1 | MODULE p4zbc |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p4sbc *** |
---|
4 | !! TOP : PISCES surface boundary conditions of external inputs of nutrients |
---|
5 | !!====================================================================== |
---|
6 | !! History : 3.5 ! 2012-07 (O. Aumont, C. Ethe) Original code |
---|
7 | !!---------------------------------------------------------------------- |
---|
8 | !! p4z_bc : Read and interpolate time-varying nutrients fluxes |
---|
9 | !! p4z_bc_init : Initialization of p4z_bc |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | USE oce_trc ! shared variables between ocean and passive tracers |
---|
12 | USE trc ! passive tracers common variables |
---|
13 | USE sms_pisces ! PISCES Source Minus Sink variables |
---|
14 | USE iom ! I/O manager |
---|
15 | USE fldread ! time interpolation |
---|
16 | USE trcbc |
---|
17 | |
---|
18 | IMPLICIT NONE |
---|
19 | PRIVATE |
---|
20 | |
---|
21 | PUBLIC p4z_bc |
---|
22 | PUBLIC p4z_bc_init |
---|
23 | |
---|
24 | LOGICAL , PUBLIC :: ln_ironsed !: boolean for Fe input from sediments |
---|
25 | LOGICAL , PUBLIC :: ln_hydrofe !: boolean for Fe input from hydrothermal vents |
---|
26 | REAL(wp), PUBLIC :: sedfeinput !: Coastal release of Iron |
---|
27 | REAL(wp), PUBLIC :: icefeinput !: Iron concentration in sea ice |
---|
28 | REAL(wp), PUBLIC :: wdust !: Sinking speed of the dust |
---|
29 | REAL(wp), PUBLIC :: mfrac !: Mineral Content of the dust |
---|
30 | REAL(wp) :: hratio !: Fe:3He ratio assumed for vent iron supply |
---|
31 | REAL(wp) :: distcoast !: Distance off the coast for Iron from sediments |
---|
32 | REAL(wp), PUBLIC :: lgw_rath !: Weak ligand ratio from hydro sources |
---|
33 | |
---|
34 | LOGICAL , PUBLIC :: ll_bc |
---|
35 | LOGICAL , PUBLIC :: ll_dust !: boolean for dust input from the atmosphere |
---|
36 | LOGICAL , PUBLIC :: ll_river !: boolean for river input of nutrients |
---|
37 | LOGICAL , PUBLIC :: ll_ndepo !: boolean for atmospheric deposition of N |
---|
38 | TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_dust ! structure of input dust |
---|
39 | TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_ironsed ! structure of input iron from sediment |
---|
40 | TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_hydrofe ! structure of input iron from sediment |
---|
41 | |
---|
42 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: dust !: dust fields |
---|
43 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: ironsed !: Coastal supply of iron |
---|
44 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: hydrofe !: Hydrothermal vent supply of iron |
---|
45 | |
---|
46 | REAL(wp), PUBLIC :: sedsilfrac, sedcalfrac |
---|
47 | |
---|
48 | !! * Substitutions |
---|
49 | # include "do_loop_substitute.h90" |
---|
50 | # include "domzgr_substitute.h90" |
---|
51 | !!---------------------------------------------------------------------- |
---|
52 | !! NEMO/TOP 4.0 , NEMO Consortium (2018) |
---|
53 | !! $Id: p4zbc.F90 10869 2019-04-15 10:34:03Z cetlod $ |
---|
54 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
55 | !!---------------------------------------------------------------------- |
---|
56 | CONTAINS |
---|
57 | |
---|
58 | SUBROUTINE p4z_bc( kt, Kbb, Kmm, Krhs ) |
---|
59 | !!---------------------------------------------------------------------- |
---|
60 | !! *** routine p4z_bc *** |
---|
61 | !! |
---|
62 | !! ** purpose : read and interpolate the external sources of nutrients |
---|
63 | !! |
---|
64 | !! ** method : read the files and interpolate the appropriate variables |
---|
65 | !! |
---|
66 | !! ** input : external netcdf files |
---|
67 | !! |
---|
68 | !!---------------------------------------------------------------------- |
---|
69 | INTEGER, INTENT(in) :: kt ! ocean time step |
---|
70 | INTEGER, INTENT(in) :: Kbb, Kmm, Krhs ! time level index |
---|
71 | ! |
---|
72 | INTEGER :: ji, jj, jk, jl |
---|
73 | REAL(wp) :: zdep, zwflux, zironice |
---|
74 | REAL(wp) :: zcoef, zwdust, zrivdin, zdustdep, zndep |
---|
75 | ! |
---|
76 | CHARACTER (len=25) :: charout |
---|
77 | !!--------------------------------------------------------------------- |
---|
78 | ! |
---|
79 | IF( ln_timing ) CALL timing_start('p4z_bc') |
---|
80 | |
---|
81 | ! Add the external input of nutrients from dust deposition in the water column |
---|
82 | ! The inputs at surface have already been added |
---|
83 | ! ---------------------------------------------------------- |
---|
84 | IF( ll_dust ) THEN |
---|
85 | ! |
---|
86 | CALL fld_read( kt, 1, sf_dust ) |
---|
87 | dust(:,:) = MAX( rtrn, sf_dust(1)%fnow(:,:,1) ) |
---|
88 | ! |
---|
89 | ! Iron solubilization of particles in the water column |
---|
90 | ! dust in kg/m2/s ---> 1/55.85 to put in mol/Fe ; wdust in m/d |
---|
91 | ! Dust are supposed to sink at wdust sinking speed. 3% of the iron |
---|
92 | ! in dust is hypothesized to be soluble at a dissolution rate set to |
---|
93 | ! 1/(250 days). The vertical distribution of iron in dust is computed |
---|
94 | ! from a steady state assumption. Parameters are very uncertain and |
---|
95 | ! are estimated from the literature quoted in Raiswell et al. (2011) |
---|
96 | ! ------------------------------------------------------------------- |
---|
97 | |
---|
98 | zwdust = 0.03 / ( wdust / rday ) / ( 250. * rday ) |
---|
99 | |
---|
100 | ! Atmospheric input of Iron dissolves in the water column |
---|
101 | IF ( ln_trc_sbc(jpfer) ) THEN |
---|
102 | DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 2, jpkm1 ) |
---|
103 | zdustdep = dust(ji,jj) * zwdust * rfact * EXP( -gdept(ji,jj,jk,Kmm) /( 250. * wdust ) ) |
---|
104 | ! |
---|
105 | tr(ji,jj,jk,jpfer,Krhs) = tr(ji,jj,jk,jpfer,Krhs) + zdustdep * mfrac / mMass_Fe |
---|
106 | END_3D |
---|
107 | |
---|
108 | IF( lk_iomput ) THEN |
---|
109 | ! surface downward dust depo of iron |
---|
110 | jl = n_trc_indsbc(jpfer) |
---|
111 | CALL iom_put( "Irondep", ( rf_trsfac(jl) * sf_trcsbc(jl)%fnow(:,:,1) / rn_sbc_time ) * 1.e+3 * tmask(:,:,1) ) |
---|
112 | |
---|
113 | ENDIF |
---|
114 | |
---|
115 | ENDIF |
---|
116 | |
---|
117 | ! Atmospheric input of PO4 dissolves in the water column |
---|
118 | IF ( ln_trc_sbc(jppo4) ) THEN |
---|
119 | DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 2, jpkm1 ) |
---|
120 | zdustdep = dust(ji,jj) * zwdust * rfact * EXP( -gdept(ji,jj,jk,Kmm) /( 250. * wdust ) ) |
---|
121 | ! |
---|
122 | tr(ji,jj,jk,jppo4,Krhs) = tr(ji,jj,jk,jppo4,Krhs) + zdustdep * 1.e-3 / mMass_P |
---|
123 | END_3D |
---|
124 | ENDIF |
---|
125 | |
---|
126 | ! Atmospheric input of Si dissolves in the water column |
---|
127 | IF ( ln_trc_sbc(jpsil) ) THEN |
---|
128 | DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 2, jpkm1 ) |
---|
129 | zdustdep = dust(ji,jj) * zwdust * rfact * EXP( -gdept(ji,jj,jk,Kmm) /( 250. * wdust ) ) |
---|
130 | ! |
---|
131 | tr(ji,jj,jk,jpsil,Krhs) = tr(ji,jj,jk,jpsil,Krhs) + zdustdep * 0.269 / mMass_Si |
---|
132 | END_3D |
---|
133 | ENDIF |
---|
134 | |
---|
135 | ! |
---|
136 | IF( lk_iomput ) THEN |
---|
137 | ! dust concentration at surface |
---|
138 | CALL iom_put( "pdust" , dust(:,:) / ( wdust / rday ) * tmask(:,:,1) ) ! dust concentration at surface |
---|
139 | ENDIF |
---|
140 | ENDIF |
---|
141 | |
---|
142 | ! ----------------------------------------- |
---|
143 | ! Add the external input of nutrients from river |
---|
144 | ! ---------------------------------------------------------- |
---|
145 | IF( ll_river ) THEN |
---|
146 | jl = n_trc_indcbc(jpno3) |
---|
147 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
148 | DO jk = 1, nk_rnf(ji,jj) |
---|
149 | zcoef = rn_rfact / ( e1e2t(ji,jj) * h_rnf(ji,jj) * rn_cbc_time ) * tmask(ji,jj,1) |
---|
150 | zrivdin = rf_trcfac(jl) * sf_trccbc(jl)%fnow(ji,jj,1) * zcoef |
---|
151 | tr(ji,jj,jk,jptal,Krhs) = tr(ji,jj,jk,jptal,Krhs) - rno3 * zrivdin * rfact |
---|
152 | ENDDO |
---|
153 | END_2D |
---|
154 | ENDIF |
---|
155 | |
---|
156 | ! Add the external input of nutrients from nitrogen deposition |
---|
157 | ! ---------------------------------------------------------- |
---|
158 | IF( ll_ndepo ) THEN |
---|
159 | IF( ln_trc_sbc(jpno3) ) THEN |
---|
160 | jl = n_trc_indsbc(jpno3) |
---|
161 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
162 | zndep = rf_trsfac(jl) * sf_trcsbc(jl)%fnow(ji,jj,1) / e3t(ji,jj,1,Kmm) / rn_sbc_time |
---|
163 | tr(ji,jj,1,jptal,Krhs) = tr(ji,jj,1,jptal,Krhs) - rno3 * zndep * rfact |
---|
164 | END_2D |
---|
165 | ENDIF |
---|
166 | IF( ln_trc_sbc(jpnh4) ) THEN |
---|
167 | jl = n_trc_indsbc(jpnh4) |
---|
168 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
169 | zndep = rf_trsfac(jl) * sf_trcsbc(jl)%fnow(ji,jj,1) / e3t(ji,jj,1,Kmm) / rn_sbc_time |
---|
170 | tr(ji,jj,1,jptal,Krhs) = tr(ji,jj,1,jptal,Krhs) + rno3 * zndep * rfact |
---|
171 | END_2D |
---|
172 | ENDIF |
---|
173 | ENDIF |
---|
174 | ! |
---|
175 | ! Iron input/uptake due to sea ice : Crude parameterization based on |
---|
176 | ! Lancelot et al. Iron concentration in sea-ice is constant and set |
---|
177 | ! in the namelist_pisces (icefeinput). ln_ironice is forced to false |
---|
178 | ! when nn_ice_tr = 1 |
---|
179 | ! ---------------------------------------------------- |
---|
180 | IF( ln_ironice ) THEN |
---|
181 | ! |
---|
182 | ! Compute the iron flux between sea ice and sea water |
---|
183 | ! Simple parameterization assuming a fixed constant concentration in |
---|
184 | ! sea-ice (icefeinput) |
---|
185 | ! ------------------------------------------------------------------ |
---|
186 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
187 | zdep = rfact / e3t(ji,jj,1,Kmm) |
---|
188 | zwflux = fmmflx(ji,jj) / 1000._wp |
---|
189 | zironice = MAX( -0.99 * tr(ji,jj,1,jpfer,Kbb), -zwflux * icefeinput * zdep ) |
---|
190 | tr(ji,jj,1,jpfer,Krhs) = tr(ji,jj,1,jpfer,Krhs) + zironice |
---|
191 | END_2D |
---|
192 | ! |
---|
193 | ! iron flux from ice |
---|
194 | IF( lk_iomput ) & |
---|
195 | & CALL iom_put( "Ironice", MAX( -0.99 * tr(:,:,1,jpfer,Kbb), (-1.*fmmflx(:,:)/1000._wp )*icefeinput*1.e+3*tmask(:,:,1)) ) |
---|
196 | ! |
---|
197 | ENDIF |
---|
198 | |
---|
199 | ! Add the external input of iron from sediment mobilization |
---|
200 | ! ------------------------------------------------------ |
---|
201 | IF( ln_ironsed .AND. .NOT.lk_sed ) THEN |
---|
202 | tr(:,:,:,jpfer,Krhs) = tr(:,:,:,jpfer,Krhs) + ironsed(:,:,:) * rfact |
---|
203 | ! |
---|
204 | IF( lk_iomput ) CALL iom_put( "Ironsed", ironsed(:,:,:) * 1.e+3 * tmask(:,:,:) ) |
---|
205 | ENDIF |
---|
206 | |
---|
207 | ! Add the external input of iron from hydrothermal vents |
---|
208 | ! ------------------------------------------------------ |
---|
209 | IF( ln_hydrofe ) THEN |
---|
210 | CALL fld_read( kt, 1, sf_hydrofe ) |
---|
211 | DO jk = 1, jpk |
---|
212 | hydrofe(:,:,jk) = ( MAX( rtrn, sf_hydrofe(1)%fnow(:,:,jk) ) * hratio ) & |
---|
213 | & / ( e1e2t(:,:) * e3t(:,:,jk,Kmm) * ryyss + rtrn ) / 1000._wp & |
---|
214 | & * tmask(:,:,jk) |
---|
215 | ENDDO |
---|
216 | tr(:,:,:,jpfer,Krhs) = tr(:,:,:,jpfer,Krhs) + hydrofe(:,:,:) * rfact |
---|
217 | IF( ln_ligand ) tr(:,:,:,jplgw,Krhs) = tr(:,:,:,jplgw,Krhs) + ( hydrofe(:,:,:) * lgw_rath ) * rfact |
---|
218 | ! |
---|
219 | IF( lk_iomput ) CALL iom_put( "HYDR", hydrofe(:,:,:) * 1.e+3 * tmask(:,:,:) ) ! hydrothermal iron input |
---|
220 | ENDIF |
---|
221 | IF( ln_timing ) CALL timing_stop('p4z_bc') |
---|
222 | ! |
---|
223 | END SUBROUTINE p4z_bc |
---|
224 | |
---|
225 | |
---|
226 | SUBROUTINE p4z_bc_init( Kmm ) |
---|
227 | !!---------------------------------------------------------------------- |
---|
228 | !! *** routine p4z_bc_init *** |
---|
229 | !! |
---|
230 | !! ** purpose : initialization of the external sources of nutrients |
---|
231 | !! |
---|
232 | !! ** method : read the files and compute the budget |
---|
233 | !! called at the first timestep (nittrc000) |
---|
234 | !! |
---|
235 | !! ** input : external netcdf files |
---|
236 | !! |
---|
237 | !!---------------------------------------------------------------------- |
---|
238 | INTEGER, INTENT( in ) :: Kmm ! time level index |
---|
239 | INTEGER :: ji, jj, jk, jm |
---|
240 | INTEGER :: ii0, ii1, ij0, ij1 |
---|
241 | INTEGER :: numiron |
---|
242 | INTEGER :: ierr, ierr1, ierr2, ierr3 |
---|
243 | INTEGER :: ios ! Local integer output status for namelist read |
---|
244 | INTEGER :: ik50 ! last level where depth less than 50 m |
---|
245 | REAL(wp) :: zexpide, zdenitide, zmaskt, zsurfc, zsurfp,ze3t, ze3t2, zcslp |
---|
246 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: zriver, zcmask |
---|
247 | ! |
---|
248 | CHARACTER(len=100) :: cn_dir ! Root directory for location of ssr files |
---|
249 | TYPE(FLD_N) :: sn_dust, sn_ironsed, sn_hydrofe ! informations about the fields to be read |
---|
250 | !! |
---|
251 | NAMELIST/nampisbc/cn_dir, sn_dust, sn_ironsed, sn_hydrofe, & |
---|
252 | & ln_ironsed, ln_ironice, ln_hydrofe, & |
---|
253 | & sedfeinput, distcoast, icefeinput, wdust, mfrac, & |
---|
254 | & hratio, lgw_rath |
---|
255 | !!---------------------------------------------------------------------- |
---|
256 | ! |
---|
257 | IF(lwp) THEN |
---|
258 | WRITE(numout,*) |
---|
259 | WRITE(numout,*) 'p4z_bc_init : initialization of the external sources of nutrients ' |
---|
260 | WRITE(numout,*) '~~~~~~~~~~~~ ' |
---|
261 | ENDIF |
---|
262 | ! !* set file information |
---|
263 | READ ( numnatp_ref, nampisbc, IOSTAT = ios, ERR = 901) |
---|
264 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisbc in reference namelist' ) |
---|
265 | READ ( numnatp_cfg, nampisbc, IOSTAT = ios, ERR = 902 ) |
---|
266 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'nampisbc in configuration namelist' ) |
---|
267 | IF(lwm) WRITE ( numonp, nampisbc ) |
---|
268 | |
---|
269 | |
---|
270 | IF(lwp) THEN |
---|
271 | WRITE(numout,*) ' Namelist : nampissbc ' |
---|
272 | WRITE(numout,*) ' Fe input from sediments ln_ironsed = ', ln_ironsed |
---|
273 | WRITE(numout,*) ' Fe input from seaice ln_ironice = ', ln_ironice |
---|
274 | WRITE(numout,*) ' fe input from hydrothermal vents ln_hydrofe = ', ln_hydrofe |
---|
275 | IF( ln_ironsed ) THEN |
---|
276 | WRITE(numout,*) ' coastal release of iron sedfeinput = ', sedfeinput |
---|
277 | WRITE(numout,*) ' distance off the coast distcoast = ', distcoast |
---|
278 | ENDIF |
---|
279 | IF( ln_ligand ) THEN |
---|
280 | WRITE(numout,*) ' Weak ligand ratio from sed hydro sources lgw_rath = ', lgw_rath |
---|
281 | ENDIF |
---|
282 | IF( ln_ironice ) THEN |
---|
283 | WRITE(numout,*) ' Iron concentration in sea ice icefeinput = ', icefeinput |
---|
284 | ENDIF |
---|
285 | IF( ln_trc_sbc(jpfer) ) THEN |
---|
286 | WRITE(numout,*) ' Mineral Fe content of the dust mfrac = ', mfrac |
---|
287 | WRITE(numout,*) ' sinking speed of the dust wdust = ', wdust |
---|
288 | ENDIF |
---|
289 | IF( ln_hydrofe ) THEN |
---|
290 | WRITE(numout,*) ' Fe to 3He ratio assumed for vent iron supply hratio = ', hratio |
---|
291 | ENDIF |
---|
292 | END IF |
---|
293 | |
---|
294 | ll_bc = ( ln_trcbc .AND. lltrcbc ) .OR. ln_hydrofe .OR. ln_ironsed .OR. ln_ironice .OR. ln_sediment |
---|
295 | ll_dust = ln_trc_sbc(jpfer) .OR. ln_trc_sbc(jppo4) .OR. ln_trc_sbc(jpsil) .OR. ln_sediment |
---|
296 | ll_ndepo = ln_trc_sbc(jpno3) .OR. ln_trc_sbc(jpnh4) |
---|
297 | ll_river = ln_trc_cbc(jpno3) |
---|
298 | |
---|
299 | ! dust input from the atmosphere |
---|
300 | ! ------------------------------ |
---|
301 | IF( ll_dust ) THEN |
---|
302 | ! |
---|
303 | IF(lwp) WRITE(numout,*) ' initialize dust input from atmosphere ' |
---|
304 | IF(lwp) WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ' |
---|
305 | ! |
---|
306 | ALLOCATE( dust(jpi,jpj) ) |
---|
307 | ! |
---|
308 | ALLOCATE( sf_dust(1), STAT=ierr ) !* allocate and fill sf_sst (forcing structure) with sn_sst |
---|
309 | IF( ierr > 0 ) CALL ctl_stop( 'STOP', 'p4z_bc_init: unable to allocate sf_dust structure' ) |
---|
310 | ! |
---|
311 | CALL fld_fill( sf_dust, (/ sn_dust /), cn_dir, 'p4z_bc_init', 'Atmospheric dust deposition', 'nampisbc' ) |
---|
312 | ALLOCATE( sf_dust(1)%fnow(jpi,jpj,1) ) |
---|
313 | IF( sn_dust%ln_tint ) ALLOCATE( sf_dust(1)%fdta(jpi,jpj,1,2) ) |
---|
314 | ! |
---|
315 | END IF |
---|
316 | |
---|
317 | ! coastal and island masks |
---|
318 | ! ------------------------ |
---|
319 | IF( ln_ironsed ) THEN |
---|
320 | ! |
---|
321 | IF(lwp) WRITE(numout,*) |
---|
322 | IF(lwp) WRITE(numout,*) ' ==>>> ln_ironsed=T , computation of an island mask to enhance coastal supply of iron' |
---|
323 | ! |
---|
324 | ALLOCATE( ironsed(jpi,jpj,jpk) ) ! allocation |
---|
325 | ! |
---|
326 | CALL iom_open ( TRIM( sn_ironsed%clname ), numiron ) |
---|
327 | ALLOCATE( zcmask(jpi,jpj,jpk) ) |
---|
328 | CALL iom_get ( numiron, jpdom_global, TRIM( sn_ironsed%clvar ), zcmask(:,:,:), 1 ) |
---|
329 | CALL iom_close( numiron ) |
---|
330 | ! |
---|
331 | ik50 = 5 ! last level where depth less than 50 m |
---|
332 | DO jk = jpkm1, 1, -1 |
---|
333 | IF( gdept_1d(jk) > 50. ) ik50 = jk - 1 |
---|
334 | END DO |
---|
335 | IF(lwp) WRITE(numout,*) |
---|
336 | IF(lwp) WRITE(numout,*) ' Level corresponding to 50m depth ', ik50,' ', gdept_1d(ik50+1) |
---|
337 | DO_3D( 0, 0, 0, 0, 1, ik50 ) |
---|
338 | ze3t = e3t_0(ji,jj,jk) |
---|
339 | zsurfc = e1u(ji,jj) * ( 1. - umask(ji ,jj ,jk) ) & |
---|
340 | + e1u(ji,jj) * ( 1. - umask(ji-1,jj ,jk) ) & |
---|
341 | + e2v(ji,jj) * ( 1. - vmask(ji ,jj ,jk) ) & |
---|
342 | + e2v(ji,jj) * ( 1. - vmask(ji ,jj-1,jk) ) |
---|
343 | zsurfp = zsurfc * ze3t / e1e2t(ji,jj) |
---|
344 | ! estimation of the coastal slope : 5 km off the coast |
---|
345 | ze3t2 = ze3t * ze3t |
---|
346 | zcslp = SQRT( ( distcoast*distcoast + ze3t2 ) / ze3t2 ) |
---|
347 | ! |
---|
348 | zcmask(ji,jj,jk) = zcmask(ji,jj,jk) + zcslp * zsurfp |
---|
349 | END_3D |
---|
350 | ! |
---|
351 | CALL lbc_lnk( 'p4zbc', zcmask , 'T', 1.0_wp ) ! lateral boundary conditions on cmask (sign unchanged) |
---|
352 | ! |
---|
353 | DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpk ) |
---|
354 | zexpide = MIN( 8.,( gdept_0(ji,jj,jk) / 500. )**(-1.5) ) |
---|
355 | zdenitide = -0.9543 + 0.7662 * LOG( zexpide ) - 0.235 * LOG( zexpide )**2 |
---|
356 | zcmask(ji,jj,jk) = zcmask(ji,jj,jk) * MIN( 1., EXP( zdenitide ) / 0.5 ) |
---|
357 | END_3D |
---|
358 | ! Coastal supply of iron |
---|
359 | ! ------------------------- |
---|
360 | ironsed(:,:,jpk) = 0._wp |
---|
361 | DO jk = 1, jpkm1 |
---|
362 | ironsed(:,:,jk) = sedfeinput * zcmask(:,:,jk) / ( e3t_0(:,:,jk) * rday ) |
---|
363 | END DO |
---|
364 | DEALLOCATE( zcmask) |
---|
365 | ENDIF |
---|
366 | ! |
---|
367 | ! Iron from Hydrothermal vents |
---|
368 | ! ------------------------ |
---|
369 | IF( ln_hydrofe ) THEN |
---|
370 | ! |
---|
371 | IF(lwp) WRITE(numout,*) |
---|
372 | IF(lwp) WRITE(numout,*) ' ==>>> ln_hydrofe=T , Input of iron from hydrothermal vents' |
---|
373 | ! |
---|
374 | ALLOCATE( hydrofe(jpi,jpj,jpk) ) ! allocation |
---|
375 | ! |
---|
376 | ALLOCATE( sf_hydrofe(1), STAT=ierr ) !* allocate and fill sf_sst (forcing structure) with sn_sst |
---|
377 | IF( ierr > 0 ) CALL ctl_stop( 'STOP', 'p4z_bc_init: unable to allocate sf_hydro structure' ) |
---|
378 | ! |
---|
379 | CALL fld_fill( sf_hydrofe, (/ sn_hydrofe /), cn_dir, 'p4z_bc_init', 'Input of iron from hydrothermal vents', 'nampisbc' ) |
---|
380 | ALLOCATE( sf_hydrofe(1)%fnow(jpi,jpj,jpk) ) |
---|
381 | IF( sn_hydrofe%ln_tint ) ALLOCATE( sf_hydrofe(1)%fdta(jpi,jpj,jpk,2) ) |
---|
382 | ! |
---|
383 | ENDIF |
---|
384 | ! |
---|
385 | END SUBROUTINE p4z_bc_init |
---|
386 | |
---|
387 | !!====================================================================== |
---|
388 | END MODULE p4zbc |
---|