1 | #!/usr/bin/env python |
---|
2 | # -*- coding: utf-8 -*- |
---|
3 | |
---|
4 | # this must come first |
---|
5 | from __future__ import print_function, unicode_literals, division |
---|
6 | |
---|
7 | # standard library imports |
---|
8 | from argparse import ArgumentParser |
---|
9 | import os |
---|
10 | import os.path |
---|
11 | import datetime as dt |
---|
12 | import numpy as np |
---|
13 | |
---|
14 | # Application library imports |
---|
15 | from gencmip6 import * |
---|
16 | from gencmip6_path import * |
---|
17 | |
---|
18 | |
---|
19 | ######################################## |
---|
20 | class DataDict(dict): |
---|
21 | #--------------------------------------- |
---|
22 | def __init__(self): |
---|
23 | self = {} |
---|
24 | |
---|
25 | #--------------------------------------- |
---|
26 | def init_range(self, date_beg, date_end, inc=1): |
---|
27 | """ |
---|
28 | """ |
---|
29 | # delta = date_end - date_beg |
---|
30 | # delta = delta + dt.timedelta(days=1) |
---|
31 | delta = date_end - date_beg + dt.timedelta(days=1) |
---|
32 | |
---|
33 | (deb, fin) = (0, int(delta.total_seconds() / 3600)) |
---|
34 | |
---|
35 | dates = (date_beg + dt.timedelta(hours=i) |
---|
36 | for i in xrange(deb, fin, inc)) |
---|
37 | |
---|
38 | for date in dates: |
---|
39 | self.add_item(date) |
---|
40 | |
---|
41 | #--------------------------------------- |
---|
42 | def fill_data(self, file_list): |
---|
43 | """ |
---|
44 | """ |
---|
45 | for filein in sorted(file_list): |
---|
46 | try: |
---|
47 | data = np.genfromtxt( |
---|
48 | filein, |
---|
49 | skip_header=1, |
---|
50 | converters={ |
---|
51 | 0: string_to_datetime, |
---|
52 | 1: int, |
---|
53 | 2: int, |
---|
54 | }, |
---|
55 | missing_values="nan", |
---|
56 | ) |
---|
57 | except Exception as rc: |
---|
58 | print("Problem with file {} :\n{}".format(filein, rc)) |
---|
59 | exit(1) |
---|
60 | |
---|
61 | if len(data) == 24: |
---|
62 | run_mean = np.nanmean( |
---|
63 | np.array([run for _, run, _ in data]) |
---|
64 | ) |
---|
65 | pen_mean = np.nanmean( |
---|
66 | np.array([pen for _, _, pen in data]) |
---|
67 | ) |
---|
68 | run_std = np.nanstd( |
---|
69 | np.array([run for _, run, _ in data]) |
---|
70 | ) |
---|
71 | pen_std = np.nanstd( |
---|
72 | np.array([pen for _, _, pen in data]) |
---|
73 | ) |
---|
74 | else: |
---|
75 | run_mean = np.nan |
---|
76 | pen_mean = np.nan |
---|
77 | run_std = np.nan |
---|
78 | pen_std = np.nan |
---|
79 | |
---|
80 | for date, run, pen in data: |
---|
81 | if date.hour == 0: |
---|
82 | self.add_item( |
---|
83 | date, |
---|
84 | run, |
---|
85 | pen, |
---|
86 | run_mean, |
---|
87 | pen_mean, |
---|
88 | run_std, |
---|
89 | pen_std |
---|
90 | ) |
---|
91 | else: |
---|
92 | self.add_item(date, run, pen) |
---|
93 | self[date].fill() |
---|
94 | |
---|
95 | #--------------------------------------- |
---|
96 | def add_item(self, date, run=np.nan, pen=np.nan, |
---|
97 | run_mean=np.nan, pen_mean=np.nan, |
---|
98 | run_std=np.nan, pen_std=np.nan): |
---|
99 | """ |
---|
100 | """ |
---|
101 | self[date] = Conso( |
---|
102 | date, |
---|
103 | run, |
---|
104 | pen, |
---|
105 | run_mean, |
---|
106 | pen_mean, |
---|
107 | run_std, |
---|
108 | pen_std |
---|
109 | ) |
---|
110 | |
---|
111 | #--------------------------------------- |
---|
112 | def get_items_in_range(self, date_beg, date_end, inc=1): |
---|
113 | """ |
---|
114 | """ |
---|
115 | items = (item for item in self.itervalues() |
---|
116 | if item.date >= date_beg and |
---|
117 | item.date <= date_end) |
---|
118 | items = sorted(items, key=lambda item: item.date) |
---|
119 | |
---|
120 | return items[::inc] |
---|
121 | |
---|
122 | #--------------------------------------- |
---|
123 | def get_items_in_full_range(self, inc=1): |
---|
124 | """ |
---|
125 | """ |
---|
126 | items = (item for item in self.itervalues() |
---|
127 | if item.date.hour == 0) |
---|
128 | items = sorted(items, key=lambda item: item.date) |
---|
129 | |
---|
130 | return items[::inc] |
---|
131 | |
---|
132 | #--------------------------------------- |
---|
133 | def get_items(self, inc=1): |
---|
134 | """ |
---|
135 | """ |
---|
136 | items = (item for item in self.itervalues() |
---|
137 | if item.isfilled()) |
---|
138 | items = sorted(items, key=lambda item: item.date) |
---|
139 | |
---|
140 | return items[::inc] |
---|
141 | |
---|
142 | |
---|
143 | class Conso(object): |
---|
144 | #--------------------------------------- |
---|
145 | def __init__(self, date, run=np.nan, pen=np.nan, |
---|
146 | run_mean=np.nan, pen_mean=np.nan, |
---|
147 | run_std=np.nan, pen_std=np.nan): |
---|
148 | |
---|
149 | self.date = date |
---|
150 | self.run = run |
---|
151 | self.pen = pen |
---|
152 | self.run_mean = run_mean |
---|
153 | self.pen_mean = pen_mean |
---|
154 | self.run_std = run_std |
---|
155 | self.pen_std = pen_std |
---|
156 | self.filled = False |
---|
157 | |
---|
158 | #--------------------------------------- |
---|
159 | def __repr__(self): |
---|
160 | return "R{:.0f} ({:.0f}/{:.0f}) P{:.0f} ({:.0f}/{:.0f})".format( |
---|
161 | self.run, |
---|
162 | self.run_mean, |
---|
163 | self.run_std, |
---|
164 | self.pen, |
---|
165 | self.pen_mean, |
---|
166 | self.pen_std, |
---|
167 | ) |
---|
168 | |
---|
169 | #--------------------------------------- |
---|
170 | def isfilled(self): |
---|
171 | return self.filled |
---|
172 | |
---|
173 | #--------------------------------------- |
---|
174 | def fill(self): |
---|
175 | self.filled = True |
---|
176 | |
---|
177 | |
---|
178 | ######################################## |
---|
179 | def plot_init(): |
---|
180 | paper_size = np.array([29.7, 21.0]) |
---|
181 | fig, ax = plt.subplots(figsize=(paper_size/2.54)) |
---|
182 | |
---|
183 | return fig, ax |
---|
184 | |
---|
185 | |
---|
186 | ######################################## |
---|
187 | def plot_data(ax, xcoord, dates, run_jobs, pen_jobs, run_std, pen_std): |
---|
188 | """ |
---|
189 | """ |
---|
190 | line_width = 0. |
---|
191 | width = 1.05 |
---|
192 | |
---|
193 | ax.bar(xcoord, run_jobs, width=width, yerr=run_std/2., |
---|
194 | linewidth=line_width, align="center", |
---|
195 | color="lightgreen", ecolor="green", antialiased=True, |
---|
196 | label="jobs running") |
---|
197 | ax.bar(xcoord, pen_jobs, bottom=run_jobs, width=width, |
---|
198 | linewidth=line_width, align="center", |
---|
199 | color="firebrick", antialiased=True, |
---|
200 | label="jobs pending") |
---|
201 | |
---|
202 | |
---|
203 | ######################################## |
---|
204 | def plot_config(fig, ax, xcoord, dates, title, conso_per_day): |
---|
205 | """ |
---|
206 | """ |
---|
207 | # ... Config axes ... |
---|
208 | # ------------------- |
---|
209 | # 1) Range |
---|
210 | xmin, xmax = xcoord[0]-1, xcoord[-1]+1 |
---|
211 | ax.set_xlim(xmin, xmax) |
---|
212 | |
---|
213 | # 2) Ticks labels |
---|
214 | (date_beg, date_end) = (dates[0], dates[-1]) |
---|
215 | |
---|
216 | if date_end - date_beg > dt.timedelta(weeks=9): |
---|
217 | date_fmt = "{:%d-%m}" |
---|
218 | maj_xticks = [x for x, d in zip(xcoord, dates) |
---|
219 | if d.weekday() == 0 and d.hour == 0] |
---|
220 | maj_xlabs = [date_fmt.format(d) for d in dates |
---|
221 | if d.weekday() == 0 and d.hour == 0] |
---|
222 | else: |
---|
223 | date_fmt = "{:%d-%m %Hh}" |
---|
224 | maj_xticks = [x for x, d in zip(xcoord, dates) |
---|
225 | if d.hour == 0 or d.hour == 12] |
---|
226 | maj_xlabs = [date_fmt.format(d) for d in dates |
---|
227 | if d.hour == 0 or d.hour == 12] |
---|
228 | |
---|
229 | ax.set_xticks(xcoord, minor=True) |
---|
230 | ax.set_xticks(maj_xticks, minor=False) |
---|
231 | ax.set_xticklabels(maj_xlabs, rotation="vertical", size="x-small") |
---|
232 | |
---|
233 | yticks = list(ax.get_yticks()) |
---|
234 | yticks.append(conso_per_day) |
---|
235 | ax.set_yticks(yticks) |
---|
236 | |
---|
237 | ax.axhline(y=conso_per_day, color="blue", alpha=0.5, |
---|
238 | label="conso journaliÚre idéale") |
---|
239 | |
---|
240 | for x, d in zip(xcoord, dates): |
---|
241 | if d.weekday() == 0 and d.hour == 0: |
---|
242 | ax.axvline(x=x, color="black", linewidth=1., linestyle=":") |
---|
243 | |
---|
244 | # 3) Define axes title |
---|
245 | ax.set_ylabel("cÅurs", fontweight="bold") |
---|
246 | ax.tick_params(axis="y", labelsize="small") |
---|
247 | |
---|
248 | # 4) Define plot size |
---|
249 | fig.subplots_adjust( |
---|
250 | left=0.08, |
---|
251 | bottom=0.09, |
---|
252 | right=0.93, |
---|
253 | top=0.93, |
---|
254 | ) |
---|
255 | |
---|
256 | # ... Main title and legend ... |
---|
257 | # ----------------------------- |
---|
258 | fig.suptitle(title, fontweight="bold", size="large") |
---|
259 | ax.legend(loc="upper right", fontsize="x-small", frameon=False) |
---|
260 | |
---|
261 | |
---|
262 | ######################################## |
---|
263 | def get_arguments(): |
---|
264 | parser = ArgumentParser() |
---|
265 | parser.add_argument("-v", "--verbose", action="store_true", |
---|
266 | help="verbose mode") |
---|
267 | parser.add_argument("-f", "--full", action="store_true", |
---|
268 | help="plot the whole period") |
---|
269 | parser.add_argument("-i", "--increment", action="store", |
---|
270 | type=int, default=1, dest="inc", |
---|
271 | help="sampling increment") |
---|
272 | parser.add_argument("-r", "--range", action="store", nargs=2, |
---|
273 | type=string_to_date, |
---|
274 | help="date range: ssaa-mm-jj ssaa-mm-jj") |
---|
275 | parser.add_argument("-s", "--show", action="store_true", |
---|
276 | help="interactive mode") |
---|
277 | parser.add_argument("-d", "--dods", action="store_true", |
---|
278 | help="copy output on dods") |
---|
279 | |
---|
280 | return parser.parse_args() |
---|
281 | |
---|
282 | |
---|
283 | ######################################## |
---|
284 | if __name__ == '__main__': |
---|
285 | |
---|
286 | # .. Initialization .. |
---|
287 | # ==================== |
---|
288 | # ... Command line arguments ... |
---|
289 | # ------------------------------ |
---|
290 | args = get_arguments() |
---|
291 | if args.verbose: |
---|
292 | print(args) |
---|
293 | |
---|
294 | # ... Turn interactive mode off ... |
---|
295 | # --------------------------------- |
---|
296 | if not args.show: |
---|
297 | import matplotlib |
---|
298 | matplotlib.use('Agg') |
---|
299 | |
---|
300 | import matplotlib.pyplot as plt |
---|
301 | # from matplotlib.backends.backend_pdf import PdfPages |
---|
302 | |
---|
303 | if not args.show: |
---|
304 | plt.ioff() |
---|
305 | |
---|
306 | # ... Files and directories ... |
---|
307 | # ----------------------------- |
---|
308 | (file_param, file_utheo) = \ |
---|
309 | get_input_files(DIR["SAVEDATA"], [OUT["PARAM"], OUT["UTHEO"]]) |
---|
310 | |
---|
311 | file_list = glob.glob(os.path.join(DIR["SAVEDATA"], |
---|
312 | "OUT_JOBS_PENDING_*")) |
---|
313 | |
---|
314 | img_name = "jobs" |
---|
315 | today = os.path.basename(file_param).strip(OUT["PARAM"]) |
---|
316 | |
---|
317 | if args.verbose: |
---|
318 | print(file_param) |
---|
319 | print(file_utheo) |
---|
320 | print(file_list) |
---|
321 | print(img_name) |
---|
322 | print(today) |
---|
323 | |
---|
324 | # .. Get project info .. |
---|
325 | # ====================== |
---|
326 | gencmip6 = Project() |
---|
327 | gencmip6.fill_data(file_param) |
---|
328 | gencmip6.get_date_init(file_utheo) |
---|
329 | |
---|
330 | # .. Fill in data .. |
---|
331 | # ================== |
---|
332 | # ... Initialization ... |
---|
333 | # ---------------------- |
---|
334 | bilan = DataDict() |
---|
335 | bilan.init_range(gencmip6.date_init, gencmip6.deadline) |
---|
336 | |
---|
337 | # ... Extract data from file ... |
---|
338 | # ------------------------------ |
---|
339 | bilan.fill_data(file_list) |
---|
340 | |
---|
341 | # # ... Compute theoratical use from known data ... |
---|
342 | # # ------------------------------------------------ |
---|
343 | # bilan.theo_equation() |
---|
344 | |
---|
345 | # .. Extract data depending on C.L. arguments .. |
---|
346 | # ============================================== |
---|
347 | if args.full: |
---|
348 | selected_items = bilan.get_items_in_full_range(args.inc) |
---|
349 | elif args.range: |
---|
350 | selected_items = bilan.get_items_in_range( |
---|
351 | args.range[0], args.range[1], args.inc |
---|
352 | ) |
---|
353 | else: |
---|
354 | selected_items = bilan.get_items(args.inc) |
---|
355 | |
---|
356 | # .. Compute data to be plotted .. |
---|
357 | # ================================ |
---|
358 | nb_items = len(selected_items) |
---|
359 | |
---|
360 | xcoord = np.linspace(1, nb_items, num=nb_items) |
---|
361 | dates = [item.date for item in selected_items] |
---|
362 | |
---|
363 | if args.full: |
---|
364 | run_jobs = np.array([item.run_mean for item in selected_items], |
---|
365 | dtype=float) |
---|
366 | pen_jobs = np.array([item.pen_mean for item in selected_items], |
---|
367 | dtype=float) |
---|
368 | run_std = np.array([item.run_std for item in selected_items], |
---|
369 | dtype=float) |
---|
370 | pen_std = np.array([item.pen_std for item in selected_items], |
---|
371 | dtype=float) |
---|
372 | else: |
---|
373 | run_jobs = np.array([item.run for item in selected_items], |
---|
374 | dtype=float) |
---|
375 | pen_jobs = np.array([item.pen for item in selected_items], |
---|
376 | dtype=float) |
---|
377 | run_std = np.nan |
---|
378 | pen_std = np.nan |
---|
379 | |
---|
380 | if args.verbose: |
---|
381 | for i in selected_items: |
---|
382 | if not np.isnan(i.run_mean): |
---|
383 | print( |
---|
384 | "{} {:13.2f} {:13.2f} {:13.2f} {:13.2f}".format( |
---|
385 | i.date, |
---|
386 | i.run_mean, i.pen_mean, |
---|
387 | i.run_std, i.pen_std |
---|
388 | ) |
---|
389 | ) |
---|
390 | |
---|
391 | conso_per_day = gencmip6.alloc / (gencmip6.days * 24.) |
---|
392 | |
---|
393 | # .. Plot stuff .. |
---|
394 | # ================ |
---|
395 | # ... Initialize figure ... |
---|
396 | # ------------------------- |
---|
397 | (fig, ax) = plot_init() |
---|
398 | |
---|
399 | # ... Plot data ... |
---|
400 | # ----------------- |
---|
401 | plot_data(ax, xcoord, dates, run_jobs, pen_jobs, run_std, pen_std) |
---|
402 | |
---|
403 | # # ... Tweak figure ... |
---|
404 | # # -------------------- |
---|
405 | # if args.max: |
---|
406 | # ymax = gencmip6.alloc |
---|
407 | # else: |
---|
408 | # ymax = np.nanmax(consos) + np.nanmax(consos)*.1 |
---|
409 | |
---|
410 | title = "Suivi des jobs {}\n({:%d/%m/%Y} - {:%d/%m/%Y})".format( |
---|
411 | gencmip6.project.upper(), |
---|
412 | gencmip6.date_init, |
---|
413 | gencmip6.deadline |
---|
414 | ) |
---|
415 | |
---|
416 | plot_config(fig, ax, xcoord, dates, title, conso_per_day) |
---|
417 | |
---|
418 | # ... Save figure ... |
---|
419 | # ------------------- |
---|
420 | img_in = os.path.join(DIR["PLOT"], "{}.pdf".format(img_name)) |
---|
421 | img_out = os.path.join(DIR["SAVEPLOT"], |
---|
422 | "{}_{}.pdf".format(img_name, today)) |
---|
423 | |
---|
424 | plot_save(img_in, img_out, title) |
---|
425 | |
---|
426 | # ... Publish figure on dods ... |
---|
427 | # ------------------------------ |
---|
428 | if args.dods: |
---|
429 | dods_cp(img_in) |
---|
430 | |
---|
431 | if args.show: |
---|
432 | plt.show() |
---|
433 | |
---|
434 | exit(0) |
---|
435 | |
---|