_init |
---|
478 | |
---|
479 | |
---|
480 | SUBROUTINE rnf_mouth |
---|
481 | !!---------------------------------------------------------------------- |
---|
482 | !! *** ROUTINE rnf_mouth *** |
---|
483 | !! |
---|
484 | !! ** Purpose : define the river mouths mask |
---|
485 | !! |
---|
486 | !! ** Method : read the river mouth mask (=0/1) in the river runoff |
---|
487 | !! climatological file. Defined a given vertical structure. |
---|
488 | !! CAUTION, the vertical structure is hard coded on the |
---|
489 | !! first 5 levels. |
---|
490 | !! This fields can be used to: |
---|
491 | !! - set an upstream advection scheme |
---|
492 | !! (ln_rnf_mouth=T and ln_traadv_cen2=T) |
---|
493 | !! - increase vertical on the top nn_krnf vertical levels |
---|
494 | !! at river runoff input grid point (nn_krnf>=2, see step.F90) |
---|
495 | !! - set to zero SSS restoring flux at river mouth grid points |
---|
496 | !! |
---|
497 | !! ** Action : rnfmsk set to 1 at river runoff input, 0 elsewhere |
---|
498 | !! rnfmsk_z vertical structure |
---|
499 | !!---------------------------------------------------------------------- |
---|
500 | INTEGER :: inum ! temporary integers |
---|
501 | CHARACTER(len=140) :: cl_rnfile ! runoff file name |
---|
502 | !!---------------------------------------------------------------------- |
---|
503 | ! |
---|
504 | IF(lwp) WRITE(numout,*) |
---|
505 | IF(lwp) WRITE(numout,*) 'rnf_mouth : river mouth mask' |
---|
506 | IF(lwp) WRITE(numout,*) '~~~~~~~~~ ' |
---|
507 | ! |
---|
508 | cl_rnfile = TRIM( cn_dir )//TRIM( sn_cnf%clname ) |
---|
509 | IF( .NOT. sn_cnf%ln_clim ) THEN ; WRITE(cl_rnfile, '(a,"_y",i4)' ) TRIM( cl_rnfile ), nyear ! add year |
---|
510 | IF( sn_cnf%cltype == 'monthly' ) WRITE(cl_rnfile, '(a,"m",i2)' ) TRIM( cl_rnfile ), nmonth ! add month |
---|
511 | ENDIF |
---|
512 | ! |
---|
513 | ! horizontal mask (read in NetCDF file) |
---|
514 | CALL iom_open ( cl_rnfile, inum ) ! open file |
---|
515 | CALL iom_get ( inum, jpdom_data, sn_cnf%clvar, rnfmsk ) ! read the river mouth array |
---|
516 | CALL iom_close( inum ) ! close file |
---|
517 | ! |
---|
518 | IF( nn_closea == 1 ) CALL clo_rnf( rnfmsk ) ! closed sea inflow set as ruver mouth |
---|
519 | ! |
---|
520 | rnfmsk_z(:) = 0._wp ! vertical structure |
---|
521 | rnfmsk_z(1) = 1.0 |
---|
522 | rnfmsk_z(2) = 1.0 ! ********** |
---|
523 | rnfmsk_z(3) = 0.5 ! HARD CODED on the 5 first levels |
---|
524 | rnfmsk_z(4) = 0.25 ! ********** |
---|
525 | rnfmsk_z(5) = 0.125 |
---|
526 | ! |
---|
527 | END SUBROUTINE rnf_mouth |
---|
528 | |
---|
529 | !!====================================================================== |
---|
530 | END MODULE sbcrnf |
---|