Changeset 4217
- Timestamp:
- 01/11/19 14:27:49 (6 years ago)
- Location:
- CONFIG/UNIFORM/v6/IPSLESM6/GENERAL
- Files:
-
- 9 added
- 14 edited
Legend:
- Unmodified
- Added
- Removed
-
CONFIG/UNIFORM/v6/IPSLESM6/GENERAL/DRIVER/lmdz.driver
r3969 r4217 489 489 else 490 490 # Take default value set in physiq.def 491 IGCM_comp_modifyDefFile nonblocker config.def tau_gl DEFAULT491 IGCM_comp_modifyDefFile nonblocker physiq.def tau_gl DEFAULT 492 492 fi 493 493 … … 528 528 529 529 # Add include of LMDZ context in iodef.xml 530 # In iodef.xml add on next line after "COMPONENT CONTEXT" 531 # <context id="LMDZ" src="./context_lmdz.xml"/> 530 # In iodef.xml add on the next line after "COMPONENT CONTEXT" 532 531 echo '<context id="LMDZ" src="./context_lmdz.xml"/>' > add.tmp 532 # Add inclusion of file context_input_lmdz.xml if this file exists 533 if [ -f context_input_lmdz.xml ] ; then 534 echo '<context id="LMDZ" src="./context_input_lmdz.xml"/>' >> add.tmp 535 fi 536 # Include xml files for output configuration if running with workflow CMIP6 533 537 if [ X"$( echo ${config_UserChoices_ExpType} | grep CMIP6 )" != "X" ] ; then 534 538 echo '<context id="LMDZ" src="./ping_lmdz.xml"/>' >> add.tmp -
CONFIG/UNIFORM/v6/IPSLESM6/GENERAL/DRIVER/orchidee.driver
r3969 r4217 131 131 132 132 # Add include of orchidee context in iodef.xml 133 # In iodef.xml add on next line after "COMPONENT CONTEXT" 134 # <context id="orchidee" src="./context_orchidee.xml"/> 133 # In iodef.xml add on the next line after "COMPONENT CONTEXT" 135 134 echo '<context id="orchidee" src="./context_orchidee.xml"/>' > add.tmp 135 # Add inclusion of file context_input_orchidee.xml if this file exists 136 if [ -f context_input_orchidee.xml ] ; then 137 echo '<context id="orchidee" src="./context_input_orchidee.xml"/>' >> add.tmp 138 fi 139 # Include xml files for output configuration if running with workflow CMIP6 136 140 if [ X"$( echo ${config_UserChoices_ExpType} | grep CMIP6 )" != "X" ] ; then 137 141 echo '<context id="orchidee" src="./ping_orchidee.xml"/>' >> add.tmp -
CONFIG/UNIFORM/v6/IPSLESM6/GENERAL/DRIVER/pisces.driver
r3969 r4217 81 81 # ATM_Update is done before MBG_Update and therefore config.def file contains the correct value for CO2. 82 82 IGCM_debug_Print 1 'Update atcco2 in namelist_pisces_cfg with same value as for LMDZ' 83 LMDZ_CO2=$( lmdzgrep2 co2_ppm config.def )83 LMDZ_CO2=$( lmdzgrep2 co2_ppm config.def | head -1 ) 84 84 IGCM_debug_Print 1 "LMDZ_CO2 : ${LMDZ_CO2} " 85 85 IGCM_comp_modifyNamelist force namelist_pisces_cfg atcco2 ${LMDZ_CO2} -
CONFIG/UNIFORM/v6/IPSLESM6/GENERAL/PARAM/config.def_actuel
r3969 r4217 73 73 # Aerosols stratospheriques utilises par defaut 74 74 flag_aerosol_strat=2 75 # Diag VolMIP to get volcanic aerosols effects instead of tropospheric ones 76 ok_volcan=n 75 77 # 76 78 # COSP 77 79 ok_cosp=_AUTO_ 78 79 -
CONFIG/UNIFORM/v6/IPSLESM6/GENERAL/PARAM/config.def_annuel
r3969 r4217 74 74 # Aerosols stratospheriques utilises par defaut 75 75 flag_aerosol_strat=2 76 # Diag VolMIP to get volcanic aerosols effects instead of tropospheric ones 77 ok_volcan=n 78 # 76 79 # COSP 77 80 ok_cosp=_AUTO_ -
CONFIG/UNIFORM/v6/IPSLESM6/GENERAL/PARAM/config.def_preind
r3969 r4217 74 74 # 75 75 flag_aerosol_strat=2 76 # Diag VolMIP to get volcanic aerosols effects instead of tropospheric ones 77 ok_volcan=n 76 78 # 77 79 # COSP -
CONFIG/UNIFORM/v6/IPSLESM6/GENERAL/PARAM/file_def_nemo-opa.xml
r3969 r4217 262 262 <field field_ref="iceconc" name="siconc" level="2" /> 263 263 <!-- For heat conservation checking --> 264 <field field_ref="qt_oce" name="qt_oce" long_name="downward total flux at ocean surface" level=" 2" />265 <field field_ref="qemp_oce" name="qemp_oce" long_name="Downward Heat Flux from E-P over open ocean" level=" 2" />266 <field field_ref="qt_ice" name="qt_ice" long_name="downward total flux at ice surface" level=" 2" />267 <field field_ref="qemp_ice" name="qemp_ice" long_name="Downward Heat Flux from E-P over ice" level=" 2" />268 <field field_ref="hflx_rain_cea" name="hflx_rain_cea" level=" 2" />269 <field field_ref="hflx_evap_cea" name="hflx_evap_cea" level=" 2" />270 <field field_ref="hflx_snow_cea" name="hflx_snow_cea" level=" 2" />271 <field field_ref="hflx_cal_cea" name="hflx_cal_cea" level=" 2" />264 <field field_ref="qt_oce" name="qt_oce" long_name="downward total flux at ocean surface" level="1" /> 265 <field field_ref="qemp_oce" name="qemp_oce" long_name="Downward Heat Flux from E-P over open ocean" level="1" /> 266 <field field_ref="qt_ice" name="qt_ice" long_name="downward total flux at ice surface" level="1" /> 267 <field field_ref="qemp_ice" name="qemp_ice" long_name="Downward Heat Flux from E-P over ice" level="1" /> 268 <field field_ref="hflx_rain_cea" name="hflx_rain_cea" level="1" /> 269 <field field_ref="hflx_evap_cea" name="hflx_evap_cea" level="1" /> 270 <field field_ref="hflx_snow_cea" name="hflx_snow_cea" level="1" /> 271 <field field_ref="hflx_cal_cea" name="hflx_cal_cea" level="1" /> 272 272 <!-- For freshwater conservation checking --> 273 273 <field field_ref="empmr" name="wfo" long_name="water_flux_into_sea_water" level="1" /> 274 <field field_ref="emp_oce" name="emp_oce" level=" 2" />275 <field field_ref="emp_ice" name="emp_ice" level=" 2" />276 <field field_ref="runoffs" name="runoffs" level=" 2" />277 <field field_ref="runoffs" name="friver" long_name="water_flux_into_sea_water_from_rivers" level="1" > runoffs - iceberg_cea </field>278 <field field_ref="calving_cea" name="calving" level=" 2" />279 <field field_ref="iceberg_cea" name="iceberg" level=" 2" />280 <field field_ref="iceshelf_cea" name="iceshelf" level=" 2" />281 <field field_ref="vfxice" name="vfxice" level=" 2" />282 <field field_ref="vfxsnw" name="vfxsnw" level=" 2" />283 <field field_ref="vfxsub" name="vfxsub" level=" 2" />284 <field field_ref="vfxspr" name="vfxspr" level=" 2" />285 <field field_ref="rain" name="rain" level=" 2" />286 <field field_ref="snow_ao_cea" name="snow_ao_cea" level=" 2" />287 <field field_ref="snow_ai_cea" name="snow_ai_cea" level=" 2" />288 <field field_ref="evap_ao_cea" name="evap_ao_cea" level=" 2" />289 <field field_ref="subl_ai_cea" name="subl_ai_cea" level=" 2" />274 <field field_ref="emp_oce" name="emp_oce" level="1" /> 275 <field field_ref="emp_ice" name="emp_ice" level="1" /> 276 <field field_ref="runoffs" name="runoffs" level="1" /> 277 <field field_ref="runoffs" name="friver" long_name="water_flux_into_sea_water_from_rivers" level="1" > runoffs - iceberg_cea </field> 278 <field field_ref="calving_cea" name="calving" level="1" /> 279 <field field_ref="iceberg_cea" name="iceberg" level="1" /> 280 <field field_ref="iceshelf_cea" name="iceshelf" level="1" /> 281 <field field_ref="vfxice" name="vfxice" level="1" /> 282 <field field_ref="vfxsnw" name="vfxsnw" level="1" /> 283 <field field_ref="vfxsub" name="vfxsub" level="1" /> 284 <field field_ref="vfxspr" name="vfxspr" level="1" /> 285 <field field_ref="rain" name="rain" level="1" /> 286 <field field_ref="snow_ao_cea" name="snow_ao_cea" level="1" /> 287 <field field_ref="snow_ai_cea" name="snow_ai_cea" level="1" /> 288 <field field_ref="evap_ao_cea" name="evap_ao_cea" level="1" /> 289 <field field_ref="subl_ai_cea" name="subl_ai_cea" level="1" /> 290 290 <!-- For salt conservation checking --> 291 <field field_ref="saltflx" name="sosflxdo" level=" 2" />291 <field field_ref="saltflx" name="sosflxdo" level="1" /> 292 292 </file> 293 293 -
CONFIG/UNIFORM/v6/IPSLESM6/GENERAL/PARAM/namelist_ORCA1_cfg
r3969 r4217 141 141 ! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask ! 142 142 ! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename ! 143 sn_rnf = 'eORCA_R1_runoff_clim_v1.0_nomask', -1 , 'sorunoff', .true. , .true. , 'yearly' , '' , '' , '' 144 sn_cnf = 'eORCA_R1_runoff_clim_v1.0_nomask', 0 , 'socoeff' , .false. , .true. , 'yearly' , '' , '' , '' 143 sn_rnf = 'runoff-icb_DaiTrenberth_Depoorter_eORCA1_JD.nc', -1 , 'sorunoff', .true. , .true. , 'yearly' , '' , '' , '' 144 sn_i_rnf = 'runoff-icb_DaiTrenberth_Depoorter_eORCA1_JD.nc', -1 , 'Icb_flux', .true. , .true. , 'yearly' , '' , '' , '' 145 sn_cnf = 'runoff-icb_DaiTrenberth_Depoorter_eORCA1_JD.nc', 0 , 'socoeff' , .false. , .true. , 'yearly' , '' , '' , '' 145 146 sn_s_rnf = 'runoffs' , 24 , 'rosaline', .true. , .true. , 'yearly' , '' , '' , '' 146 147 sn_t_rnf = 'runoffs' , 24 , 'rotemper', .true. , .true. , 'yearly' , '' , '' , '' 147 148 sn_dep_rnf = 'runoffs_eORCA1.0_depths.nc' , 0 , 'rodepth' , .false. , .true. , 'yearly' , '' , '' , '' 148 149 150 ln_rnf_icb = .false. ! read in iceberg flux 149 151 ln_rnf_mouth = .false. ! specific treatment at rivers mouths 150 152 ln_rnf_depth = .true. ! read in depth information for runoff -
CONFIG/UNIFORM/v6/IPSLESM6/GENERAL/PARAM/namelist_lim3_ORCA1_cfg
r3687 r4217 47 47 &namiceitd ! Ice discretization 48 48 !------------------------------------------------------------------------------ 49 rn_himax_bot = 99. ! max ice thickness in the last category jpl 49 50 / -
CONFIG/UNIFORM/v6/IPSLESM6/GENERAL/PARAM/namelist_lim3_ORCA1_cfg_NPv6.1
r3758 r4217 47 47 &namiceitd ! Ice discretization 48 48 !------------------------------------------------------------------------------ 49 rn_himax_bot = 99. ! max ice thickness in the last category jpl 49 50 / -
CONFIG/UNIFORM/v6/IPSLESM6/GENERAL/PARAM/physiq.def_NPv6.1
r3969 r4217 530 530 531 531 cdnc_min=10. 532 533 ##################################################################### 534 ### ESM 535 ###################################################################### 536 #level_coupling_esm=2 537 #carbon_cycle_cpl=y 538 #carbon_cycle_tr=y 539 # 540 #carbon_cycle_emis_comp=n 541 #carbon_cycle_fco2fos_1D=1. 542 #RCO2_inter=n -
CONFIG/UNIFORM/v6/IPSLESM6/GENERAL/PARAM/ping_LMDZ.xml
r3969 r4217 155 155 <field id="CMIP6_loadss" field_ref="loadss" /> <!-- P1 (kg m-2) atmosphere_mass_content_of_seasalt_dry_aerosol : Load of Seasalt --> 156 156 <field id="CMIP6_longitude" field_ref="dummy_not_provided" /> <!-- P1 (degrees_east) longitude : Longitude --> 157 <field id="CMIP6_lwsffluxaero" field_ref=" dummy_not_provided" /> <!-- P2 (W m-2) longwave__flux__due_to_volcanic_aerosols_at_the_surface : downwelling longwave flux due to volcanic aerosols at the surface to be diagnosed through double radiation call -->157 <field id="CMIP6_lwsffluxaero" field_ref="toplwad" /> <!-- P2 (W m-2) longwave__flux__due_to_volcanic_aerosols_at_the_surface : downwelling longwave flux due to volcanic aerosols at the surface to be diagnosed through double radiation call --> 158 158 <field id="CMIP6_lwsrfasdust" field_ref="dummy_not_provided" /> <!-- P1 (W m-2) surface_instantaneous_longwave_forcing_due_to_dust : All-sky Surface Longwave radiative flux due to Dust --> 159 159 <field id="CMIP6_lwsrfcsdust" field_ref="dummy_not_provided" /> <!-- P1 (W m-2) surface_instantaneous_longwave_forcing_due_to_dust_in_clearsky : Clear-sky Surface Longwave radiative flux due to Dust --> … … 161 161 <field id="CMIP6_lwtoacsaer" field_ref="toplwad0" /> <!-- P1 (W m-2) toa_instantaneous_longwave_forcing : Clear-Sky LW-RF Aerosols at TOA --> 162 162 <field id="CMIP6_lwtoacsdust" field_ref="dummy_not_provided" /> <!-- P1 (W m-2) toa_instantaneous_longwave_forcing_due_to_dust_in_clearsky : Clear-sky TOA Longwave radiative flux due to Dust --> 163 <field id="CMIP6_lwtoafluxaerocs" field_ref=" dummy_not_provided" /> <!-- P1 (W m-2) longwave_flux_due_to_volcanic_aerosols_at_TOA_under_clear_sky : downwelling longwave flux due to volcanic aerosols at TOA under clear sky to be diagnosed through double radiation call -->163 <field id="CMIP6_lwtoafluxaerocs" field_ref="toplwad0" /> <!-- P1 (W m-2) longwave_flux_due_to_volcanic_aerosols_at_TOA_under_clear_sky : downwelling longwave flux due to volcanic aerosols at TOA under clear sky to be diagnosed through double radiation call --> 164 164 <field id="CMIP6_mc" field_ref="mc" /> <!-- P1 (kg m-2 s-1) atmosphere_net_upward_convective_mass_flux : The net mass flux should represent the difference between the updraft and downdraft components. The flux is computed as the mass divided by the area of the grid cell. --> 165 165 <field id="CMIP6_mcd" field_ref="dnwd" > (dnwd-dnwd0) > 0 ? (dnwd-dnwd0) : 0 </field> <!-- P2 (kg m-2 s-1) atmosphere_downdraft_convective_mass_flux : Calculated as the convective mass flux divided by the area of the whole grid cell (not just the area of the cloud). --> … … 281 281 <field id="CMIP6_snwc" field_ref="dummy_not_provided" /> <!-- P1 (kg m-2) canopy_snow_amount : canopy_snow_amount --> 282 282 <field id="CMIP6_solbnd" field_ref="solbnd" /> <!-- P1 (W m-2) solar_irradiance : Top-of-Atmosphere Solar Insolation for each band --> 283 <field id="CMIP6_swsffluxaero" field_ref=" dummy_not_provided" /> <!-- P2 (W m-2) shortwave__flux_due_to_volcanic_aerosols_at__the_surface : downwelling shortwave flux due to volcanic aerosols at the surface to be diagnosed through double radiation call -->283 <field id="CMIP6_swsffluxaero" field_ref="topswad" /> <!-- P2 (W m-2) shortwave__flux_due_to_volcanic_aerosols_at__the_surface : downwelling shortwave flux due to volcanic aerosols at the surface to be diagnosed through double radiation call --> 284 284 <field id="CMIP6_swsrfasdust" field_ref="dummy_not_provided" /> <!-- P1 (W m-2) tendency_of_all_sky_surface_shortwave_flux_due_to_dust_ambient_aerosol_particles : All-sky Surface Shortwave radiative flux due to Dust --> 285 285 <field id="CMIP6_swsrfcsdust" field_ref="dummy_not_provided" /> <!-- P1 (W m-2) tendency_of_clear_sky_surface_shortwave_flux_due_to_dust_ambient_aerosol_particles : Clear-sky Surface Shortwave radiative flux due to Dust --> 286 286 <field id="CMIP6_swtoaasdust" field_ref="dummy_not_provided" /> <!-- P1 (W m-2) toa_instantaneous_shortwave_forcing : all sky sw-rf dust at toa --> 287 287 <field id="CMIP6_swtoacsdust" field_ref="dummy_not_provided" /> <!-- P1 (W m-2) toa_instantaneous_shortwave_forcing : clear sky sw-rf dust at toa --> 288 <field id="CMIP6_swtoafluxaerocs" field_ref=" dummy_not_provided" /> <!-- P1 (W m-2) shortwave_flux_due_to_volcanic_aerosols_at_TOA_under_clear_sky : downwelling shortwave flux due to volcanic aerosols at TOA under clear sky to be diagnosed through double radiation call -->288 <field id="CMIP6_swtoafluxaerocs" field_ref="topswad0" /> <!-- P1 (W m-2) shortwave_flux_due_to_volcanic_aerosols_at_TOA_under_clear_sky : downwelling shortwave flux due to volcanic aerosols at TOA under clear sky to be diagnosed through double radiation call --> 289 289 <field id="CMIP6_sza" field_ref="sza" /> <!-- P1 (degree) solar_zenith_angle : solar zenith angle --> 290 290 <field id="CMIP6_t2" field_ref="temp"> temp*temp </field> <!-- P2 (K2) square_of_air_temperature : square_of_air_temperature --> … … 363 363 <field id="CMIP6_zhalf" field_ref="zhalf" /> <!-- P2 (m) height_above_reference_ellipsoid : This is actual height above mean sea level, not geopotential height. This is actual height above mean sea level, not geopotential height. Includes both the top of the model atmosphere and surface levels. --> 364 364 <field id="CMIP6_zmla" field_ref="s_pblh" /> <!-- P1 (m) atmosphere_boundary_layer_thickness : Height of Boundary Layer --> 365 <field id="CMIP6_zmlwaero" field_ref=" dummy_not_provided" /> <!-- P1 (K s-1) longwave_heating_rate_due_to_volcanic_aerosols : longwave heating rate due to volcanic aerosols to be diagnosed through double radiation call, zonal average values required -->366 <field id="CMIP6_zmswaero" field_ref=" dummy_not_provided" /> <!-- P1 (K s-1) shortwave_heating_rate_due_to_volcanic_aerosols : shortwave heating rate due to volcanic aerosols to be diagnosed through double radiation call, zonal average values required -->365 <field id="CMIP6_zmlwaero" field_ref="cool_volc" /> <!-- P1 (K s-1) longwave_heating_rate_due_to_volcanic_aerosols : longwave heating rate due to volcanic aerosols to be diagnosed through double radiation call, zonal average values required --> 366 <field id="CMIP6_zmswaero" field_ref="heat_volc" /> <!-- P1 (K s-1) shortwave_heating_rate_due_to_volcanic_aerosols : shortwave heating rate due to volcanic aerosols to be diagnosed through double radiation call, zonal average values required --> 367 367 <field id="CMIP6_zmtnt" field_ref="dtphy" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_diabatic_processes : Zonal Mean Diabatic Heating Rates --> 368 368 <field id="CMIP6_ap" field_ref="Ahyb" /><!-- Ap hybrid coordinate array for level interfaces --> -
CONFIG/UNIFORM/v6/IPSLESM6/GENERAL/PARAM/ping_nemo.xml
r3969 r4217 1 <!-- Ping files generated by dr2xml 0.23 using Data Request 01.00.18-->1 <!-- Ping files generated by dr2xml 1.13 using Data Request 01.00.27 --> 2 2 <!-- lrealms= ['ocean'] --> 3 3 <!-- exact= False --> … … 11 11 sizes : {'LR': [20592, 79, 32768, 91, 30, 14, 128]} 12 12 ping_variables_prefix : CMIP6_ 13 source_types : {'IPSL-CM6A-LR': 'AOGCM '}13 source_types : {'IPSL-CM6A-LR': 'AOGCM AER BGC'} 14 14 path_extra_tables : None 15 15 grid_policy : native 16 16 path_special_defs : None 17 mips : {'LR': set(['CORDEX', 'GMMIP', 'RFMIP', ' AerChemMIP', 'CMIP6', 'OMIP', 'GeoMIP', 'C4MIP', 'PDRMIP', 'DCPP', 'DECK', 'LUMIP', 'CMIP5', 'CFMIP', 'ScenarioMIP', 'DAMIP', 'CCMI', 'SolarMIP', 'VIACSAB', 'SIMIP', 'CMIP', 'ISMIP6', 'VolMIP', 'PMIP', 'FAFMIP', 'HighResMIP', 'LS3MIP', 'SPECS', 'DynVar'])}18 17 mips : {'LR': set(['CORDEX', 'GMMIP', 'RFMIP', 'VolMIP', 'CMIP6', 'ScenarioMIP', 'GeoMIP', 'C4MIP', 'PDRMIP', 'CMIP', 'DECK', 'LUMIP', 'CMIP5', 'CFMIP', 'OMIP', 'DAMIP', 'CCMI', 'SolarMIP', 'VIACSAB', 'SIMIP', 'DCPP', 'ISMIP6', 'AerChemMIP', 'PMIP', 'FAFMIP', 'DynVar', 'LS3MIP', 'SPECS', 'HighResMIP'])} 18 excluded_vars : [] 19 19 orphan_variables : {} 20 -->20 --> 21 21 <context id="nemo"> 22 22 <field_definition> 23 23 <field_group freq_op="_reset_" freq_offset="_reset_"> 24 24 <!-- for variables which realm equals one of _ocean--> 25 <field id="CMIP6_O18sw" field_ref="dummy_XYO" /> <!-- P1 () O18sw : Roche - LSCE - **** NEMO-RD does not do --> 26 <field id="CMIP6_agessc" field_ref="Age_E3T" expr="@Age_E3T / @e3t" > Age_E3T / e3t </field> <!-- P1 (yr) sea_water_age_since_surface_contact : Time elapsed since water was last in surface layer of the ocean. **** NEMO-RD: P2 for IPSL CM6 (in forced mode only) --> 27 <field id="CMIP6_areacello" field_ref="areacello" /> <!-- P1 (m2) cell_area : Horizontal area of ocean grid cells --> 28 <field id="CMIP6_basin" field_ref="basins" /> <!-- P1 (1.0) region : Region Selection Index --> 29 <field id="CMIP6_bigthetao" field_ref="toce" expr="@toce_e3t / @e3t" > toce_e3t / e3t </field> <!-- P1 (degC) sea_water_conservative_temperature : Sea water conservative temperature (this should be contributed only for models using conservative temperature as prognostic field) --> 30 <field id="CMIP6_bigthetaoga" field_ref="sctemtot" /> <!-- P1 (degC) sea_water_conservative_temperature : Diagnostic should be contributed only for models using conservative temperature as prognostic field. . --> 31 <field id="CMIP6_cfc11" field_ref="CFC11_E3T" expr="@CFC11_E3T / @e3t" > CFC11_E3T / e3t </field> <!-- P1 (mol m-3) mole_concentration_of_cfc11_in_sea_water : Moles Per Unit Mass of CFC-11 in sea water --> 32 <field id="CMIP6_cfc12" field_ref="CFC12_E3T" expr="@CFC12_E3T / @e3t" > CFC12_E3T / e3t </field> <!-- P2 (mol m-3) mole_concentration_of_cfc12_in_sea_water : Mole Concentration of CFC-12 in sea water --> 25 <field id="CMIP6_agessc" field_ref="Age_E3T" expr="@Age_E3T / @e3t" > Age_E3T / e3t </field> <!-- P1 (yr) sea_water_age_since_surface_contact : Time elapsed since water was last in surface layer of the ocean. --> 26 <field id="CMIP6_areacello" field_ref="areacello" /> <!-- P1 (m2) cell_area : Cell areas for any grid used to report ocean variables and variables which are requested as used on the model ocean grid (e.g. hfsso, which is a downward heat flux from the atmosphere interpolated onto the ocean grid). These cell areas should be defined to enable exact calculation of global integrals (e.g., of vertical fluxes of energy at the surface and top of the atmosphere). --> 27 <field id="CMIP6_basin" field_ref="basins" /> <!-- P1 (1) region : A variable with the standard name of region contains strings which indicate geographical regions. These strings must be chosen from the standard region list. --> 28 <field id="CMIP6_bigthetao" field_ref="toce" expr="@toce_e3t / @e3t" > toce_e3t / e3t </field> <!-- P1 (degC) sea_water_conservative_temperature : Diagnostic should be contributed only for models using conservative temperature as prognostic field. --> 29 <field id="CMIP6_bigthetaoga" field_ref="sctemtot" /> <!-- P1 (degC) sea_water_conservative_temperature : Diagnostic should be contributed only for models using conservative temperature as prognostic field. --> 30 <field id="CMIP6_cfc11" field_ref="CFC11_E3T" expr="@CFC11_E3T / @e3t" > CFC11_E3T / e3t </field> <!-- P1 (mol m-3) mole_concentration_of_cfc11_in_sea_water : Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". The chemical formula of CFC11 is CFCl3. The IUPAC name fof CFC11 is trichloro-fluoro-methane. --> 31 <field id="CMIP6_cfc12" field_ref="CFC12_E3T" expr="@CFC12_E3T / @e3t" > CFC12_E3T / e3t </field> <!-- P1 (mol m-3) mole_concentration_of_cfc12_in_sea_water : Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". The chemical formula for CFC12 is CF2Cl2. The IUPAC name for CFC12 is dichloro-difluoro-methane. --> 33 32 <field id="CMIP6_deptho" field_ref="tpt_dep" /> <!-- P1 (m) sea_floor_depth_below_geoid : Ocean bathymetry. Reported here is the sea floor depth for present day relative to z=0 geoid. Reported as missing for land grid cells. --> 34 <field id="CMIP6_difmxybo" field_ref="dummy_XYO" /> <!-- P2 (m4 s-1) ocean_momentum_xy_biharmonic_diffusivity : Lateral biharmonic viscosity applied to the momentum equ itions. -->35 <field id="CMIP6_difmxybo2d" field_ref="dummy_XYO" /> <!-- P3 (m4 s-1) ocean_momentum_xy_biharmonic_diffusivity : Lateral biharmonic viscosity applied to the momentum equ itions. -->36 <field id="CMIP6_difmxylo" field_ref="dummy_XYO" /> <!-- P2 (m2 s-1) ocean_momentum_xy_laplacian_diffusivity : Lateral Laplacian viscosity applied to the momentum equ itions. -->37 <field id="CMIP6_difmxylo2d" field_ref="dummy_XYO" /> <!-- P3 (m2 s-1) ocean_momentum_xy_laplacian_diffusivity : Lateral Laplacian viscosity applied to the momentum equ itions. *** NEMO-RD not relevant for IPSLCM6-->33 <field id="CMIP6_difmxybo" field_ref="dummy_XYO" /> <!-- P2 (m4 s-1) ocean_momentum_xy_biharmonic_diffusivity : Lateral biharmonic viscosity applied to the momentum equations. --> 34 <field id="CMIP6_difmxybo2d" field_ref="dummy_XYO" /> <!-- P3 (m4 s-1) ocean_momentum_xy_biharmonic_diffusivity : Lateral biharmonic viscosity applied to the momentum equations. --> 35 <field id="CMIP6_difmxylo" field_ref="dummy_XYO" /> <!-- P2 (m2 s-1) ocean_momentum_xy_laplacian_diffusivity : Lateral Laplacian viscosity applied to the momentum equations. --> 36 <field id="CMIP6_difmxylo2d" field_ref="dummy_XYO" /> <!-- P3 (m2 s-1) ocean_momentum_xy_laplacian_diffusivity : Lateral Laplacian viscosity applied to the momentum equations. --> 38 37 <field id="CMIP6_diftrbbo" field_ref="dummy_XYO" /> <!-- P3 (m4 s-1) ocean_tracer_bolus_biharmonic_diffusivity : unset --> 39 38 <field id="CMIP6_diftrbbo2d" field_ref="dummy_XYO" /> <!-- P3 (m4 s-1) ocean_tracer_bolus_biharmonic_diffusivity : unset --> 40 <field id="CMIP6_diftrblo" field_ref="dummy_XYO" /> <!-- P 3(m2 s-1) ocean_tracer_bolus_laplacian_diffusivity : Ocean tracer diffusivity associated with parameterized eddy-induced advective transport. Sometimes this diffusivity is called the 'thickness' diffusivity. For CMIP5, this diagnostic was called 'ocean tracer bolus laplacian diffusivity'. The CMIP6 name is physically more relevant. -->39 <field id="CMIP6_diftrblo" field_ref="dummy_XYO" /> <!-- P1 (m2 s-1) ocean_tracer_bolus_laplacian_diffusivity : Ocean tracer diffusivity associated with parameterized eddy-induced advective transport. Sometimes this diffusivity is called the 'thickness' diffusivity. For CMIP5, this diagnostic was called 'ocean tracer bolus laplacian diffusivity'. The CMIP6 name is physically more relevant. --> 41 40 <field id="CMIP6_diftrblo2d" field_ref="aht2d_eiv" /> <!-- P3 (m2 s-1) ocean_tracer_bolus_laplacian_diffusivity : Ocean tracer diffusivity associated with parameterized eddy-induced advective transport. Sometimes this diffusivity is called the 'thickness' diffusivity. For CMIP5, this diagnostic was called 'ocean tracer bolus laplacian diffusivity'. The CMIP6 name is physically more relevant. --> 42 41 <field id="CMIP6_diftrebo" field_ref="dummy_XYO" /> <!-- P3 (m4 s-1) ocean_tracer_epineutral_biharmonic_diffusivity : unset --> 43 42 <field id="CMIP6_diftrebo2d" field_ref="dummy_XYO" /> <!-- P3 (m4 s-1) ocean_tracer_epineutral_biharmonic_diffusivity : unset --> 44 <field id="CMIP6_diftrelo" field_ref="dummy_XYO" /> <!-- P 3(m2 s-1) ocean_tracer_epineutral_laplacian_diffusivity : Ocean tracer diffusivity associated with parameterized eddy-induced diffusive transport oriented along neutral or isopycnal directions. Sometimes this diffusivity is called the neutral diffusivity or isopycnal diffusivity or Redi diffusivity. -->43 <field id="CMIP6_diftrelo" field_ref="dummy_XYO" /> <!-- P1 (m2 s-1) ocean_tracer_epineutral_laplacian_diffusivity : Ocean tracer diffusivity associated with parameterized eddy-induced diffusive transport oriented along neutral or isopycnal directions. Sometimes this diffusivity is called the neutral diffusivity or isopycnal diffusivity or Redi diffusivity. --> 45 44 <field id="CMIP6_diftrelo2d" field_ref="aht2d_eiv" /> <!-- P3 (m2 s-1) ocean_tracer_epineutral_laplacian_diffusivity : Ocean tracer diffusivity associated with parameterized eddy-induced diffusive transport oriented along neutral or isopycnal directions. Sometimes this diffusivity is called the neutral diffusivity or isopycnal diffusivity or Redi diffusivity. --> 46 45 <field id="CMIP6_diftrxybo" field_ref="dummy_XYO" /> <!-- P3 (m4 s-1) ocean_tracer_xy_biharmonic_diffusivity : unset --> … … 53 52 <field id="CMIP6_difvmfdo" field_ref="dummy_XYO" /> <!-- P1 (m2 s-1) ocean_vertical_momentum_diffusivity_due_to_form_drag : unset **** NEMO-RD not relevant for IPSL CM6--> 54 53 <field id="CMIP6_difvmo" field_ref="avm_e3w" expr="@avm_e3w / @e3w" > avm_e3w / e3w </field> <!-- P1 (m2 s-1) ocean_vertical_momentum_diffusivity : unset --> 55 <field id="CMIP6_difvmto" field_ref="av_wave_e3w" expr="@av_wave_e3w / @e3w" > av_wave_e3w / e3w </field> <!-- P1 (m2 s-1) ocean_vertical_momentum_diffusivity_due_to_tides : unset -->54 <field id="CMIP6_difvmto" field_ref="av_wave_e3w" expr="@av_wave_e3w / @e3w" > av_wave_e3w / e3w </field> <!-- P1 (m2 s-1) ocean_vertical_momentum_diffusivity_due_to_tides : unset --> 56 55 <field id="CMIP6_difvso" field_ref="avs_e3w" expr="@avs_e3w / @e3w" > avs_e3w / e3w </field> <!-- P1 (m2 s-1) ocean_vertical_salt_diffusivity : Vertical/dianeutral diffusivity applied to prognostic salinity field. --> 57 56 <field id="NEMO_difvso_noevd" field_ref="avs_e3w" expr="(@avs_e3w - @avt_evd_e3w) / @e3w" > ( avs_e3w - avt_evd_e3w) / e3w </field> <!-- P3 (m2 s-1) ocean vertical heat diffusivity without evd contribution **** NEMO-RD : extra variable not required by CMIP6 --> … … 64 63 <field id="CMIP6_fgcfc11" field_ref="qtr_CFC11" /> <!-- P2 (mol sec-1 m-2) surface_downward_mole_flux_of_cfc11 : gas exchange flux of CFC11 --> 65 64 <field id="CMIP6_fgcfc12" field_ref="qtr_CFC12" /> <!-- P1 (mol sec-1 m-2) surface_downward_mole_flux_of_cfc12 : gas exchange flux of CFC12 --> 66 <field id="CMIP6_fgsf6" field_ref="qtr_SF6" /> <!-- P 2(mol sec-1 m-2) fgsf6 : gas exchange flux of SF6 -->65 <field id="CMIP6_fgsf6" field_ref="qtr_SF6" /> <!-- P1 (mol sec-1 m-2) fgsf6 : gas exchange flux of SF6 --> 67 66 <field id="CMIP6_ficeberg" field_ref="dummy_XYO" /> <!-- P1 (kg m-2 s-1) water_flux_into_sea_water_from_icebergs : computed as the iceberg melt water flux into the ocean divided by the area of the ocean portion of the grid cell. *** NEMO-RD : does not do (output of vertical profile to be coded) --> 68 67 <field id="CMIP6_ficeberg2d" field_ref="iceberg_cea" /> <!-- P1 (kg m-2 s-1) water_flux_into_sea_water_from_icebergs : computed as the iceberg melt water flux into the ocean divided by the area of the ocean portion of the grid cell. **** NEMO-RD : TODO some work needed for forced mode to read iceberg contribution independently from river runoffs --> … … 76 75 <field id="CMIP6_hfbasinpmdiff" field_ref="dummy_basin_zonal_mean"/> <!-- P1 (W) hfbasinpmdiff : Contributions to heat transport from parameterized mesoscale eddy-induced diffusive transport (i.e., neutral diffusion). Diagnosed here as a function of latitude and basin. **** NEMO-RD: not relevant for IPSLCM6 --> 77 76 <field id="CMIP6_hfbasinpsmadv" field_ref="dummy_basin_zonal_mean"/> <!-- P1 (W) hfbasinpsmadv : Contributions to heat transport from parameterized SUB!!mesoscale eddy-induced advective transport. Diagnosed here as a function of latitude and basin. Use Celsius for temperature scale. **** NEMO-RD: not relevant for IPSLCM6--> 78 <field id="CMIP6_hfcorr" field_ref=" dummy_XY" /> <!-- P0 (W m-2) heat_flux_correction : Heat Flux Correction **** NEMO-RD: not relevant for IPSLCM6 -->79 <field id="CMIP6_hfds" field_ref="qt" /><!-- P1 (W m-2) surface_downward_heat_flux_in_sea_water : This is the net flux of heat entering the liquid water column through its upper surface (excluding any "flux adjustment") . -->77 <field id="CMIP6_hfcorr" field_ref="qrp" /> <!-- P0 (W m-2) heat_flux_correction : Heat Flux Correction **** NEMO-RD: not relevant for IPSLCM6 --> 78 <field id="CMIP6_hfds" field_ref="qt" > qt - qrp </field><!-- P1 (W m-2) surface_downward_heat_flux_in_sea_water : This is the net flux of heat entering the liquid water column through its upper surface (excluding any "flux adjustment") . --> 80 79 <field id="CMIP6_hfevapds" field_ref="hflx_evap_cea" /> <!-- P1 (W m-2) temperature_flux_due_to_evaporation_expressed_as_heat_flux_out_of_sea_water : This is defined as "where ice_free_sea over sea" --> 81 80 <field id="CMIP6_hfgeou" field_ref="hfgeou" /> <!-- P1 (W m-2) upward_geothermal_heat_flux_at_sea_floor : Upward Geothermal Heat Flux at Sea Floor --> … … 105 104 <field id="CMIP6_msftmrho" field_ref="dummy_basin_merid_section_density"/> <!-- P1 (kg s-1) ocean_meridional_overturning_mass_streamfunction : Overturning mass streamfunction arising from all advective mass transport processes, resolved and parameterized. **** NEMO-RD does not do: no interpolation from y to meridional --> 106 105 <field id="CMIP6_msftmrhompa" field_ref="dummy_basin_merid_section_density"/> <!-- P1 (kg s-1) msftmrhompa : CMIP5 called this "due to Bolus Advection". Name change respects the more general physics of the mesoscale parameterizations. **** NEMO-RD does not do: no interpolation from y to meridional--> 107 <field id="CMIP6_msftm yz" field_ref="dummy_basin_merid_section" /> <!-- P1 (kg s-1) ocean_meridional_overturning_mass_streamfunction : Overturning mass streamfunction arising from all advective mass transport processes, resolved and parameterized. **** NEMO-RD does not do: no interpolation from y to meridional -->106 <field id="CMIP6_msftmz" field_ref="dummy_basin_merid_section" /> <!-- P1 (kg s-1) ocean_meridional_overturning_mass_streamfunction : Overturning mass streamfunction arising from all advective mass transport processes, resolved and parameterized. **** NEMO-RD does not do: no interpolation from y to meridional --> 108 107 <field id="CMIP6_msftmzmpa" field_ref="dummy_basin_merid_section" /> <!-- P1 (kg s-1) msftmzmpa : CMIP5 called this "due to Bolus Advection". Name change respects the more general physics of the mesoscale parameterizations. **** NEMO-RD does not do: no interpolation from y to meridional--> 109 108 <field id="CMIP6_msftmzsmpa" field_ref="dummy_basin_merid_section" /> <!-- P1 (kg s-1) msftmzsmpa : Report only if there is a submesoscale eddy parameterization. **** NEMO-RD: not relevant for IPSL CM6--> … … 114 113 <field id="CMIP6_msftyzsmpa" field_ref="dummy_basin_merid_section" /> <!-- P1 (kg s-1) msftyzsmpa : Report only if there is a submesoscale eddy parameterization. **** NEMO-RD: not relevant for IPSL CM6--> 115 114 <field id="CMIP6_obvfsq" field_ref="bn2_e3t" expr="@bn2_e3t / @e3t" > bn2_e3t / e3t </field> <!-- P1 (s-2) obvfsq : Square of Brunt Vaisala Frequency in Sea Water --> 116 <field id="CMIP6_ocontempdiff" field_ref="ttrd_zdfp_e3t" > this * $cpocean * $rau0 </field> <!-- P 2(W m-2) ocontempdiff : Tendency of heat content for a grid cell from parameterized dianeutral mixing. Reported only for models that use conservative temperature as prognostic field. -->115 <field id="CMIP6_ocontempdiff" field_ref="ttrd_zdfp_e3t" > this * $cpocean * $rau0 </field> <!-- P1 (W m-2) ocontempdiff : Tendency of heat content for a grid cell from parameterized dianeutral mixing. Reported only for models that use conservative temperature as prognostic field. --> 117 116 <field id="CMIP6_ocontempmint" field_ref="dummy_XY" /> <!-- P3 (degC kg m-2) ocontempmint : Full column sum of density*cell thickness*conservative temperature. If the model is Boussinesq, then use Boussinesq reference density for the density factor. NEMO-RD: exactly same as tomint hence we leave dummy_XY here --> 118 117 <field id="CMIP6_ocontemppadvect" field_ref="ttrd_eivad_e3t" > this * $cpocean * $rau0 </field> <!-- P1 (W m-2) ocontemppadvect : Tendency of heat content for a grid cell from parameterized eddy advection (any form of eddy advection). Reported only for models that use conservative temperature as prognostic field. --> 119 <field id="CMIP6_ocontemppmdiff" field_ref="ttrd_iso_e3t" > this * $cpocean * $rau0 </field> <!-- P 2(W m-2) ocontemppmdiff : Tendency of heat content for a grid cell from parameterized mesoscale eddy diffusion. Reported only for models that use conservative temperature as prognostic field. -->118 <field id="CMIP6_ocontemppmdiff" field_ref="ttrd_iso_e3t" > this * $cpocean * $rau0 </field> <!-- P1 (W m-2) ocontemppmdiff : Tendency of heat content for a grid cell from parameterized mesoscale eddy diffusion. Reported only for models that use conservative temperature as prognostic field. --> 120 119 <field id="CMIP6_ocontemppsmadvect" field_ref="dummy_XYO" /> <!-- P1 (W m-2) ocontemppsmadvect : Tendency of heat content for a grid cell from parameterized submesoscale eddy advection. Reported only for models that use conservative temperature as prognostic field. **** NEMO-RD not relevant for IPSL CM6--> 121 120 <field id="CMIP6_ocontemprmadvect" field_ref="ttrd_totad_e3t" > this * $cpocean * $rau0 </field> <!-- P1 (W m-2) ocontemprmadvect : Tendency of Sea Water Conservative Temperature Expressed as Heat Content due to Residual Mean Advection --> … … 125 124 <field id="CMIP6_opottempmint" field_ref="dummy_XY" /> <!-- P1 (degC kg m-2) opottempmint : __unset__ **** NEMO-RD : not relevant for IPSLCM6 --> 126 125 <field id="CMIP6_opottemppadvect" field_ref="dummy_XYO" /> <!-- P1 (W m-2) opottemppadvect : Tendency of heat content for a grid cell from parameterized eddy advection (any form of eddy advection). Reported only for models that use potential temperature as prognostic field. **** NEMO-RD : not relevant for IPSLCM6 --> 127 <field id="CMIP6_opottemppmdiff" field_ref="dummy_XYO" /> <!-- P 2(W m-2) opottemppmdiff : Tendency of heat content for a grid cell from parameterized mesoscale eddy diffusion. Reported only for models that use potential temperature as prognostic field. **** NEMO-RD not relevant for IPSL CM6 -->128 <field id="CMIP6_opottemppsmadvect" field_ref="dummy_XYO" /> <!-- P 2(W m-2) opottemppsmadvect : Tendency of heat content for a grid cell from parameterized submesoscale eddy advection. Reported only for models that use potential temperature as prognostic field. **** NEMO-RD not relevant for IPSL CM6 -->129 <field id="CMIP6_opottemprmadvect" field_ref="dummy_XYO" /> <!-- P 2(W m-2) opottemprmadvect : Tendency of Sea Eater Potential Temperature Expressed as Heat Content due to Residual Mean Advection **** NEMO-RD not relevant for IPSL CM6 -->130 <field id="CMIP6_opottemptend" field_ref="dummy_XYO" /> <!-- P 2(W m-2) opottemptend : Tendency of heat content for a grid cell from all processes. Reported only for models that use potential temperature as prognostic field. **** NEMO-RD not relevant for IPSL CM6-->131 <field id="CMIP6_osaltdiff" field_ref="strd_zdfp_e3t" > this * $rau0 </field> <!-- P 2(kg m-2 s-1) osaltdiff : Tendency of salt content for a grid cell from parameterized dianeutral mixing.-->132 <field id="CMIP6_osaltpadvect" field_ref="strd_eivad_e3t" > this * $rau0 </field> <!-- P 2(kg m-2 s-1) osaltpadvect : Tendency of salt content for a grid cell from parameterized eddy advection (any form of eddy advection). -->126 <field id="CMIP6_opottemppmdiff" field_ref="dummy_XYO" /> <!-- P1 (W m-2) opottemppmdiff : Tendency of heat content for a grid cell from parameterized mesoscale eddy diffusion. Reported only for models that use potential temperature as prognostic field. **** NEMO-RD not relevant for IPSL CM6 --> 127 <field id="CMIP6_opottemppsmadvect" field_ref="dummy_XYO" /> <!-- P1 (W m-2) opottemppsmadvect : Tendency of heat content for a grid cell from parameterized submesoscale eddy advection. Reported only for models that use potential temperature as prognostic field. **** NEMO-RD not relevant for IPSL CM6 --> 128 <field id="CMIP6_opottemprmadvect" field_ref="dummy_XYO" /> <!-- P1 (W m-2) opottemprmadvect : Tendency of Sea Eater Potential Temperature Expressed as Heat Content due to Residual Mean Advection **** NEMO-RD not relevant for IPSL CM6 --> 129 <field id="CMIP6_opottemptend" field_ref="dummy_XYO" /> <!-- P1 (W m-2) opottemptend : Tendency of heat content for a grid cell from all processes. Reported only for models that use potential temperature as prognostic field. **** NEMO-RD not relevant for IPSL CM6--> 130 <field id="CMIP6_osaltdiff" field_ref="strd_zdfp_e3t" > this * $rau0 </field> <!-- P1 (kg m-2 s-1) osaltdiff : Tendency of salt content for a grid cell from parameterized dianeutral mixing.--> 131 <field id="CMIP6_osaltpadvect" field_ref="strd_eivad_e3t" > this * $rau0 </field> <!-- P1 (kg m-2 s-1) osaltpadvect : Tendency of salt content for a grid cell from parameterized eddy advection (any form of eddy advection). --> 133 132 <field id="CMIP6_osaltpmdiff" field_ref="strd_iso_e3t" > this * $rau0 </field> <!-- P1 (kg m-2 s-1) osaltpmdiff : Tendency of salt content for a grid cell from parameterized mesoscale eddy diffusion. --> 134 133 <field id="CMIP6_osaltpsmadvect" field_ref="dummy_XYO" /> <!-- P1 (kg m-2 s-1) osaltpsmadvect : Tendency of salt content for a grid cell from parameterized submesoscale eddy advection. **** NEMO-RD: not relevant for IPSL CM6--> 135 134 <field id="CMIP6_osaltrmadvect" field_ref="strd_totad_e3t" > this * $rau0 </field> <!-- P1 (kg m-2 s-1) osaltrmadvect : Tendency of Sea Water Salinity Expressed as Salt Content due to Residual Mean Advection --> 136 <field id="CMIP6_osalttend" field_ref="strd_tot_e3t" > this * $rau0 </field> <!-- P 2(kg m-2 s-1) osalttend : Tendency of salt content for a grid cell from all processes. -->135 <field id="CMIP6_osalttend" field_ref="strd_tot_e3t" > this * $rau0 </field> <!-- P1 (kg m-2 s-1) osalttend : Tendency of salt content for a grid cell from all processes. --> 137 136 <field id="CMIP6_pabigthetao" field_ref="dummy_XYO" /> <!-- P1 (degC) pabigthetao : Sea Water Added Conservative Temperature **** NEMO-RD: ?? variable undefined in Griffies >> waiting for next DR --> 138 137 <field id="CMIP6_pathetao" field_ref="dummy_XYO" /> <!-- P1 (degC) pathetao : __unset__ **** NEMO-RD: ?? variable undefined in Griffies >> waiting for next DR --> … … 140 139 <field id="CMIP6_prbigthetao" field_ref="dummy_XYO" /> <!-- P1 (degC) prbigthetao : Sea Water Redistributed Conservative Temperature **** NEMO-RD: ?? variable undefined in Griffies >> waiting for next DR --> 141 140 <field id="CMIP6_prthetao" field_ref="dummy_XYO" /> <!-- P1 (degC) prthetao : __unset__ **** NEMO-RD: ?? variable undefined in Griffies >> waiting for next DR --> 141 <field id="CMIP6_prw18O" field_ref="dummy_XYO" /> <!-- P1 (kg m-2) mass_content_of_water_vapor_containing_18O_in_atmosphere_layer : Ratio of abundance of oxygen-18 (18O) atoms to oxgen-16 (16O) atoms in sea water --> 142 142 <field id="CMIP6_pso" field_ref="dummy_XY" /> <!-- P1 (Pa) sea_water_pressure_at_sea_water_surface : Sea Water Pressure at Sea Water Surface **** NEMO-RD: not relevant for IPSLCM6 --> 143 143 <field id="CMIP6_rlntds" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_net_downward_longwave_flux : This is defined as "where ice_free_sea over sea" **** NEMO-RD: does not do --> 144 <field id="CMIP6_rsdo" field_ref="qsr3d_e3t_SBC" expr="@qsr3d_e3t_SBC / @e3t_SBC" > qsr3d_e3t_SBC / e3t_SBC </field> <!-- P1 (W m-2) downwelling_shortwave_flux_in_sea_water : Downwelling Shortwave Radiation in Sea Water -->144 <field id="CMIP6_rsdo" field_ref="qsr3d_e3t_SBC" expr="@qsr3d_e3t_SBC / @e3t_SBC" > qsr3d_e3t_SBC / e3t_SBC </field> <!-- P1 (W m-2) downwelling_shortwave_flux_in_sea_water : Downwelling Shortwave Radiation in Sea Water --> 145 145 <field id="CMIP6_rsdoabsorb" field_ref="dummy_XYO" /> <!-- P2 (W m-2) net_rate_of_absorption_of_shortwave_energy_in_ocean_layer : Net Rate of Absorption of Shortwave Energy in Ocean Layer **** NEMO-RD: does not do : easy to compute offline --> 146 146 <field id="CMIP6_rsntds" field_ref="qsr" /> <!-- P1 (W m-2) net_downward_shortwave_flux_at_sea_water_surface : This is the flux into the surface of liquid sea water only. This excludes shortwave flux absorbed by sea ice, but includes any light that passes through the ice and is absorbed by the ocean. --> 147 <field id="CMIP6_sf6" field_ref="SF6_E3T" expr="@SF6_E3T / @e3t" > SF6_E3T / e3t </field> <!-- P2(mol m-3) mole_concentration_of_sulfur_hexafluoride_in_sea_water : Moles Per Unit Mass of SF6 in sea water **** NEMO-RD: does not do -->147 <field id="CMIP6_sf6" field_ref="SF6_E3T" expr="@SF6_E3T / @e3t" > SF6_E3T / e3t </field> <!-- P1 (mol m-3) mole_concentration_of_sulfur_hexafluoride_in_sea_water : Moles Per Unit Mass of SF6 in sea water **** NEMO-RD: does not do --> 148 148 <field id="CMIP6_sfdsi" field_ref="saltflx" > this * $convSpsu </field> <!-- P1 (kg m-2 s-1) downward_sea_ice_basal_salt_flux : This field is physical, and it arises since sea ice has a nonzero salt content, so it exchanges salt with the liquid ocean upon melting and freezing. --> 149 149 <field id="CMIP6_sfriver" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) salt_flux_into_sea_water_from_rivers : This field is physical, and it arises when rivers carry a nonzero salt content. Often this is zero, with rivers assumed to be fresh. NEMO-RD : not relevant for IPSLCM6 --> … … 160 160 <field id="CMIP6_sosga" field_ref="scssstot" > this * $convSpsu </field> <!-- P1 (0.001) sea_surface_salinity : Global Average Sea Surface Salinity --> 161 161 <field id="CMIP6_sossq" field_ref="sss2" > this * $convSpsu * $convSpsu </field> <!-- P3 (1e-06) sossq : Square of Sea Surface Salinity --> 162 <field id="CMIP6_sw18O" field_ref="dummy_XYA" /> <!-- P1 (1) isotope_ratio_of_17O_to_16O_in_sea_water_excluding_solutes_and_solids : Ratio of abundance of oxygen-17 (17O) atoms to oxgen-16 (16O) atoms in sea water --> 163 <field id="CMIP6_sw2H" field_ref="dummy_XYO" /> <!-- P1 (1) : Ratio of abundance of hydrogen-2 (2H) atoms to hydrogen-1 (1H) atoms in sea water --> 162 164 <field id="CMIP6_t20d" field_ref="20d" /> <!-- P1 (m) depth_of_isosurface_of_sea_water_potential_temperature : unset --> 163 165 <field id="CMIP6_tauucorr" field_ref="dummy_FAFMIP" /> <!-- P1 (N m-2) surface_downward_x_stress_correction : This is the stress on the liquid ocean from overlying atmosphere, sea ice, ice shelf, etc. *** NEMO-RD : TODO for FAFMIP experiments ??? --> … … 178 180 <field id="CMIP6_tnpeotb" field_ref="dummy_XYO" /> <!-- P1 (W m-2) tendency_of_ocean_potential_energy_content_due_to_background : unset --> 179 181 <field id="CMIP6_tob" field_ref="toce_potb_e3tb" expr="@toce_potb_e3tb / @e3tb" > toce_potb_e3tb / e3tb </field> <!-- P1 (degC) sea_water_potential_temperature_at_sea_floor : Potential temperature at the ocean bottom-most grid cell. --> 180 <field id=" CMIP6_tomint" field_ref="tosmint" /> <!-- P2 (1e-3 kg m-2) tomint : Full column sum of density*cell thickness*prognostic temperature. If the model is Boussinesq, then use Boussinesq reference density for the density factor. *** NEMO-RD assumes this is potential temperature + provides with units °C kg m-2-->181 <field id="CMIP6_tos" field_ref="sst_pot" /> <!-- P1 ( K) sea_surface_temperature : temperature of liquid ocean. Note that the correct standard_name for this variable is "sea_surface_temperature", not "surface_temperature", but this was discovered too late to correct. To maintain consistency across CMIP5 models, the wrong standard_name will continue to be used. **** NEMO-RD: TODO : JM: is this really requested in K? This does not agree with the .xls document. To be clarified. In NEMO, sst given in Celsius -->182 <field id="NEMO_tomint" field_ref="tosmint" /> <!-- P2 (1e-3 kg m-2) tomint : Full column sum of density*cell thickness*prognostic temperature. If the model is Boussinesq, then use Boussinesq reference density for the density factor. *** NEMO-RD assumes this is potential temperature + provides with units °C kg m-2--> 183 <field id="CMIP6_tos" field_ref="sst_pot" /> <!-- P1 (degC) sea_surface_temperature : temperature of liquid ocean. Note that the correct standard_name for this variable is "sea_surface_temperature", not "surface_temperature", but this was discovered too late to correct. To maintain consistency across CMIP5 models, the wrong standard_name will continue to be used. **** NEMO-RD: TODO : JM: is this really requested in K? This does not agree with the .xls document. To be clarified. In NEMO, sst given in Celsius --> 182 184 <field id="CMIP6_tosga" field_ref="scssttot" /> <!-- P1 (degC) sea_surface_temperature : This may differ from "surface temperature" in regions of sea ice.This may differ from "surface temperature" in regions of sea ice.For models using conservative temperature as prognostic field, they should report the SST as surface potent --> 183 185 <field id="CMIP6_tossq" field_ref="sst_pot2" /> <!-- P1 (degC2) square_of_sea_surface_temperature : square of temperature of liquid ocean, averaged over the day. --> 186 <field id="CMIP6_ugrid" field_ref="dummy_XY" /> <!-- P1 () longitude : Provide for models with unstructured grids only --> 184 187 <field id="CMIP6_umo" field_ref="uocetr_eff" > this * $rau0 </field> <!-- P1 (kg s-1) ocean_mass_x_transport : X-ward mass transport from resolved and parameterized advective transport. --> 185 188 <field id="CMIP6_uo" field_ref="uoce_e3u" expr="@uoce_e3u / @e3u" > uoce_e3u / e3u </field> <!-- P1 (m s-1) sea_water_x_velocity : Prognostic x-ward velocity component resolved by the model. --> … … 193 196 <field id="CMIP6_vsfpr" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) virtual_salt_flux_into_sea_water_due_to_rainfall : zero for models using real water fluxes. --> 194 197 <field id="CMIP6_vsfriver" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) virtual_salt_flux_into_sea_water_from_rivers : zero for models using real water fluxes. --> 195 <field id="CMIP6_vsfsit" field_ref="dummy_XY" /> <!-- P 1(kg m-2 s-1) virtual_salt_flux_into_sea_water_due_to_sea_ice_thermodynamics : This variable measures the virtual salt flux into sea water due to the melting of sea ice. It is set to zero in models which receive a real water flux. -->196 <field id="CMIP6_wfcorr" field_ref=" dummy_XY" /> <!-- P0 (kg m-2 s-1) water_flux_correction : Positive flux implies correction adds water to ocean. *** NEMO-RD : TODO add appropriate variable in forced mode (OMIP) : SSS restoring + correction of global volume of water-->197 <field id="CMIP6_wfo" field_ref=" dummy_XY"/> <!-- P1 (kg m-2 s-1) water_flux_into_sea_water : computed as the water flux into the ocean divided by the area of the ocean portion of the grid cell. This is the sum of the next two variables in this table. -->198 <field id="CMIP6_wfonocorr" field_ref="empmr" /><!-- P1 (kg m-2 s-1) water_flux_into_sea_water_without_flux_correction : computed as the water flux (without flux correction) into the ocean divided by the area of the ocean portion of the grid cell. *** NEMO-RD : TODO in field_ocean, empmr is defined as water flux out of sea ice and sea water. Is sea ice really taken into here? If no, correct description in field. If yes, this input is wrong here. -->198 <field id="CMIP6_vsfsit" field_ref="dummy_XY" /> <!-- P2 (kg m-2 s-1) virtual_salt_flux_into_sea_water_due_to_sea_ice_thermodynamics : This variable measures the virtual salt flux into sea water due to the melting of sea ice. It is set to zero in models which receive a real water flux. --> 199 <field id="CMIP6_wfcorr" field_ref="erp" /> <!-- P1 (kg m-2 s-1) water_flux_correction : Positive flux implies correction adds water to ocean. --> 200 <field id="CMIP6_wfo" field_ref="empmr" /> <!-- P1 (kg m-2 s-1) water_flux_into_sea_water : computed as the water flux into the ocean divided by the area of the ocean portion of the grid cell. This is the sum of the next two variables in this table. --> 201 <field id="CMIP6_wfonocorr" field_ref="empmr" > empmr - erp </field><!-- P1 (kg m-2 s-1) water_flux_into_sea_water_without_flux_correction : computed as the water flux (without flux correction) into the ocean divided by the area of the ocean portion of the grid cell. *** NEMO-RD : TODO in field_ocean, empmr is defined as water flux out of sea ice and sea water. Is sea ice really taken into here? If no, correct description in field. If yes, this input is wrong here. --> 199 202 <field id="CMIP6_wmo" field_ref="wocetr_eff" > this * $rau0 </field> <!-- P1 (kg s-1) upward_ocean_mass_transport : Upward mass transport from resolved and parameterized advective transport. --> 200 203 <field id="CMIP6_wo" field_ref="woce" expr="@woce_e3w / @e3w" > woce_e3w / e3w </field> <!-- P1 (m s-1) upward_sea_water_velocity : Sea Water Vertical Velocity --> … … 205 208 <field id="CMIP6_zostoga" field_ref="scsshtst" /> <!-- P1 (m) global_average_thermosteric_sea_level_change : There is no CMIP6 request for zosga nor zossga. --> 206 209 207 <!-- for variables which realm equals one of _seaIce-->210 <!-- for variables which realm equals one of _seaIce--> 208 211 <field id="CMIP6_siage" field_ref="iceage" /> <!-- P1 (s) age_of_sea_ice : Age of sea ice --> 209 212 <field id="CMIP6_siareaacrossline" field_ref="transport_siarea_transect" /> <!-- P2 (m2 s-1) siareaacrossline : net (sum of transport in all directions) sea ice area transport through the following four passages, positive into the Arctic Ocean 1. Fram Strait = (11.5W,81.3N to (10.5E,79.6N) 2. Canadian Archipelego = (128.2W,70.6N) to (59.3W,82.1N) 3. Barents opening = (16.8E,76.5N) to (19.2E,70.2N) 4. Bering Strait = (171W,66.2N) to (166W,65N) --> … … 212 215 <field id="CMIP6_sicompstren" field_ref="icestr" /> <!-- P2 (N m-1) compressive_strength_of_sea_ice : Computed strength of the ice pack, defined as the energy (J m-2) dissipated per unit area removed from the ice pack under compression, and assumed proportional to the change in potential energy caused by ridging. For Hibler-type models, this is P (= P*hexp(-C(1-A))) --> 213 216 <field id="CMIP6_siconc" field_ref="iceconc_pct" /> <!-- P1 (%) sea_ice_area_fraction : Area fraction of grid cell covered by sea ice --> 214 <field id="CMIP6_siconc o" field_ref="dummy_XY" /> <!-- P1 (%) sea_ice_area_fraction : Area fraction of grid cell covered by sea ice -->217 <field id="CMIP6_siconca" field_ref="dummy_XY" /> <!-- P1 (%) sea_ice_area_fraction : Area fraction of grid cell covered by sea ice --> 215 218 <field id="CMIP6_sidconcdyn" field_ref="afxdyn" /> <!-- P2 (s-1) tendency_of_sea_ice_area_fraction_due_to_dynamics : Total change in sea-ice area fraction through dynamics-related processes (advection, divergence...) --> 216 219 <field id="CMIP6_sidconcth" field_ref="afxthd" /> <!-- P2 (s-1) tendency_of_sea_ice_area_fraction_due_to_thermodynamics : Total change in sea-ice area fraction through thermodynamic processes --> … … 239 242 <field id="CMIP6_sifllwdtop" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_downwelling_longwave_flux_in_air : the downwelling longwave flux over sea ice (always positive) --> 240 243 <field id="CMIP6_sifllwutop" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_upwelling_longwave_flux_in_air : the upwelling longwave flux over sea ice (always negative) --> 241 <field id=" CMIP6_siflsaltbot" field_ref="sfx_mv" /> <!-- P2 (kg m-2 s-1) siflsaltbot : Total flux of salt from water into sea ice divided by grid-cell area; salt flux is upward (negative) during ice growth when salt is embedded into the ice and downward (positive) during melt when salt from sea ice is again released to the ocean -->244 <field id="NEMO_siflsaltbot" field_ref="sfx_mv" /> <!-- P2 (kg m-2 s-1) siflsaltbot : Total flux of salt from water into sea ice divided by grid-cell area; salt flux is upward (negative) during ice growth when salt is embedded into the ice and downward (positive) during melt when salt from sea ice is again released to the ocean --> 242 245 <field id="CMIP6_siflsenstop" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_upward_sensible_heat_flux : the net sensible heat flux over sea ice --> 243 246 <field id="CMIP6_siflsensupbot" field_ref="hfxsenso" /> <!-- P2 (W m-2) siflsensupbot : the net sensible heat flux under sea ice from the ocean --> … … 296 299 <field id="CMIP6_snmassacrossline" field_ref="transport_snmasse_transect" /> <!-- P2 (kg s-1) snmassacrossline : net (sum of transport in all directions) snow mass transport through the following four passages, positive into the Arctic Ocean 1. Fram Strait = (11.5W,81.3N to (10.5E,79.6N) 2. Canadian Archipelego = (128.2W,70.6N) to (59.3W,82.1N) 3. Barents opening = (16.8E,76.5N) to (19.2E,70.2N) 4. Bering Strait = (171W,66.2N) to (166W,65N) --> 297 300 298 299 300 <!-- for variables which realm equals one of _ocean_seaIce_ocnBgchem--> 301 <field id="CMIP6_arag" field_ref="dummy_XYO" /> <!-- P2 (mol m-3) mole_concentration_of_aragonite_expressed_as_carbon_in_sea_water : Sum of particulate aragonite components (e.g. Phytoplankton, Detrital, etc.) --> 302 <field id="CMIP6_bacc" field_ref="dummy_XYO" /> <!-- P2 (mol m-3) mole_concentration_of_bacteria_expressed_as_carbon_in_sea_water : Sum of bacterial carbon component concentrations --> 303 <field id="CMIP6_bddtalk" field_ref="dummy_XYO" /> <!-- P1 (mol m-3 s-1) tendency_of_sea_water_alkalinity_expressed_as_mole_equivalent_due_to_biological_processes : Net total of biological terms in time rate of change of alkalinity --> 304 <field id="CMIP6_bddtdic" field_ref="dummy_XYO" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_dissolved_inorganic_carbon_in_sea_water_due_to_biological_processes : Net total of biological terms in time rate of change of dissolved inorganic carbon --> 305 <field id="CMIP6_bddtdife" field_ref="dummy_XYO" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_dissolved_inorganic_iron_in_sea_water_due_to_biological_processes : Net total of biological terms in time rate of change of dissolved inorganic iron --> 306 <field id="CMIP6_bddtdin" field_ref="dummy_XYO" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_dissolved_inorganic_nitrogen_in_sea_water_due_to_biological_processes : Net total of biological terms in time rate of change of nitrogen nutrients (e.g. NO3+NH4) --> 307 <field id="CMIP6_bddtdip" field_ref="dummy_XYO" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_dissolved_inorganic_phosphorus_in_sea_water_due_to_biological_processes : Net of biological terms in time rate of change of dissolved phosphate --> 308 <field id="CMIP6_bddtdisi" field_ref="dummy_XYO" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_dissolved_inorganic_silicate_in_sea_water_due_to_biological_processes : Net of biological terms in time rate of change of dissolved inorganic silicon --> 309 <field id="CMIP6_bfe" field_ref="BFe_E3T" expr="@BFe_E3T / @e3t * 1e-3 + @SFe_E3T / @e3t * 1e-3" > BFe_E3T / e3t * 1e-3 + SFe_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_particulate_organic_matter_expressed_as_iron_in_sea_water : Sum of particulate organic iron component concentrations --> 310 <field id="CMIP6_bfeos" field_ref="BFeSFC_E3T" expr="@BFeSFC_E3T / @E3TSFC * 1e-3 + @SFeSFC_E3T / @E3TSFC * 1e-3" > BFeSFC_E3T / E3TSFC * 1e-3 + SFeSFC_E3T / E3TSFC * 1e-3 </field> <!-- P3 (mol m-3) bfeos : sum of particulate organic iron component concentrations --> 311 <field id="CMIP6_bsi" field_ref="GSi_E3T" expr="@GSi_E3T / @e3t * 1e-3" > GSi_E3T / e3t * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_particulate_matter_expressed_as_silicon_in_sea_water : Sum of particulate silica component concentrations --> 312 <field id="CMIP6_bsios" field_ref="GSiSFC_E3T" expr="@GSiSFC_E3T / @E3TSFC * 1e-3" > GSiSFC_E3T / E3TSFC * 1e-3 </field> <!-- P3 (mol m-3) bsios : sum of particulate silica component concentrations --> 313 <field id="CMIP6_calc" field_ref="CaCO3_E3T" expr="@CaCO3_E3T / @e3t * 1e-3" > CaCO3_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_calcite_expressed_as_carbon_in_sea_water : Sum of particulate calcite component concentrations (e.g. Phytoplankton, Detrital, etc.) --> 314 <field id="CMIP6_chl" field_ref="NCHL_E3T" expr="@NCHL_E3T / @e3t * 1e-3 + @DCHL_E3T / @e3t * 1e-3" > NCHL_E3T / e3t * 1e-3 + DCHL_E3T / e3t * 1e-3 </field> <!-- P1 (kg m-3) mass_concentration_of_phytoplankton_expressed_as_chlorophyll_in_sea_water : Sum of chlorophyll from all phytoplankton group concentrations. In most models this is equal to chldiat+chlmisc, that is the sum of Diatom Chlorophyll Mass Concentration and Other Phytoplankton Chlorophyll Mass Concentration --> 301 <!-- for variables which realm equals one of _ocnBgchem--> 302 <field id="CMIP6_arag" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) mole_concentration_of_aragonite_expressed_as_carbon_in_sea_water : sum of particulate aragonite components (e.g. Phytoplankton, Detrital, etc.) --> 303 <field id="CMIP6_aragos" field_ref="dummy_XY" /> <!-- P2 (mol m-3) mole_concentration_of_aragonite_expressed_as_carbon_in_sea_water : sum of particulate aragonite components (e.g. Phytoplankton, Detrital, etc.) --> 304 <field id="CMIP6_bacc" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) mole_concentration_of_bacteria_expressed_as_carbon_in_sea_water : sum of bacterial carbon component concentrations --> 305 <field id="CMIP6_baccos" field_ref="dummy_XY" /> <!-- P2 (mol m-3) mole_concentration_of_bacteria_expressed_as_carbon_in_sea_water : sum of bacterial carbon component concentrations --> 306 <field id="CMIP6_bddtalk" field_ref="dummy_XYO" /> <!-- P1 (mol m-3 s-1) tendency_of_sea_water_alkalinity_expressed_as_mole_equivalent_due_to_biological_processes : Net of biological terms in time rate of change of alkalinity --> 307 <field id="CMIP6_bddtdic" field_ref="dummy_XYO" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_dissolved_inorganic_carbon_in_sea_water_due_to_biological_processes : Net of biological terms in time rate of change of dissolved inorganic carbon --> 308 <field id="CMIP6_bddtdife" field_ref="dummy_XYO" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_dissolved_inorganic_iron_in_sea_water_due_to_biological_processes : Net of biological terms in time rate of change of dissolved inorganic iron --> 309 <field id="CMIP6_bddtdin" field_ref="dummy_XYO" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_dissolved_inorganic_nitrogen_in_sea_water_due_to_biological_processes : Net of biological terms in time rate of change of nitrogen nutrients (e.g. NO3+NH4) --> 310 <field id="CMIP6_bddtdip" field_ref="dummy_XYO" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_dissolved_inorganic_phosphorus_in_sea_water_due_to_biological_processes : Net of biological terms in time rate of change of dissolved phosphorus --> 311 <field id="CMIP6_bddtdisi" field_ref="dummy_XYO" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_dissolved_inorganic_silicon_in_sea_water_due_to_biological_processes : Net of biological terms in time rate of change of dissolved inorganic silicon --> 312 <field id="CMIP6_bfe" field_ref="BFe_E3T" expr="@BFe_E3T / @e3t * 1e-3 + @SFe_E3T / @e3t * 1e-3" > BFe_E3T / e3t * 1e-3 + SFe_E3T / e3t * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_particulate_organic_matter_expressed_as_iron_in_sea_water : sum of particulate organic iron component concentrations --> 313 <field id="CMIP6_bfeos" field_ref="BFeSFC_E3T" expr="@BFeSFC_E3T / @E3TSFC * 1e-3 + @SFeSFC_E3T / @E3TSFC * 1e-3" > BFeSFC_E3T / E3TSFC * 1e-3 + SFeSFC_E3T / E3TSFC * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_particulate_organic_matter_expressed_as_iron_in_sea_water : sum of particulate organic iron component concentrations --> 314 <field id="CMIP6_bsi" field_ref="GSi_E3T" expr="@GSi_E3T / @e3t * 1e-3" > GSi_E3T / e3t * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_particulate_matter_expressed_as_silicon_in_sea_water : sum of particulate silica component concentrations --> 315 <field id="CMIP6_bsios" field_ref="GSiSFC_E3T" expr="@GSiSFC_E3T / @E3TSFC * 1e-3" > GSiSFC_E3T / E3TSFC * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_particulate_organic_matter_expressed_as_silicon_in_sea_water : sum of particulate silica component concentrations --> 316 <field id="CMIP6_calc" field_ref="CaCO3_E3T" expr="@CaCO3_E3T / @e3t * 1e-3" > CaCO3_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_calcite_expressed_as_carbon_in_sea_water : sum of particulate calcite component concentrations (e.g. Phytoplankton, Detrital, etc.) --> 317 <field id="CMIP6_calcos" field_ref="CaCO3SFC_E3T" expr="@CaCO3SFC_E3T / @E3TSFC * 1e-3" > CaCO3SFC_E3T / E3TSFC * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_calcite_expressed_as_carbon_in_sea_water : sum of particulate calcite component concentrations (e.g. Phytoplankton, Detrital, etc.) --> 318 <field id="CMIP6_chl" field_ref="NCHL_E3T" expr="@NCHL_E3T / @e3t * 1e-3 + @DCHL_E3T / @e3t * 1e-3" > NCHL_E3T / e3t * 1e-3 + DCHL_E3T / e3t * 1e-3 </field> <!-- P1 (kg m-3) mass_concentration_of_phytoplankton_expressed_as_chlorophyll_in_sea_water : sum of chlorophyll from all phytoplankton group concentrations. In most models this is equal to chldiat+chlmisc, that is the sum of "Diatom Chlorophyll Mass Concentration" plus "Other Phytoplankton Chlorophyll Mass Concentration" --> 315 319 <field id="CMIP6_chlcalc" field_ref="dummy_XYO" /> <!-- P2 (kg m-3) mass_concentration_of_calcareous_phytoplankton_expressed_as_chlorophyll_in_sea_water : chlorophyll concentration from the calcite-producing phytoplankton component alone --> 316 <field id="CMIP6_chlcalcos" field_ref="dummy_XY" /> <!-- P3 (kg m-3) mass_concentration_of_calcareous_phytoplankton_expressed_as_chlorophyll_in_sea_water : chlorophyll concentration from the calcite-producing phytoplankton component alone --> 317 <field id="CMIP6_chldiat" field_ref="DCHL_E3T" expr="@DCHL_E3T / @e3t * 1e-3" > DCHL_E3T / e3t * 1e-3 </field> <!-- P1 (kg m-3) mass_concentration_of_diatoms_expressed_as_chlorophyll_in_sea_water : Chlorophyll from diatom phytoplankton component concentration alone --> 318 <field id="CMIP6_chldiatos" field_ref="DCHLSFC_E3T" expr="@DCHLSFC_E3T / @E3TSFC * 1e-3" > DCHLSFC_E3T / E3TSFC * 1e-3 </field> <!-- P3 (kg m-3) mass_concentration_of_diatoms_expressed_as_chlorophyll_in_sea_water : chlorophyll from diatom phytoplankton component concentration alone --> 319 <field id="CMIP6_chldiaz" field_ref="dummy_XYO" /> <!-- P2 (kg m-3) mass_concentration_of_diazotrophs_expressed_as_chlorophyll_in_sea_water : Chlorophyll concentration from the diazotrophic phytoplankton component alone --> 320 <field id="CMIP6_chldiazos" field_ref="dummy_XY" /> <!-- P3 (kg m-3) mass_concentration_of_diazotrophs_expressed_as_chlorophyll_in_sea_water : chlorophyll concentration from the diazotrophic phytoplankton component alone --> 321 <field id="CMIP6_chlmisc" field_ref="NCHL_E3T" expr="@NCHL_E3T / @e3t * 1e-3" > NCHL_E3T / e3t * 1e-3 </field> <!-- P1 (kg m-3) mass_concentration_of_miscellaneous_phytoplankton_expressed_as_chlorophyll_in_sea_water : Chlorophyll from additional phytoplankton component concentrations alone --> 322 <field id="CMIP6_chlmiscos" field_ref="NCHLSFC_E3T" expr="@NCHLSFC_E3T / @E3TSFC * 1e-3" > NCHLSFC_E3T / E3TSFC * 1e-3 </field> <!-- P3 (kg m-3) mass_concentration_of_miscellaneous_phytoplankton_expressed_as_chlorophyll_in_sea_water : chlorophyll from additional phytoplankton component concentrations alone --> 323 <field id="CMIP6_chlos" field_ref="NCHLSFC_E3T" expr="@NCHLSFC_E3T / @E3TSFC * 1e-3 + @DCHLSFC_E3T / @E3TSFC * 1e-3" > NCHLSFC_E3T / E3TSFC * 1e-3 + DCHLSFC_E3T / E3TSFC * 1e-3 </field> <!-- P1 (kg m-3) mass_concentration_of_phytoplankton_expressed_as_chlorophyll_in_sea_water : Sum of chlorophyll from all phytoplankton group concentrations at the sea surface. In most models this is equal to chldiat+chlmisc, that is the sum of 'Diatom Chlorophyll Mass Concentration' plus 'Other Phytoplankton Chlorophyll Mass Concentration' --> 324 <field id="CMIP6_chlpico" field_ref="dummy_XYO" /> <!-- P1 (kg m-3) mass_concentration_of_picophytoplankton_expressed_as_chlorophyll_in_sea_water : chlorophyll concentration from the picophytoplankton (<2 um) component alone --> 325 <field id="CMIP6_chlpicoos" field_ref="dummy_XY" /> <!-- P3 (kg m-3) mass_concentration_of_picophytoplankton_expressed_as_chlorophyll_in_sea_water : chlorophyll concentration from the picophytoplankton (<2 um) component alone --> 326 <field id="CMIP6_co3" field_ref="CO3" /> <!-- P2 (mol m-3) mole_concentration_of_carbonate_expressed_as_carbon_in_sea_water : Carbonate Ion Concentration --> 327 <field id="CMIP6_co3abio" field_ref="dummy_XYO" /> <!-- P2 (mol m-3) co3abio : Abiotic Carbonate ion Concentration --> 328 <field id="CMIP6_co3nat" field_ref="dummy_XYO" /> <!-- P2 (mol m-3) co3nat : Natural Carbonate ion Concentration --> 329 <field id="CMIP6_co3satarag" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) mole_concentration_of_aragonite_expressed_as_carbon_in_sea_water_at_saturation : Mole Concentration of Carbonate ion for Seawater in equilibrium with pure Aragonite --> 330 <field id="CMIP6_co3satcalc" field_ref="CO3sat" /> <!-- P1 (mol m-3) mole_concentration_of_calcite_expressed_as_carbon_in_sea_water_at_saturation : Mole Concentration of Carbonate ion for Seawater in equilibrium with pure Calcite --> 320 <field id="CMIP6_chlcalcos" field_ref="dummy_XY" /> <!-- P2 (kg m-3) mass_concentration_of_calcareous_phytoplankton_expressed_as_chlorophyll_in_sea_water : chlorophyll concentration from the calcite-producing phytoplankton component alone --> 321 <field id="CMIP6_chldiat" field_ref="DCHL_E3T" expr="@DCHL_E3T / @e3t * 1e-3" > DCHL_E3T / e3t * 1e-3 </field> <!-- P2 (kg m-3) mass_concentration_of_diatoms_expressed_as_chlorophyll_in_sea_water : chlorophyll from diatom phytoplankton component concentration alone --> 322 <field id="CMIP6_chldiatos" field_ref="DCHLSFC_E3T" expr="@DCHLSFC_E3T / @E3TSFC * 1e-3" > DCHLSFC_E3T / E3TSFC * 1e-3 </field> <!-- P2 (kg m-3) mass_concentration_of_diatoms_expressed_as_chlorophyll_in_sea_water : chlorophyll from diatom phytoplankton component concentration alone --> 323 <field id="CMIP6_chldiaz" field_ref="dummy_XYO" /> <!-- P2 (kg m-3) mass_concentration_of_diazotrophs_expressed_as_chlorophyll_in_sea_water : chlorophyll concentration from the diazotrophic phytoplankton component alone --> 324 <field id="CMIP6_chldiazos" field_ref="dummy_XY" /> <!-- P2 (kg m-3) mass_concentration_of_diazotrophs_expressed_as_chlorophyll_in_sea_water : chlorophyll concentration from the diazotrophic phytoplankton component alone --> 325 <field id="CMIP6_chlmisc" field_ref="NCHL_E3T" expr="@NCHL_E3T / @e3t * 1e-3" > NCHL_E3T / e3t * 1e-3 </field> <!-- P2 (kg m-3) mass_concentration_of_miscellaneous_phytoplankton_expressed_as_chlorophyll_in_sea_water : chlorophyll from additional phytoplankton component concentrations alone --> 326 <field id="CMIP6_chlmiscos" field_ref="NCHLSFC_E3T" expr="@NCHLSFC_E3T / @E3TSFC * 1e-3" > NCHLSFC_E3T / E3TSFC * 1e-3 </field> <!-- P2 (kg m-3) mass_concentration_of_miscellaneous_phytoplankton_expressed_as_chlorophyll_in_sea_water : chlorophyll from additional phytoplankton component concentrations alone --> 327 <field id="CMIP6_chlos" field_ref="NCHLSFC_E3T" expr="@NCHLSFC_E3T / @E3TSFC * 1e-3 + @DCHLSFC_E3T / @E3TSFC * 1e-3" > NCHLSFC_E3T / E3TSFC * 1e-3 + DCHLSFC_E3T / E3TSFC * 1e-3 </field> <!-- P1 (kg m-3) mass_concentration_of_phytoplankton_expressed_as_chlorophyll_in_sea_water : sum of chlorophyll from all phytoplankton group concentrations. In most models this is equal to chldiat+chlmisc, that is the sum of "Diatom Chlorophyll Mass Concentration" plus "Other Phytoplankton Chlorophyll Mass Concentration" --> 328 <field id="CMIP6_chlpico" field_ref="dummy_XYO" /> <!-- P2 (kg m-3) mass_concentration_of_picophytoplankton_expressed_as_chlorophyll_in_sea_water : chlorophyll concentration from the picophytoplankton (<2 um) component alone --> 329 <field id="CMIP6_chlpicoos" field_ref="dummy_XY" /> <!-- P2 (kg m-3) mass_concentration_of_picophytoplankton_expressed_as_chlorophyll_in_sea_water : chlorophyll concentration from the picophytoplankton (<2 um) component alone --> 330 <field id="CMIP6_co3" field_ref="CO3" /> <!-- P1 (mol m-3) mole_concentration_of_carbonate_expressed_as_carbon_in_sea_water : 'Mole concentration' means number of moles per unit volume, also called"molarity", and is used in the construction mole_concentration_of_X_in_Y, whereX is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_expressed_as_nitrogen'. The phrase 'expressed_as' is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula of the carbonate anion is CO3 with a charge of minus two. --> 331 <field id="CMIP6_co3abio" field_ref="dummy_XYO" /> <!-- P2 (mol m-3) mole_concentration_of_carbonate_abiotic_analogue_expressed_as_carbon_in_sea_water : Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". In ocean biogeochemistry models, an "abiotic analogue" is used to simulate the effect on a modelled variable when biological effects on ocean carbon concentration and alkalinity are ignored. The phrase "expressed_as" is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula of the carbonate anion is CO3 with an electrical charge of minus two. --> 332 <field id="CMIP6_co3abioos" field_ref="dummy_XY" /> <!-- P2 (mol m-3) mole_concentration_of_carbonate_abiotic_analogue_expressed_as_carbon_in_sea_water : Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". In ocean biogeochemistry models, an "abiotic analogue" is used to simulate the effect on a modelled variable when biological effects on ocean carbon concentration and alkalinity are ignored. The phrase "expressed_as" is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula of the carbonate anion is CO3 with an electrical charge of minus two. --> 333 <field id="CMIP6_co3nat" field_ref="dummy_XYO" /> <!-- P2 (mol m-3) mole_concentration_of_carbonate_natural_analogue_expressed_as_carbon_in_sea_water : Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". In ocean biogeochemistry models, a "natural analogue" is used to simulate the effect on a modelled variable of imposing preindustrial atmospheric carbon dioxide concentrations, even when the model as a whole may be subjected to varying forcings. The phrase "expressed_as" is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula of the carbonate anion is CO3 with an electrical charge of minus two. --> 334 <field id="CMIP6_co3natos" field_ref="dummy_XY" /> <!-- P2 (mol m-3) mole_concentration_of_carbonate_natural_analogue_expressed_as_carbon_in_sea_water : Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". In ocean biogeochemistry models, a "natural analogue" is used to simulate the effect on a modelled variable of imposing preindustrial atmospheric carbon dioxide concentrations, even when the model as a whole may be subjected to varying forcings. The phrase "expressed_as" is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula of the carbonate anion is CO3 with an electrical charge of minus two. --> 335 <field id="CMIP6_co3os" field_ref="CO3SFC" /> <!-- P2 (mol m-3) mole_concentration_of_carbonate_expressed_as_carbon_in_sea_water : 'Mole concentration' means number of moles per unit volume, also called"molarity", and is used in the construction mole_concentration_of_X_in_Y, whereX is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_expressed_as_nitrogen'. The phrase 'expressed_as' is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula of the carbonate anion is CO3 with a charge of minus two. --> 336 <field id="CMIP6_co3satarag" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) mole_concentration_of_carbonate_expressed_as_carbon_at_equilibrium_with_pure_aragonite_in_sea_water : Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". The phrase "expressed_as" is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula of the carbonate anion is CO3 with an electrical charge of minus two. Aragonite is a mineral that is a polymorph of calcium carbonate. The chemical formula of aragonite is CaCO3. At a given salinity, the thermodynamic equilibrium is that between dissolved carbonate ion and solid aragonite. Standard names also exist for calcite, another polymorph of calcium carbonate. --> 337 <field id="CMIP6_co3sataragos" field_ref="dummy_XY" /> <!-- P2 (mol m-3) mole_concentration_of_carbonate_expressed_as_carbon_at_equilibrium_with_pure_aragonite_in_sea_water : Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". The phrase "expressed_as" is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula of the carbonate anion is CO3 with an electrical charge of minus two. Aragonite is a mineral that is a polymorph of calcium carbonate. The chemical formula of aragonite is CaCO3. At a given salinity, the thermodynamic equilibrium is that between dissolved carbonate ion and solid aragonite. Standard names also exist for calcite, another polymorph of calcium carbonate. --> 338 <field id="CMIP6_co3satcalc" field_ref="CO3sat" /> <!-- P1 (mol m-3) mole_concentration_of_carbonate_expressed_as_carbon_at_equilibrium_with_pure_calcite_in_sea_water : Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". The phrase "expressed_as" is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula of the carbonate anion is CO3 with an electrical charge of minus two. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. At a given salinity, the thermodynamic equilibrium is that between dissolved carbonate ion and solid calcite. Standard names also exist for aragonite, another polymorph of calcium carbonate. --> 339 <field id="CMIP6_co3satcalcos" field_ref="CO3satSFC" /> <!-- P2 (mol m-3) mole_concentration_of_carbonate_expressed_as_carbon_at_equilibrium_with_pure_calcite_in_sea_water : Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". The phrase "expressed_as" is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula of the carbonate anion is CO3 with an electrical charge of minus two. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. At a given salinity, the thermodynamic equilibrium is that between dissolved carbonate ion and solid calcite. Standard names also exist for aragonite, another polymorph of calcium carbonate. --> 331 340 <field id="CMIP6_darag" field_ref="dummy_XYO" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_aragonite_expressed_as_carbon_in_sea_water_due_to_dissolution : Rate of change of Aragonite carbon mole concentration due to dissolution --> 332 <field id="CMIP6_dcalc" field_ref="PCAL" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_calcite_expressed_as_carbon_in_sea_water_due_to_dissolution : Rate of change of Calcite carbon mole concentration due to dissolution --> 333 <field id="CMIP6_detoc" field_ref="POC_E3T" expr="@POC_E3T / @e3t * 1e-3 + @GOC_E3T / @e3t * 1e-3" > POC_E3T / e3t * 1e-3 + GOC_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_organic_detritus_expressed_as_carbon_in_sea_water : Sum of detrital organic carbon component concentrations --> 334 <field id="CMIP6_dfe" field_ref="Fer_E3T" expr="@Fer_E3T / @e3t * 1e-3" > Fer_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_dissolved_iron_in_sea_water : Dissolved iron in sea water, including both Fe2+ and Fe3+ ions (but not particulate detrital iron) --> 335 <field id="CMIP6_dfeos" field_ref="FerSFC_E3T" expr="@FerSFC_E3T / @E3TSFC * 1e-3" > FerSFC_E3T / E3TSFC * 1e-3 </field> <!-- P1 (mol m-3) dfeos : dissolved iron in sea water is meant to include both Fe2+ and Fe3+ ions (but not, e.g., particulate detrital iron) --> 336 <field id="CMIP6_dissi13c" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) dissi13c : Dissolved inorganic 14carbon (CO3+HCO3+H2CO3) concentration --> 337 <field id="CMIP6_dissi13cos" field_ref="dummy_XY" /> <!-- P1 (mol m-3) dissi13cos : Dissolved inorganic 14carbon (CO3+HCO3+H2CO3) concentration --> 338 <field id="CMIP6_dissi14c" field_ref="dummy_XYO" /> <!-- P2 (mol m-3) mole_concentration_of_dissolved_inorganic_c14_in_sea_water : Concentration of DI14C --> 339 <field id="CMIP6_dissi14cabio" field_ref="dummy_XYO" /> <!-- P2 (mol m-3) dissi14cabio : Abiotic Dissolved inorganic 14carbon (CO3+HCO3+H2CO3) concentration --> 340 <field id="CMIP6_dissi14cabioos" field_ref="dummy_XY" /> <!-- P1 (mol m-3) dissi14cabioos : Abiotic Dissolved inorganic 14carbon (CO3+HCO3+H2CO3) concentration --> 341 <field id="CMIP6_dcalc" field_ref="DCAL" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_calcite_expressed_as_carbon_in_sea_water_due_to_dissolution : Rate of change of Calcite carbon mole concentration due to dissolution --> 342 <field id="CMIP6_detoc" field_ref="POC_E3T" expr="@POC_E3T / @e3t * 1e-3 + @GOC_E3T / @e3t * 1e-3" > POC_E3T / e3t * 1e-3 + GOC_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_organic_detritus_expressed_as_carbon_in_sea_water : sum of detrital organic carbon component concentrations --> 343 <field id="CMIP6_detocos" field_ref="POCSFC_E3T" expr="@POCSFC_E3T / @E3TSFC * 1e-3 + @GOCSFC_E3T / @E3TSFC * 1e-3" > POCSFC_E3T / E3TSFC * 1e-3 + GOCSFC_E3T / E3TSFC * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_organic_detritus_expressed_as_carbon_in_sea_water : sum of detrital organic carbon component concentrations --> 344 <field id="CMIP6_dfe" field_ref="Fer_E3T" expr="@Fer_E3T / @e3t * 1e-3" > Fer_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_dissolved_iron_in_sea_water : dissolved iron in sea water is meant to include both Fe2+ and Fe3+ ions (but not, e.g., particulate detrital iron) --> 345 <field id="CMIP6_dfeos" field_ref="FerSFC_E3T" expr="@FerSFC_E3T / @E3TSFC * 1e-3" > FerSFC_E3T / E3TSFC * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_dissolved_iron_in_sea_water : dissolved iron in sea water is meant to include both Fe2+ and Fe3+ ions (but not, e.g., particulate detrital iron) --> 346 <field id="CMIP6_dissi13c" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) mole_concentration_of_dissolved_inorganic_13C_in_sea_water : Dissolved inorganic 14carbon (CO3+HCO3+H2CO3) concentration --> 347 <field id="CMIP6_dissi13cos" field_ref="dummy_XY" /> <!-- P1 (mol m-3) mole_concentration_of_dissolved_inorganic_13C_in_sea_water : Dissolved inorganic 14carbon (CO3+HCO3+H2CO3) concentration --> 348 <field id="CMIP6_dissi14c" field_ref="dummy_XYO" /> <!-- P2 (mol m-3) mole_concentration_of_dissolved_inorganic_14C_in_sea_water : Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". "Dissolved inorganic carbon" describes a family of chemical species in solution, including carbon dioxide, carbonic acid and the carbonate and bicarbonate anions. "Dissolved inorganic carbon" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "C" means the element carbon and "14C" is the radioactive isotope "carbon-14", having six protons and eight neutrons and used in radiocarbon dating. --> 349 <field id="CMIP6_dissi14cabio" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) mole_concentration_of_dissolved_inorganic_14C_in_sea_water : Abiotic Dissolved inorganic 14carbon (CO3+HCO3+H2CO3) concentration --> 350 <field id="CMIP6_dissi14cabioos" field_ref="dummy_XY" /> <!-- P1 (mol m-3) mole_concentration_of_dissolved_inorganic_14C_in_sea_water : Abiotic Dissolved inorganic 14carbon (CO3+HCO3+H2CO3) concentration --> 341 351 <field id="CMIP6_dissic" field_ref="DIC_E3T" expr="@DIC_E3T / @e3t * 1e-3" > DIC_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_dissolved_inorganic_carbon_in_sea_water : Dissolved inorganic carbon (CO3+HCO3+H2CO3) concentration --> 342 <field id="CMIP6_dissicabio" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) dissicabio : Abiotic Dissolved inorganic carbon (CO3+HCO3+H2CO3) concentration --> 343 <field id="CMIP6_dissicabioos" field_ref="dummy_XY" /> <!-- P1 (mol m-3) dissicabioos : Abiotic Dissolved inorganic carbon (CO3+HCO3+H2CO3) concentration --> 344 <field id="CMIP6_dissicnat" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) dissicnat : Dissolved inorganic carbon (CO3+HCO3+H2CO3) concentration at preindustrial atmospheric xCO2 --> 345 <field id="CMIP6_dissicnatos" field_ref="dummy_XY" /> <!-- P1 (mol m-3) dissicnatos : Dissolved inorganic carbon (CO3+HCO3+H2CO3) concentration at preindustrial atmospheric xCO2 --> 346 <field id="CMIP6_dissicos" field_ref="DICSFC_E3T" expr="@DICSFC_E3T / @E3TSFC * 1e-3" > DICSFC_E3T / E3TSFC * 1e-3 </field> <!-- P1 (mol m-3) dissicos : Dissolved inorganic carbon (CO3+HCO3+H2CO3) concentration --> 347 <field id="CMIP6_dissoc" field_ref="DOC_E3T" expr="@DOC_E3T / @e3t * 1e-3" > DOC_E3T / e3t * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_dissolved_organic_carbon_in_sea_water : Sum of dissolved carbon component concentrations explicitly represented (i.e. not ~40 uM refractory unless explicit) --> 348 <field id="CMIP6_dmso" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) mole_concentration_of_dimethyl_sulfide_in_sea_water : Mole concentration of dimethyl sulphide in water --> 349 <field id="CMIP6_dmsos" field_ref="dummy_XY" /> <!-- P3 (mol m-3) dmsos : Surface Mole Concentration of Dimethyl Sulphide in sea water --> 350 <field id="CMIP6_dpco2" field_ref="Dpco2" > this * 0.101325 </field> <!-- P1 (Pa) surface_carbon_dioxide_partial_pressure_difference_between_sea_water_and_air : Delta PCO2 --> 351 <field id="CMIP6_dpco2abio" field_ref="dummy_XY" /> <!-- P3 (Pa) dpco2abio : Abiotic Delta PCO2 --> 352 <field id="CMIP6_dpco2nat" field_ref="dummy_XY" /> <!-- P3 (Pa) dpco2nat : Natural Delta PCO2 --> 353 <field id="CMIP6_dpo2" field_ref="Dpo2" > this * 0.101325 </field> <!-- P3 (Pa) surface_molecular_oxygen_partial_pressure_difference_between_sea_water_and_air : Delta PO2 --> 354 <field id="CMIP6_dpocdtcalc" field_ref="dummy_XYO" /> <!-- P3 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_by_calcareous_phytoplankton : Primary (organic carbon) production by the calcite-producing phytoplankton component alone --> 355 <field id="CMIP6_dpocdtdiaz" field_ref="dummy_XYO" /> <!-- P3 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_by_diazotrophs : Primary (organic carbon) production by the diazotrophic phytoplankton component alone --> 356 <field id="CMIP6_dpocdtpico" field_ref="dummy_XYO" /> <!-- P3 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_by_picophytoplankton : Primary (organic carbon) production by the picophytoplankton (<2 um) component alone --> 357 <field id="CMIP6_eparag100" field_ref="dummy_XY" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_aragonite_expressed_as_carbon_in_sea_water : Downward Flux of Aragonite --> 358 <field id="CMIP6_epc100" field_ref="EPC100" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_particulate_organic_matter_expressed_as_carbon_in_sea_water : Downward Flux of Particle Organic Carbon --> 359 <field id="CMIP6_epcalc100" field_ref="EPCAL100" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_calcite_expressed_as_carbon_in_sea_water : Downward Flux of Calcite --> 360 <field id="CMIP6_epfe100" field_ref="EPFE100" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_particulate_iron_in_sea_water : Downward Flux of Particulate Iron --> 361 <field id="CMIP6_epn100" field_ref="dummy_XY" /> <!-- P1 (mol m-2 s-1) epn100 : Downward Flux of Particulate Nitrogen --> 362 <field id="CMIP6_epp100" field_ref="dummy_XY" /> <!-- P1 (mol m-2 s-1) epp100 : Downward Flux of Particulate Phosphorus --> 363 <field id="CMIP6_epsi100" field_ref="EPSI100" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_particulate_silicon_in_sea_water : Downward Flux of Particulate Silica --> 352 <field id="CMIP6_dissicabio" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) mole_concentration_of_dissolved_inorganic_carbon_abiotic_analogue_in_sea_water : Abiotic Dissolved inorganic carbon (CO3+HCO3+H2CO3) concentration --> 353 <field id="CMIP6_dissicabioos" field_ref="dummy_XY" /> <!-- P1 (mol m-3) mole_concentration_of_dissolved_inorganic_carbon_abiotic_analogue_in_sea_water : Abiotic Dissolved inorganic carbon (CO3+HCO3+H2CO3) concentration --> 354 <field id="CMIP6_dissicnat" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) mole_concentration_of_dissolved_inorganic_carbon_natural_analogue_in_sea_water : Dissolved inorganic carbon (CO3+HCO3+H2CO3) concentration at preindustrial atmospheric xCO2 --> 355 <field id="CMIP6_dissicnatos" field_ref="dummy_XY" /> <!-- P1 (mol m-3) mole_concentration_of_dissolved_inorganic_carbon_natural_analogue_in_sea_water : Dissolved inorganic carbon (CO3+HCO3+H2CO3) concentration at preindustrial atmospheric xCO2 --> 356 <field id="CMIP6_dissicos" field_ref="DICSFC_E3T" expr="@DICSFC_E3T / @E3TSFC * 1e-3" > DICSFC_E3T / E3TSFC * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_dissolved_inorganic_carbon_in_sea_water : Dissolved inorganic carbon (CO3+HCO3+H2CO3) concentration --> 357 <field id="CMIP6_dissoc" field_ref="DOC_E3T" expr="@DOC_E3T / @e3t * 1e-3" > DOC_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_dissolved_organic_carbon_in_sea_water : Sum of dissolved carbon component concentrations explicitly represented (i.e. not ~40 uM refractory unless explicit) --> 358 <field id="CMIP6_dissocos" field_ref="DOCSFC_E3T" expr="@DOCSFC_E3T / @E3TSFC * 1e-3" > DOCSFC_E3T / E3TSFC * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_dissolved_organic_carbon_in_sea_water : Sum of dissolved carbon component concentrations explicitly represented (i.e. not ~40 uM refractory unless explicit) --> 359 <field id="CMIP6_dmso" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) mole_concentration_of_dimethyl_sulfide_in_sea_water : Mole concentration of dimethyl sulphide in water --> 360 <field id="CMIP6_dmsos" field_ref="dummy_XY" /> <!-- P3 (mol m-3) mole_concentration_of_dimethyl_sulfide_in_sea_water : 'Mole concentration' means number of moles per unit volume, also called"molarity", and is used in the construction mole_concentration_of_X_in_Y, whereX is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_expressed_as_nitrogen'. The chemical formula for dimethyl sulfide is (CH3)2S. Dimethyl sulfide is sometimes referred to as DMS. --> 361 <field id="CMIP6_dpco2" field_ref="Dpco2" > this * 0.101325 </field> <!-- P1 (Pa) surface_carbon_dioxide_partial_pressure_difference_between_sea_water_and_air : The partial pressure of a dissolved gas in sea water is the partial pressure in air with which it would be in equilibrium. The partial pressure of a gaseous constituent of air is the pressure which it alone would exert with unchanged temperature and number of moles per unit volume. The surface called "surface" means the lower boundary of the atmosphere. The chemical formula for carbon dioxide is CO2. --> 362 <field id="CMIP6_dpco2abio" field_ref="dummy_XY" /> <!-- P3 (Pa) surface_carbon_dioxide_abiotic_analogue_partial_pressure_difference_between_sea_water_and_air : The surface called "surface" means the lower boundary of the atmosphere. The chemical formula for carbon dioxide is CO2. In ocean biogeochemistry models, an "abiotic analogue" is used to simulate the effect on a modelled variable when biological effects on ocean carbon concentration and alkalinity are ignored. The partial pressure of a gaseous constituent of air is the pressure which it alone would exert with unchanged temperature and number of moles per unit volume. The partial pressure of a dissolved gas in sea water is the partial pressure in air with which it would be in equilibrium. The partial pressure difference between sea water and air is positive when the partial pressure of the dissolved gas in sea water is greater than the partial pressure in air. --> 363 <field id="CMIP6_dpco2nat" field_ref="dummy_XY" /> <!-- P3 (Pa) surface_carbon_dioxide_natural_analogue_partial_pressure_difference_between_sea_water_and_air : The surface called "surface" means the lower boundary of the atmosphere. The chemical formula for carbon dioxide is CO2. In ocean biogeochemistry models, a "natural analogue" is used to simulate the effect on a modelled variable of imposing preindustrial atmospheric carbon dioxide concentrations, even when the model as a whole may be subjected to varying forcings. The partial pressure of a gaseous constituent of air is the pressure which it alone would exert with unchanged temperature and number of moles per unit volume. The partial pressure of a dissolved gas in sea water is the partial pressure in air with which it would be in equilibrium. The partial pressure difference between sea water and air is positive when the partial pressure of the dissolved gas in sea water is greater than the partial pressure in air. --> 364 <field id="CMIP6_dpo2" field_ref="Dpo2" > this * 0.101325 </field> <!-- P3 (Pa) surface_molecular_oxygen_partial_pressure_difference_between_sea_water_and_air : The partial pressure of a dissolved gas in sea water is the partial pressure in air with which it would be in equilibrium. The partial pressure of a gaseous constituent of air is the pressure which it alone would exert with unchanged temperature and number of moles per unit volume. The surface called "surface" means the lower boundary of the atmosphere. --> 365 <field id="CMIP6_eparag100" field_ref="dummy_XY" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_aragonite_expressed_as_carbon_in_sea_water : The phrase 'expressed_as' is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. Aragonite is a mineral that is a polymorph of calcium carbonate. The chemical formula of aragonite is CaCO3. Standard names also exist for calcite, another polymorph of calcium carbonate. --> 366 <field id="CMIP6_epc100" field_ref="EPC100" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_particulate_organic_matter_expressed_as_carbon_in_sea_water : The phrase 'expressed_as' is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. --> 367 <field id="CMIP6_epcalc100" field_ref="EPCAL100" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_calcite_expressed_as_carbon_in_sea_water : The phrase 'expressed_as' is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Standard names also exist for aragonite, another polymorph of calcium carbonate. --> 368 <field id="CMIP6_epfe100" field_ref="EPFE100" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_particulate_iron_in_sea_water : In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. --> 369 <field id="CMIP6_epn100" field_ref="dummy_XY" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_particulate_organic_nitrogen_in_sea_water : In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. --> 370 <field id="CMIP6_epp100" field_ref="dummy_XY" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_particulate_organic_phosphorus_in_sea_water : In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. --> 371 <field id="CMIP6_epsi100" field_ref="EPSI100" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_particulate_silicon_in_sea_water : In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. --> 364 372 <field id="CMIP6_exparag" field_ref="dummy_XYO" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_aragonite_expressed_as_carbon_in_sea_water : Downward flux of Aragonite --> 365 <field id="CMIP6_expc" field_ref="EXPC" 366 <field id="CMIP6_expcalc" field_ref="EXPCAL" 367 <field id="CMIP6_expfe" field_ref="EXPFE" /> <!-- P2 (mol m-2 s-1) sinking_mole_flux_of_particulate_iron_in_sea_water : Sinking Particulate Iron Flux-->368 <field id="CMIP6_expn" field_ref="dummy_XYO" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_particulate_organic_nitrogen_in_sea_water : Sinking Particulate Organic Nitrogen Flux-->369 <field id="CMIP6_expp" field_ref="dummy_XYO" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_particulate_organic_phosphorus_in_sea_water : Sinking Particulate Organic Phosphorus Flux-->370 <field id="CMIP6_expsi" field_ref="EXPSI" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_particulate_silicon_in_sea_water : Sinking Particulate Silica Flux-->371 <field id="CMIP6_fbddtalk" field_ref="INTdtAlk" /> <!-- P3 (mol m-2 s-1) integral_wrt_depth_of_tendency_of_sea_water_alkalinity_expressed_as_mole_equivalent_due_to_biological_processes : vertical integral of net biological terms in time rate of change of alkalinity -->372 <field id="CMIP6_fbddtdic" field_ref="INTdtDIC" /> <!-- P3(mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_carbon_due_to_biological_processes : vertical integral of net biological terms in time rate of change of dissolved inorganic carbon -->373 <field id="CMIP6_fbddtdife" field_ref="INTdtFer" /> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_iron_due_to_biological_processes : vertical integral of net biological terms in time rate of change of dissolved inorganic iron -->374 <field id="CMIP6_fbddtdin" field_ref="INTdtDIN" /> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_nitrogen_due_to_biological_processes : vertical integral of net biological terms in time rate of change of nitrogen nutrients (e.g. NO3+NH4) -->375 <field id="CMIP6_fbddtdip" field_ref="INTdtDIP" /> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_phosphorus_due_to_biological_processes : vertical integral of net biological terms in time rate of change of phosphate-->376 <field id="CMIP6_fbddtdisi" field_ref="INTdtSil" /> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_silicon_due_to_biological_processes : vertical integral of net biological terms in time rate of change of dissolved inorganic silicate-->377 <field id="CMIP6_fddtalk" field_ref="dummy_XYO" /> <!-- P 1 (mol m-2 s-1) integral_wrt_depth_of_tendency_of_sea_water_alkalinity_expressed_as_mole_equivalent : vertical integral of net time rate of change ofalkalinity -->378 <field id="CMIP6_fddtdic" field_ref="dummy_XY O" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_carbon : Rate of Change of Net Dissolved Inorganic Carbon-->379 <field id="CMIP6_fddtdife" field_ref="dummy_XY O"/> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_iron : vertical integral of net time rate of change of dissolved inorganic iron -->380 <field id="CMIP6_fddtdin" field_ref="dummy_XY O"/> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_nitrogen : Net time rate of change of nitrogen nutrients (e.g. NO3+NH4) -->381 <field id="CMIP6_fddtdip" field_ref="dummy_XY O"/> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_phosphorus : vertical integral of net time rate of change of phosphate -->382 <field id="CMIP6_fddtdisi" field_ref="dummy_XY O" /> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_silicon : vertical integral of net time rate of change of dissolved inorganic silicate-->373 <field id="CMIP6_expc" field_ref="EXPC" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_particulate_organic_matter_expressed_as_carbon_in_sea_water : Downward flux of particulate organic carbon --> 374 <field id="CMIP6_expcalc" field_ref="EXPCAL" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_calcite_expressed_as_carbon_in_sea_water : Downward flux of Calcite --> 375 <field id="CMIP6_expfe" field_ref="EXPFE" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_particulate_iron_in_sea_water : In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. --> 376 <field id="CMIP6_expn" field_ref="dummy_XYO" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_particulate_organic_nitrogen_in_sea_water : In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. --> 377 <field id="CMIP6_expp" field_ref="dummy_XYO" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_particulate_organic_phosphorus_in_sea_water : In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. --> 378 <field id="CMIP6_expsi" field_ref="EXPSI" /> <!-- P1 (mol m-2 s-1) sinking_mole_flux_of_particulate_silicon_in_sea_water : In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. --> 379 <field id="CMIP6_fbddtalk" field_ref="INTdtAlk" /> <!-- P3 (mol m-2 s-1) integral_wrt_depth_of_tendency_of_sea_water_alkalinity_expressed_as_mole_equivalent_due_to_biological_processes : vertical integral of net biological terms in time rate of change of alkalinity --> 380 <field id="CMIP6_fbddtdic" field_ref="INTdtDIC" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_carbon_due_to_biological_processes : vertical integral of net biological terms in time rate of change of dissolved inorganic carbon --> 381 <field id="CMIP6_fbddtdife" field_ref="INTdtFer" /> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_iron_due_to_biological_processes : vertical integral of net biological terms in time rate of change of dissolved inorganic iron --> 382 <field id="CMIP6_fbddtdin" field_ref="INTdtDIN" /> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_nitrogen_due_to_biological_processes : vertical integral of net biological terms in time rate of change of nitrogen nutrients (e.g. NO3+NH4) --> 383 <field id="CMIP6_fbddtdip" field_ref="INTdtDIP" /> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_phosphorus_due_to_biological_processes : vertical integral of net biological terms in time rate of change of phosphorus --> 384 <field id="CMIP6_fbddtdisi" field_ref="INTdtSil" /> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_silicon_due_to_biological_processes : vertical integral of net biological terms in time rate of change of dissolved inorganic silicon --> 385 <field id="CMIP6_fddtalk" field_ref="dummy_XYO" /> <!-- P2 (mol m-2 s-1) integral_wrt_depth_of_tendency_of_sea_water_alkalinity_expressed_as_mole_equivalent : vertical integral of net time rate of change of total alkalinity --> 386 <field id="CMIP6_fddtdic" field_ref="dummy_XY" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_carbon : "Content" indicates a quantity per unit area. "tendency_of_X" means derivative of X with respect to time. "Dissolved inorganic carbon" describes a family of chemical species in solution, including carbon dioxide, carbonic acid and the carbonate and bicarbonate anions. "Dissolved inorganic carbon" isthe term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. --> 387 <field id="CMIP6_fddtdife" field_ref="dummy_XY" /> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_iron : vertical integral of net time rate of change of dissolved inorganic iron --> 388 <field id="CMIP6_fddtdin" field_ref="dummy_XY" /> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_nitrogen : Net time rate of change of nitrogen nutrients (e.g. NO3+NH4) --> 389 <field id="CMIP6_fddtdip" field_ref="dummy_XY" /> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_phosphorus : vertical integral of net time rate of change of phosphate --> 390 <field id="CMIP6_fddtdisi" field_ref="dummy_XY" /> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_dissolved_inorganic_silicon : vertical integral of net time rate of change of dissolved inorganic silicon --> 383 391 <field id="CMIP6_fediss" field_ref="dummy_XYO" /> <!-- P3 (mol m-3 s-1) tendency_of_mole_concentration_of_dissolved_iron_in_sea_water_due_to_dissolution_from_inorganic_particles : Dissolution, remineralization and desorption of iron back to the dissolved phase --> 384 392 <field id="CMIP6_fescav" field_ref="dummy_XYO" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_dissolved_iron_in_sea_water_due_to_scavenging_by_inorganic_particles : Dissolved Fe removed through nonbiogenic scavenging onto particles --> 385 <field id="CMIP6_fg13co2" field_ref="dummy_XY" /> <!-- P1 (mol m-2 s-1) fg13co2 : as specified by C4MIP --> 386 <field id="CMIP6_fg14co2abio" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) fg14co2abio : Gas exchange flux of abiotic 14CO2 (positive into ocean) --> 387 <field id="CMIP6_fgco2" field_ref="Cflx"> this * 12 * 1e-3 </field> <!-- P1 (kg m-2 s-1) surface_downward_mass_flux_of_carbon_dioxide_expressed_as_carbon : Gas exchange flux of CO2 (positive into ocean) --> 388 <field id="CMIP6_fgco2abio" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) fgco2abio : Gas exchange flux of abiotic CO2 (positive into ocean) --> 389 <field id="CMIP6_fgco2nat" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) fgco2nat : Gas exchange flux of natural CO2 (positive into ocean) --> 390 <field id="CMIP6_fgdms" field_ref="dummy_XY" /> <!-- P3 (mol m-2 s-1) surface_upward_mole_flux_of_dimethyl_sulfide : Gas exchange flux of DMS (positive into atmosphere) --> 391 <field id="CMIP6_fgo2" field_ref="Oflx" /> <!-- P1 (mol m-2 s-1) surface_downward_mole_flux_of_molecular_oxygen : Gas exchange flux of O2 (positive into ocean) --> 392 <field id="CMIP6_frfe" field_ref="dummy_XY" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_iron_due_to_sedimentation : Iron Loss to Sediments --> 393 <field id="CMIP6_fric" field_ref="SedCal" /> <!-- P2 (mol m-2 s-1) fric : Inorganic Carbon loss to sediments --> 394 <field id="CMIP6_froc" field_ref="SedC" /> <!-- P1 (mol m-2 s-1) froc : Organic Carbon loss to sediments --> 395 <field id="CMIP6_fsfe" field_ref="IronSupply" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_iron_due_to_deposition_and_runoff_and_sediment_dissolution : Iron supply through deposition flux onto sea surface, runoff, coasts, sediments, etc --> 396 <field id="CMIP6_fsn" field_ref="NitrSupply" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_elemental_nitrogen_due_to_deposition_and_fixation_and_runoff : Surface Downward Net Flux of Nitrogen --> 397 <field id="CMIP6_graz" field_ref="GRAZ1" > this + GRAZ2 </field> <!-- P3 (mol m-3 s-1) graz : Total Grazing of Phytoplankton by Zooplankton --> 398 <field id="CMIP6_intdic" field_ref="INTDIC" /> <!-- P1 (kg m-2) ocean_mass_content_of_dissolved_inorganic_carbon : Vertically integrated DIC --> 399 <field id="CMIP6_intdoc" field_ref="dummy_XY" /> <!-- P1 (kg m-2) ocean_mass_content_of_dissolved_organic_carbon : Vertically integrated DOC (explicit pools only) --> 400 <field id="CMIP6_intparag" field_ref="dummy_XY" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_aragonite_expressed_as_carbon_due_to_biological_production : Vertically integrated aragonite production --> 401 <field id="CMIP6_intpbfe" field_ref="INTPBFE" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_iron_due_to_biological_production : Vertically integrated biogenic iron production --> 402 <field id="CMIP6_intpbn" field_ref="dummy_XY" /> <!-- P3 (mol m-2 s-1) intpbn : Vertically integrated biogenic nitrogen production --> 393 <field id="CMIP6_fg13co2" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) surface_downward_mass_flux_of_13C_dioxide_abiotic_analogue_expressed_as_13C : Gas exchange flux of abiotic 13CO2 (positive into ocean) --> 394 <field id="CMIP6_fg14co2" field_ref="dummy_XY" /> <!-- P2 (kg m-2 s-1) surface_downward_mass_flux_of_14C_dioxide_abiotic_analogue_expressed_as_carbon : The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. In ocean biogeochemistry models, an "abiotic analogue" is used to simulate the effect on a modelled variable when biological effects on ocean carbon concentration and alkalinity are ignored. The phrase "expressed_as" is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "C" means the element carbon and "14C" is the radioactive isotope "carbon-14", having six protons and eight neutrons and used in radiocarbon dating. --> 395 <field id="CMIP6_fg14co2abio" field_ref="dummy_XYO" /> <!-- P1 (kg m-2 s-1) surface_downward_mass_flux_of_14C_dioxide_abiotic_analogue_expressed_as_carbon : Gas exchange flux of abiotic 14CO2 (positive into ocean) --> 396 <field id="CMIP6_fgco2" field_ref="Cflx" > this * 12 * 1e-3 </field> <!-- P1 (kg m-2 s-1) surface_downward_mass_flux_of_carbon_dioxide_expressed_as_carbon : Gas exchange flux of CO2 (positive into ocean) --> 397 <field id="CMIP6_fgco2abio" field_ref="dummy_XYO" /> <!-- P1 (kg m-2 s-1) surface_downward_mass_flux_of_carbon_dioxide_abiotic_analogue_expressed_as_carbon : Gas exchange flux of abiotic CO2 (positive into ocean) --> 398 <field id="CMIP6_fgco2nat" field_ref="dummy_XYO" /> <!-- P1 (kg m-2 s-1) surface_downward_mass_flux_of_carbon_dioxide_natural_analogue_expressed_as_carbon : Gas exchange flux of natural CO2 (positive into ocean) --> 399 <field id="CMIP6_fgdms" field_ref="dummy_XY" /> <!-- P1 (mol m-2 s-1) surface_upward_mole_flux_of_dimethyl_sulfide : Gas exchange flux of DMS (positive into atmosphere) --> 400 <field id="CMIP6_fgo2" field_ref="Oflx" /> <!-- P1 (mol m-2 s-1) surface_downward_mole_flux_of_molecular_oxygen : Gas exchange flux of O2 (positive into ocean) --> 401 <field id="CMIP6_frfe" field_ref="dummy_XY" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_iron_due_to_sedimentation : "Content" indicates a quantity per unit area. The specification of a physical process by the phrase due_to_process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_of_X" means derivative of X with respect to time. --> 402 <field id="CMIP6_fric" field_ref="SedCal" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_inorganic_carbon_due_to_sedimentation : Inorganic Carbon loss to sediments --> 403 <field id="CMIP6_frn" field_ref="dummy_XY" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_elemental_nitrogen_due_to_denitrification_and_sedimentation : "Content" indicates a quantity per unit area. The specification of a physical process by the phrase due_to_process means that the quantity named is asingle term in a sum of terms which together compose the general quantity named by omitting the phrase. 'Denitrification' is the conversion of nitrate into gasesous compounds such as nitric oxide, nitrous oxide and molecular nitrogen which are then emitted to the atmosphere. 'Sedimentation' is the sinking of particulate matter to the floor of a body of water. "tendency_of_X" means derivative of X with respect to time. --> 404 <field id="CMIP6_froc" field_ref="SedC" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_organic_carbon_due_to_sedimentation : Organic Carbon loss to sediments --> 405 <field id="CMIP6_fsfe" field_ref="IronSupply" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_iron_due_to_deposition_and_runoff_and_sediment_dissolution : Iron supply through deposition flux onto sea surface, runoff, coasts, sediments, etc --> 406 <field id="CMIP6_fsn" field_ref="NitrSupply" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_elemental_nitrogen_due_to_deposition_and_fixation_and_runoff : "Content" indicates a quantity per unit area. The specification of a physical process by the phrase due_to_process means that the quantity named is asingle term in a sum of terms which together compose the general quantity named by omitting the phrase. Deposition of nitrogen into the ocean is the sum of dry and wet depositionof nitrogen species onto the ocean surface from the atmosphere. 'Nitrogen fixation' means the production of ammonia from nitrogen gas. Organisms that fix nitrogen are termed 'diazotrophs'. Diazotrophic phytoplankton can fix atmospheric nitrogen, thus increasing the content of nitrogen in the ocean. Runoff is the liquid water which drains from land. If not specified, "runoff" refers to the sum of surface runoff and subsurface drainage."tendency_of_X" means derivative of X with respect to time. --> 407 <field id="CMIP6_graz" field_ref="GRAZ1" > this + GRAZ2 </field> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_grazing_of_phytoplankton : "tendency_of_X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". The phrase "expressed_as" is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_to_" process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Phytoplankton are autotrophic prokaryotic or eukaryotic algae that live near the water surface where there is sufficient light to support photosynthesis. "Grazing of phytoplankton" means the grazing of phytoplankton by zooplankton. --> 408 <field id="CMIP6_icfriver" field_ref="dummy_XY" /> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_inorganic_carbon_due_to_runoff_and_sediment_dissolution : Inorganic Carbon supply to ocean through runoff (separate from gas exchange) --> 409 <field id="CMIP6_intdic" field_ref="INTDIC" /> <!-- P1 (kg m-2) ocean_mass_content_of_dissolved_inorganic_carbon : Vertically integrated DIC --> 410 <field id="CMIP6_intdoc" field_ref="dummy_XY" /> <!-- P1 (kg m-2) ocean_mass_content_of_dissolved_organic_carbon : Vertically integrated DOC (explicit pools only) --> 411 <field id="CMIP6_intparag" field_ref="dummy_XY" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_aragonite_expressed_as_carbon_due_to_biological_production : Vertically integrated aragonite production --> 412 <field id="CMIP6_intpbfe" field_ref="INTPBFE" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_iron_due_to_biological_production : Vertically integrated biogenic iron production --> 413 <field id="CMIP6_intpbn" field_ref="dummy_XY" /> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_nitrogen_due_to_biological_production : Vertically integrated biogenic nitrogen production --> 403 414 <field id="CMIP6_intpbp" field_ref="dummy_XY" /> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_phosphorus_due_to_biological_production : Vertically integrated biogenic phosphorus production --> 404 <field id="CMIP6_intpbsi" field_ref="INTPBSI" 415 <field id="CMIP6_intpbsi" field_ref="INTPBSI" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_silicon_due_to_biological_production : Vertically integrated biogenic silica production --> 405 416 <field id="CMIP6_intpcalcite" field_ref="dummy_XY" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_calcite_expressed_as_carbon_due_to_biological_production : Vertically integrated calcite production --> 406 <field id="CMIP6_intpn2" field_ref="INTNFIX" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_elemental_nitrogen_due_to_fixation : Vertically integrated nitrogen fixation --> 407 <field id="CMIP6_intpoc" field_ref="dummy_XY" /> <!-- P2 (kg m-2) intpoc : Vertically integrated POC --> 408 <field id="CMIP6_intpp" field_ref="INTPP" /> <!-- P1 (mol m-2 s-1) net_primary_mole_productivity_of_carbon_by_phytoplankton : Vertically integrated total primary (organic carbon) production by phytoplankton. This should equal the sum of intpdiat+intpphymisc, but those individual components may be unavailable in some models. --> 409 <field id="CMIP6_intppcalc" field_ref="dummy_XY" /> <!-- P3 (mol m-2 s-1) net_primary_mole_productivity_of_carbon_by_calcareous_phytoplankton : Net Primary Mole Productivity of Carbon by Calcareous Phytoplankton --> 410 <field id="CMIP6_intppdiat" field_ref="INTPPPHY2" /> <!-- P2 (mol m-2 s-1) net_primary_mole_productivity_of_carbon_by_diatoms : Vertically integrated primary (organic carbon) production by the diatom phytoplankton component alone --> 411 <field id="CMIP6_intppdiaz" field_ref="dummy_XY" /> <!-- P3 (mol m-2 s-1) net_primary_mole_productivity_of_carbon_by_diazotrophs : Net Primary Mole Productivity of Carbon by Diazotrophs --> 412 <field id="CMIP6_intppmisc" field_ref="INTPPPHY" /> <!-- P3 (mol m-2 s-1) net_primary_mole_productivity_of_carbon_by_miscellaneous_phytoplankton : Vertically integrated total primary (organic carbon) production by other phytoplankton components alone --> 413 <field id="CMIP6_intppnitrate" field_ref="INTPNEW" /> <!-- P2 (mol m-2 s-1) net_primary_mole_productivity_of_biomass_expressed_as_carbon_due_to_nitrate_utilization : Vertically integrated primary (organic carbon) production by phytoplankton based on nitrate uptake alone --> 414 <field id="CMIP6_intpppico" field_ref="dummy_XY" /> <!-- P3 (mol m-2 s-1) net_primary_mole_productivity_of_carbon_by_picophytoplankton : Net Primary Mole Productivity of Carbon by Picophytoplankton --> 415 <field id="CMIP6_limfecalc" field_ref="dummy_XY" /> <!-- P2 (1.0) limfecalc : Iron limitation of Calcareous Phytoplankton --> 416 <field id="CMIP6_limfediat" field_ref="LDFeSFC" /> <!-- P2 (1.0) limfediat : Iron limitation of Diatoms --> 417 <field id="CMIP6_limfediaz" field_ref="dummy_XY" /> <!-- P2 (1.0) limfediaz : Iron limitation of Diazotrophs --> 418 <field id="CMIP6_limfemisc" field_ref="LNFeSFC" /> <!-- P2 (1.0) limfemisc : Iron Limitation of Other Phytoplankton --> 419 <field id="CMIP6_limfepico" field_ref="dummy_XY" /> <!-- P2 (1.0) limfepico : Iron limitation of Picophytoplankton --> 420 <field id="CMIP6_limirrcalc" field_ref="dummy_XY" /> <!-- P2 (1.0) limirrcalc : Irradiance limitation of Calcareous Phytoplankton --> 421 <field id="CMIP6_limirrdiat" field_ref="LDlightSFC" /> <!-- P2 (1.0) limirrdiat : Irradiance limitation of Diatoms --> 422 <field id="CMIP6_limirrdiaz" field_ref="dummy_XY" /> <!-- P2 (1.0) limirrdiaz : Irradiance limitation of Diazotrophs --> 423 <field id="CMIP6_limirrmisc" field_ref="LNlightSFC" /> <!-- P2 (1.0) limirrmisc : Irradiance Limitation of Other Phytoplankton --> 424 <field id="CMIP6_limirrpico" field_ref="dummy_XY" /> <!-- P2 (1.0) limirrpico : Irradiance limitation of Picophytoplankton --> 425 <field id="CMIP6_limncalc" field_ref="dummy_XY" /> <!-- P2 (1.0) limncalc : Nitrogen limitation of Calcareous Phytoplankton --> 426 <field id="CMIP6_limndiat" field_ref="LDnutSFC" /> <!-- P2 (1.0) limndiat : Nitrogen limitation of Diatoms --> 427 <field id="CMIP6_limndiaz" field_ref="dummy_XY" /> <!-- P2 (1.0) limndiaz : Nitrogen limitation of Diazotrophs --> 428 <field id="CMIP6_limnmisc" field_ref="LNnutSFC" /> <!-- P2 (1.0) limnmisc : Nitrogen Limitation of Other Phytoplankton --> 429 <field id="CMIP6_limnpico" field_ref="dummy_XY" /> <!-- P2 (1.0) limnpico : Nitrogen limitation of Picophytoplankton --> 430 <field id="CMIP6_nh4" field_ref="NH4_E3T" expr="@NH4_E3T / @e3t * 1e-3" > NH4_E3T / e3t * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_ammonium_in_sea_water : Dissolved Ammonium Concentration --> 431 <field id="CMIP6_no3" field_ref="NO3_E3T" expr="@NO3_E3T / @e3t * 1e-3" > NO3_E3T / @e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_nitrate_in_sea_water : Dissolved Nitrate Concentration --> 432 <field id="CMIP6_no3os" field_ref="NO3SFC_E3T" expr="@NO3SFC_E3T / @E3TSFC * 1e-3" > NO3SFC_E3T / E3TSFC * 1e-3 </field> <!-- P1 (mol m-3) no3os : Surface Dissolved Nitrate Concentration --> 433 <field id="CMIP6_o2" field_ref="O2_E3T" expr="@O2_E3T / @e3t * 1e-3" > O2_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) o2 : Dissolved Oxygen Concentration --> 434 <field id="CMIP6_o2min" field_ref="O2MIN" /> <!-- P1 (mol m-3) mole_concentration_of_dissolved_molecular_oxygen_in_sea_water_at_shallowest_local_minimum_in_vertical_profile : Oxygen Minimum Concentration --> 435 <field id="CMIP6_o2os" field_ref="O2SFC_E3T" expr="@O2SFC_E3T / @E3TSFC * 1e-3" > O2SFC_E3T / E3TSFC * 1e-3 </field> <!-- P1 (mol m-3) o2os : Surface Dissolved Oxygen Concentration --> 436 <field id="CMIP6_o2sat" field_ref="dummy_XYO" /> <!-- P2 (mol m-3) o2sat : Dissolved Oxygen Concentration at Saturation --> 437 <field id="CMIP6_o2satos" field_ref="dummy_XY" /> <!-- P1 (mol m-3) o2satos : Surface Dissolved Oxygen Concentration at Saturation --> 438 <field id="CMIP6_ocfriver" field_ref="dummy_XY" /> <!-- P3 (mol m-2 s-1) ocfriver : Organic Carbon supply to ocean through runoff (separate from gas exchange) --> 439 <field id="CMIP6_parag" field_ref="dummy_XYO" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_aragonite_expressed_as_carbon_in_sea_water_due_to_biological_production : Aragonite Production --> 440 <field id="CMIP6_pbfe" field_ref="PFeN" > this + PFeD </field> <!-- P2 (mol m-3 s-1) tendency_of_mole_concentration_of_iron_in_sea_water_due_to_biological_production : Biogenic Iron Production --> 441 <field id="CMIP6_pbsi" field_ref="PBSi" /> <!-- P2 (mol m-3 s-1) tendency_of_mole_concentration_of_silicon_in_sea_water_due_to_biological_production : Biogenic Silica Production --> 442 <field id="CMIP6_pcalc" field_ref="PCAL" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_calcite_expressed_as_carbon_in_sea_water_due_to_biological_production : Calcite Production --> 443 <field id="CMIP6_pdi" field_ref="PPPHY2" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_by_diatoms : Primary (organic carbon) production by the diatom component alone --> 444 <field id="CMIP6_ph" field_ref="PH" /> <!-- P1 (1.0) sea_water_ph_reported_on_total_scale : negative log of hydrogen ion concentration with the concentration expressed as mol H kg-1. --> 445 <field id="CMIP6_phabio" field_ref="dummy_XYO" /> <!-- P2 (1.0) phabio : negative log10 of hydrogen ion concentration with the concentration expressed as mol H kg-1 (abiotic component).. --> 446 <field id="CMIP6_phabioos" field_ref="dummy_XY" /> <!-- P2 (1.0) phabioos : negative log10 of hydrogen ion concentration with the concentration expressed as mol H kg-1. --> 447 <field id="CMIP6_phnat" field_ref="dummy_XYO" /> <!-- P1 (1.0) phnat : negative log10 of hydrogen ion concentration with the concentration expressed as mol H kg-1. --> 448 <field id="CMIP6_phnatos" field_ref="dummy_XY" /> <!-- P2 (1.0) phnatos : negative log10 of hydrogen ion concentration with the concentration expressed as mol H kg-1. --> 417 <field id="CMIP6_intpn2" field_ref="INTNFIX" /> <!-- P1 (mol m-2 s-1) tendency_of_ocean_mole_content_of_elemental_nitrogen_due_to_fixation : Vertically integrated nitrogen fixation --> 418 <field id="CMIP6_intpoc" field_ref="dummy_XY" /> <!-- P2 (kg m-2) ocean_mass_content_of_particulate_organic_matter_expressed_as_carbon : Vertically integrated POC --> 419 <field id="CMIP6_intpp" field_ref="INTPP" /> <!-- P1 (mol m-2 s-1) net_primary_mole_productivity_of_biomass_expressed_as_carbon_by_phytoplankton : Vertically integrated total primary (organic carbon) production by phytoplankton. This should equal the sum of intpdiat+intpphymisc, but those individual components may be unavailable in some models. --> 420 <field id="CMIP6_intppcalc" field_ref="dummy_XY" /> <!-- P1 (mol m-2 s-1) net_primary_mole_productivity_of_biomass_expressed_as_carbon_by_calcareous_phytoplankton : "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. "Productivity" means production per unit area. Phytoplankton are autotrophic prokaryotic or eukaryotic algae that live near the water surface where there is sufficient light to support photosynthesis. "Calcareous phytoplankton" are phytoplankton that produce calcite. The phrase "expressed_as" is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Standard names also exist for aragonite, another polymorph of calcium carbonate. --> 421 <field id="CMIP6_intppdiat" field_ref="INTPPPHY2" /> <!-- P1 (mol m-2 s-1) net_primary_mole_productivity_of_biomass_expressed_as_carbon_by_diatoms : Vertically integrated primary (organic carbon) production by the diatom phytoplankton component alone --> 422 <field id="CMIP6_intppdiaz" field_ref="dummy_XY" /> <!-- P1 (mol m-2 s-1) net_primary_mole_productivity_of_biomass_expressed_as_carbon_by_diazotrophs : "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. "Productivity" means production per unit area. In ocean modelling, diazotrophs are phytoplankton of the phylum cyanobacteria distinct from other phytoplankton groups in their ability to fix nitrogen gas in addition to nitrate and ammonium. Phytoplankton are autotrophic prokaryotic or eukaryotic algae that live near the water surface where there is sufficient light to support photosynthesis. The phrase "expressed_as" is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. --> 423 <field id="CMIP6_intppmisc" field_ref="INTPPPHY" /> <!-- P1 (mol m-2 s-1) net_primary_mole_productivity_of_biomass_expressed_as_carbon_by_miscellaneous_phytoplankton : Vertically integrated total primary (organic carbon) production by other phytoplankton components alone --> 424 <field id="CMIP6_intppnitrate" field_ref="INTPNEW" /> <!-- P1 (mol m-2 s-1) net_primary_mole_productivity_of_biomass_expressed_as_carbon_due_to_nitrate_utilization : Vertically integrated primary (organic carbon) production by phytoplankton based on nitrate uptake alone --> 425 <field id="CMIP6_intpppico" field_ref="dummy_XY" /> <!-- P1 (mol m-2 s-1) net_primary_mole_productivity_of_biomass_expressed_as_carbon_by_picophytoplankton : "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. "Productivity" means production per unit area. Picophytoplankton are phytoplankton of less than 2 micrometers in size. Phytoplankton are autotrophic prokaryotic or eukaryotic algae that live near the water surface where there is sufficient light to support photosynthesis. The phrase "expressed_as" is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. --> 426 <field id="CMIP6_limfecalc" field_ref="dummy_XY" /> <!-- P1 (1) iron_growth_limitation_of_calcareous_phytoplankton : "Calcareous phytoplankton" are phytoplankton that produce calcite. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Iron growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of iron) to the theoretical growth rate if there were no such limit on iron availability. --> 427 <field id="CMIP6_limfediat" field_ref="LDFeSFC" /> <!-- P1 (1) iron_growth_limitation_of_diatoms : Diatoms are phytoplankton with an external skeleton made of silica. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Iron growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of iron) to the theoretical growth rate if there were no such limit on iron availability. --> 428 <field id="CMIP6_limfediaz" field_ref="dummy_XY" /> <!-- P1 (1) iron_growth_limitation_of_diazotrophs : In ocean modelling, diazotrophs are phytoplankton of the phylum cyanobacteria distinct from other phytoplankton groups in their ability to fix nitrogen gas in addition to nitrate and ammonium. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Iron growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of iron) to the theoretical growth rate if there were no such limit on iron availability. --> 429 <field id="CMIP6_limfemisc" field_ref="LNFeSFC" /> <!-- P1 (1) iron_growth_limitation_of_miscellaneous_phytoplankton : Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Miscellaneous phytoplankton" are all those phytoplankton that are not diatoms, diazotrophs, calcareous phytoplankton, picophytoplankton or other separately named components of the phytoplankton population. "Iron growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of iron) to the theoretical growth rate if there were no such limit on iron availability. --> 430 <field id="CMIP6_limfepico" field_ref="dummy_XY" /> <!-- P1 (1) iron_growth_limitation_of_picophytoplankton : Picophytoplankton are phytoplankton of less than 2 micrometers in size. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Iron growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of iron) to the theoretical growth rate if there were no such limit on iron availability. --> 431 <field id="CMIP6_limirrcalc" field_ref="dummy_XY" /> <!-- P1 (1) growth_limitation_of_calcareous_phytoplankton_due_to_solar_irradiance : "Calcareous phytoplankton" are phytoplankton that produce calcite. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. The specification of a physical process by the phrase "due_to_" process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Irradiance" means the power per unit area (called radiative flux in other standard names), the area being normal to the direction of flow of the radiant energy. Solar irradiance is essential to the photosynthesis reaction and its presence promotes the growth of phytoplankton populations. "Growth limitation due to solar irradiance" means the ratio of the growth rate of a species population in the environment (where the amount of sunlight reaching a location may be limited) to the theoretical growth rate if there were no such limit on solar irradiance. --> 432 <field id="CMIP6_limirrdiat" field_ref="LDlightSFC" /> <!-- P1 (1) growth_limitation_of_diatoms_due_to_solar_irradiance : Diatoms are phytoplankton with an external skeleton made of silica. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. The specification of a physical process by the phrase "due_to_" process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Irradiance" means the power per unit area (called radiative flux in other standard names), the area being normal to the direction of flow of the radiant energy. Solar irradiance is essential to the photosynthesis reaction and its presence promotes the growth of phytoplankton populations. "Growth limitation due to solar irradiance" means the ratio of the growth rate of a species population in the environment (where the amount of sunlight reaching a location may be limited) to the theoretical growth rate if there were no such limit on solar irradiance. --> 433 <field id="CMIP6_limirrdiaz" field_ref="dummy_XY" /> <!-- P1 (1) growth_limitation_of_diazotrophs_due_to_solar_irradiance : In ocean modelling, diazotrophs are phytoplankton of the phylum cyanobacteria distinct from other phytoplankton groups in their ability to fix nitrogen gas in addition to nitrate and ammonium. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. The specification of a physical process by the phrase "due_to_" process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Irradiance" means the power per unit area (called radiative flux in other standard names), the area being normal to the direction of flow of the radiant energy. Solar irradiance is essential to the photosynthesis reaction and its presence promotes the growth of phytoplankton populations. "Growth limitation due to solar irradiance" means the ratio of the growth rate of a species population in the environment (where the amount of sunlight reaching a location may be limited) to the theoretical growth rate if there were no such limit on solar irradiance. --> 434 <field id="CMIP6_limirrmisc" field_ref="LNlightSFC" /> <!-- P1 (1) growth_limitation_of_miscellaneous_phytoplankton_due_to_solar_irradiance : Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Miscellaneous phytoplankton" are all those phytoplankton that are not diatoms, diazotrophs, calcareous phytoplankton, picophytoplankton or other separately named components of the phytoplankton population. The specification of a physical process by the phrase "due_to_" process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Irradiance" means the power per unit area (called radiative flux in other standard names), the area being normal to the direction of flow of the radiant energy. Solar irradiance is essential to the photosynthesis reaction and its presence promotes the growth of phytoplankton populations. "Growth limitation due to solar irradiance" means the ratio of the growth rate of a species population in the environment (where the amount of sunlight reaching a location may be limited) to the theoretical growth rate if there were no such limit on solar irradiance. --> 435 <field id="CMIP6_limirrpico" field_ref="dummy_XY" /> <!-- P1 (1) growth_limitation_of_picophytoplankton_due_to_solar_irradiance : Picophytoplankton are phytoplankton of less than 2 micrometers in size. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. The specification of a physical process by the phrase "due_to_" process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Irradiance" means the power per unit area (called radiative flux in other standard names), the area being normal to the direction of flow of the radiant energy. Solar irradiance is essential to the photosynthesis reaction and its presence promotes the growth of phytoplankton populations. "Growth limitation due to solar irradiance" means the ratio of the growth rate of a species population in the environment (where the amount of sunlight reaching a location may be limited) to the theoretical growth rate if there were no such limit on solar irradiance. --> 436 <field id="CMIP6_limncalc" field_ref="dummy_XY" /> <!-- P1 (1) nitrogen_growth_limitation_of_calcareous_phytoplankton : "Calcareous phytoplankton" are phytoplankton that produce calcite. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Nitrogen growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of nitrogen) to the theoretical growth rate if there were no such limit on nitrogen availability. --> 437 <field id="CMIP6_limndiat" field_ref="LDnutSFC" /> <!-- P1 (1) nitrogen_growth_limitation_of_diatoms : Diatoms are phytoplankton with an external skeleton made of silica. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Nitrogen growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of nitrogen) to the theoretical growth rate if there were no such limit on nitrogen availability. --> 438 <field id="CMIP6_limndiaz" field_ref="dummy_XY" /> <!-- P1 (1) nitrogen_growth_limitation_of_diazotrophs : In ocean modelling, diazotrophs are phytoplankton of the phylum cyanobacteria distinct from other phytoplankton groups in their ability to fix nitrogen gas in addition to nitrate and ammonium. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Nitrogen growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of nitrogen) to the theoretical growth rate if there were no such limit on nitrogen availability. --> 439 <field id="CMIP6_limnmisc" field_ref="LNnutSFC" /> <!-- P1 (1) nitrogen_growth_limitation_of_miscellaneous_phytoplankton : Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Miscellaneous phytoplankton" are all those phytoplankton that are not diatoms, diazotrophs, calcareous phytoplankton, picophytoplankton or other separately named components of the phytoplankton population. "Nitrogen growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of nitrogen) to the theoretical growth rate if there were no such limit on nitrogen availability. --> 440 <field id="CMIP6_limnpico" field_ref="dummy_XY" /> <!-- P1 (1) nitrogen_growth_limitation_of_picophytoplankton : Picophytoplankton are phytoplankton of less than 2 micrometers in size. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Nitrogen growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of nitrogen) to the theoretical growth rate if there were no such limit on nitrogen availability. --> 441 <field id="CMIP6_nh4" field_ref="NH4_E3T" expr="@NH4_E3T / @e3t * 1e-3" > NH4_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_ammonium_in_sea_water : Mole concentration means moles (amount of substance) per unit volume and is used in the construction mole_concentration_of_X_in_Y, where X is a material constituent of Y. --> 442 <field id="CMIP6_nh4os" field_ref="NH4SFC_E3T" expr="@NH4SFC_E3T / @E3TSFC * 1e-3" > NH4SFC_E3T / E3TSFC * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_ammonium_in_sea_water : Mole concentration means moles (amount of substance) per unit volume and is used in the construction mole_concentration_of_X_in_Y, where X is a material constituent of Y. --> 443 <field id="CMIP6_no3" field_ref="NO3_E3T" expr="@NO3_E3T / @e3t * 1e-3" > NO3_E3T / @e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_nitrate_in_sea_water : Mole concentration means moles (amount of substance) per unit volume and is used in the construction mole_concentration_of_X_in_Y, where X is a material constituent of Y. --> 444 <field id="CMIP6_no3os" field_ref="NO3SFC_E3T" expr="@NO3SFC_E3T / @E3TSFC * 1e-3" > NO3SFC_E3T / E3TSFC * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_nitrate_in_sea_water : Mole concentration means moles (amount of substance) per unit volume and is used in the construction mole_concentration_of_X_in_Y, where X is a material constituent of Y. --> 445 <field id="CMIP6_o2" field_ref="O2_E3T" expr="@O2_E3T / @e3t * 1e-3" > O2_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_dissolved_molecular_oxygen_in_sea_water : 'Mole concentration' means number of moles per unit volume, also called"molarity", and is used in the construction mole_concentration_of_X_in_Y, whereX is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_expressed_as_nitrogen'. --> 446 <field id="CMIP6_o2min" field_ref="O2MIN" /> <!-- P1 (mol m-3) mole_concentration_of_dissolved_molecular_oxygen_in_sea_water_at_shallowest_local_minimum_in_vertical_profile : 'Mole concentration' means number of moles per unit volume, also called "molarity", and is used in the construction mole_concentration_of_X_in_Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_expressed_as_nitrogen'. The concentration of any chemical species, whether particulate or dissolved, may vary with depth in the ocean. A depth profile may go through one or more local minima in concentration. The mole_concentration_of_molecular_oxygen_in_sea_water_at_shallowest_local_minimum_in_vertical_profile is the mole concentration of oxygen at the local minimum in the concentration profile that occurs closest to the sea surface. --> 447 <field id="CMIP6_o2os" field_ref="O2SFC_E3T" expr="@O2SFC_E3T / @E3TSFC * 1e-3" > O2SFC_E3T / E3TSFC * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_dissolved_molecular_oxygen_in_sea_water : 'Mole concentration' means number of moles per unit volume, also called"molarity", and is used in the construction mole_concentration_of_X_in_Y, whereX is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_expressed_as_nitrogen'. --> 448 <field id="CMIP6_o2sat" field_ref="dummy_XYO" /> <!-- P2 (mol m-3) mole_concentration_of_dissolved_molecular_oxygen_in_sea_water_at_saturation : "Mole concentration at saturation" means the mole concentration in a saturated solution. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". --> 449 <field id="CMIP6_o2satos" field_ref="dummy_XY" /> <!-- P1 (mol m-3) mole_concentration_of_dissolved_molecular_oxygen_in_sea_water_at_saturation : "Mole concentration at saturation" means the mole concentration in a saturated solution. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". --> 450 <field id="CMIP6_ocfriver" field_ref="dummy_XY" /> <!-- P3 (mol m-2 s-1) tendency_of_ocean_mole_content_of_organic_carbon_due_to_runoff_and_sediment_dissolution : Organic Carbon supply to ocean through runoff (separate from gas exchange) --> 451 <field id="CMIP6_parag" field_ref="dummy_XYO" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_aragonite_expressed_as_carbon_in_sea_water_due_to_biological_production : 'Mole concentration' means number of moles per unit volume, also called"molarity", and is used in the construction mole_concentration_of_X_in_Y, whereX is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_expressed_as_nitrogen'. The phrase 'expressed_as' is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase due_to_process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_of_X" means derivative of X with respect to time. Aragonite is a mineral that is a polymorph of calcium carbonate. The chemical formula of aragonite is CaCO3. Standard names also exist for calcite, another polymorph of calcium carbonate. --> 452 <field id="CMIP6_pbfe" field_ref="PFeN" > this + PFeD </field> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_iron_in_sea_water_due_to_biological_production : 'Mole concentration' means number of moles per unit volume, also called"molarity", and is used in the construction mole_concentration_of_X_in_Y, whereX is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_expressed_as_nitrogen'. The specification of a physical process by the phrase due_to_process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_of_X" means derivative of X with respect to time. --> 453 <field id="CMIP6_pbsi" field_ref="PBSi" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_silicon_in_sea_water_due_to_biological_production : 'Mole concentration' means number of moles per unit volume, also called"molarity", and is used in the construction mole_concentration_of_X_in_Y, whereX is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_expressed_as_nitrogen'. The specification of a physical process by the phrase due_to_process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_of_X" means derivative of X with respect to time. --> 454 <field id="CMIP6_pcalc" field_ref="PCAL" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_calcite_expressed_as_carbon_in_sea_water_due_to_biological_production : 'Mole concentration' means number of moles per unit volume, also called"molarity", and is used in the construction mole_concentration_of_X_in_Y, whereX is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_expressed_as_nitrogen'. The phrase 'expressed_as' is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase due_to_process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_of_X" means derivative of X with respect to time. Calcite is a mineral that is a polymorph of calcium carbonate. Thechemical formula of calcite is CaCO3. Standard names also exist for aragonite, another polymorph of calcium carbonate. --> 455 <field id="CMIP6_ph" field_ref="PH" /> <!-- P1 (1) sea_water_ph_reported_on_total_scale : negative log10 of hydrogen ion concentration with the concentration expressed as mol H kg-1. --> 456 <field id="CMIP6_phabio" field_ref="dummy_XYO" /> <!-- P1 (1) sea_water_ph_abiotic_analogue_reported_on_total_scale : negative log10 of hydrogen ion concentration with the concentration expressed as mol H kg-1 (abiotic component).. --> 457 <field id="CMIP6_phabioos" field_ref="dummy_XY" /> <!-- P2 (1) sea_water_ph_abiotic_analogue_reported_on_total_scale : negative log10 of hydrogen ion concentration with the concentration expressed as mol H kg-1. --> 458 <field id="CMIP6_phnat" field_ref="dummy_XYO" /> <!-- P1 (1) sea_water_ph_natural_analogue_reported_on_total_scale : negative log10 of hydrogen ion concentration with the concentration expressed as mol H kg-1 (natural component). --> 459 <field id="CMIP6_phnatos" field_ref="dummy_XY" /> <!-- P2 (1) sea_water_ph_natural_analogue_reported_on_total_scale : negative log10 of hydrogen ion concentration with the concentration expressed as mol H kg-1. --> 460 <field id="CMIP6_phos" field_ref="PHSFC" /> <!-- P1 (1) sea_water_ph_reported_on_total_scale : negative log10 of hydrogen ion concentration with the concentration expressed as mol H kg-1. --> 449 461 <field id="CMIP6_phyc" field_ref="PHY_E3T" expr="@PHY_E3T / @e3t * 1e-3 + @PHY2_E3T / @e3t * 1e-3" > PHY_E3T / e3t * 1e-3 + PHY2_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_phytoplankton_expressed_as_carbon_in_sea_water : sum of phytoplankton carbon component concentrations. In most (all?) cases this is the sum of phycdiat and phycmisc (i.e., "Diatom Carbon Concentration" and "Non-Diatom Phytoplankton Carbon Concentration" --> 450 462 <field id="CMIP6_phycalc" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) mole_concentration_of_calcareous_phytoplankton_expressed_as_carbon_in_sea_water : carbon concentration from calcareous (calcite-producing) phytoplankton component alone --> 451 <field id="CMIP6_phycos" field_ref="PHYSFC_E3T" expr="@PHYSFC_E3T / @E3TSFC * 1e-3 + @PHY2SFC_E3T / @E3TSFC * 1e-3" > PHYSFC_E3T / E3TSFC * 1e-3 + PHY2SFC_E3T / E3TSFC * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_phytoplankton_expressed_as_carbon_in_sea_water : sum of phytoplankton organic carbon component concentrations at the sea surface --> 463 <field id="CMIP6_phycalcos" field_ref="dummy_XY" /> <!-- P2 (mol m-3) mole_concentration_of_calcareous_phytoplankton_expressed_as_carbon_in_sea_water : carbon concentration from calcareous (calcite-producing) phytoplankton component alone --> 464 <field id="CMIP6_phycos" field_ref="PHYSFC_E3T" expr="@PHYSFC_E3T / @E3TSFC * 1e-3 + @PHY2SFC_E3T / @E3TSFC * 1e-3" > PHYSFC_E3T / E3TSFC * 1e-3 + PHY2SFC_E3T / E3TSFC * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_phytoplankton_expressed_as_carbon_in_sea_water : sum of phytoplankton carbon component concentrations. In most (all?) cases this is the sum of phycdiat and phycmisc (i.e., "Diatom Carbon Concentration" and "Non-Diatom Phytoplankton Carbon Concentration" --> 452 465 <field id="CMIP6_phydiat" field_ref="PHY2_E3T" expr="@PHY2_E3T / @e3t * 1e-3" > PHY2_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_diatoms_expressed_as_carbon_in_sea_water : carbon from the diatom phytoplankton component concentration alone --> 453 <field id="CMIP6_phydiaz" field_ref="dummy_XYO" /> <!-- P2 (mol m-3) mole_concentration_of_diazotrophs_expressed_as_carbon_in_sea_water : carbon concentration from the diazotrophic phytoplankton component alone --> 454 <field id="CMIP6_phyfe" field_ref="NFe_E3T" expr="@NFe_E3T / @e3t * 1e-3 + @DFe_E3T / @e3t * 1e-3" > NFe_E3T / e3t * 1e-3 + DFe_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_phytoplankton_expressed_as_iron_in_sea_water : sum of phytoplankton iron component concentrations --> 455 <field id="CMIP6_phyfeos" field_ref="NFeSFC_E3T" expr="@NFeSFC_E3T / @E3TSFC * 1e-3 + @DFeSFC_E3T / @E3TSFC * 1e-3" > NFeSFC_E3T / E3TSFC * 1e-3 + DFeSFC_E3T / E3TSFC * 1e-3 </field> <!-- P3 (mol m-3) phyfeos : sum of phytoplankton iron component concentrations --> 456 <field id="CMIP6_phymisc" field_ref="PHY_E3T" expr="@PHY_E3T / @e3t * 1e-3" > PHY_E3T / e3t * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_miscellaneous_phytoplankton_expressed_as_carbon_in_sea_water : carbon concentration from additional phytoplankton component alone --> 457 <field id="CMIP6_phyn" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) mole_concentration_of_phytoplankton_expressed_as_nitrogen_in_sea_water : sum of phytoplankton nitrogen component concentrations --> 458 <field id="CMIP6_phynos" field_ref="dummy_XY" /> <!-- P3 (mol m-3) phynos : sum of phytoplankton nitrogen component concentrations --> 466 <field id="CMIP6_phydiatos" field_ref="PHY2SFC_E3T" expr="@PHY2SFC_E3T / @E3TSFC * 1e-3" > PHY2SFC_E3T / E3TSFC * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_diatoms_expressed_as_carbon_in_sea_water : carbon from the diatom phytoplankton component concentration alone --> 467 <field id="CMIP6_phydiaz" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) mole_concentration_of_diazotrophs_expressed_as_carbon_in_sea_water : carbon concentration from the diazotrophic phytoplankton component alone --> 468 <field id="CMIP6_phydiazos" field_ref="dummy_XY" /> <!-- P2 (mol m-3) mole_concentration_of_diazotrophs_expressed_as_carbon_in_sea_water : carbon concentration from the diazotrophic phytoplankton component alone --> 469 <field id="CMIP6_phyfe" field_ref="NFe_E3T" expr="@NFe_E3T / @e3t * 1e-3 + @DFe_E3T / @e3t * 1e-3" > NFe_E3T / e3t * 1e-3 + DFe_E3T / e3t * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_phytoplankton_expressed_as_iron_in_sea_water : sum of phytoplankton iron component concentrations --> 470 <field id="CMIP6_phyfeos" field_ref="NFeSFC_E3T" expr="@NFeSFC_E3T / @E3TSFC * 1e-3 + @DFeSFC_E3T / @E3TSFC * 1e-3" > NFeSFC_E3T / E3TSFC * 1e-3 + DFeSFC_E3T / E3TSFC * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_phytoplankton_expressed_as_iron_in_sea_water : sum of phytoplankton iron component concentrations --> 471 <field id="CMIP6_phymisc" field_ref="PHY_E3T" expr="@PHY_E3T / @e3t * 1e-3" > PHY_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_miscellaneous_phytoplankton_expressed_as_carbon_in_sea_water : carbon concentration from additional phytoplankton component alone --> 472 <field id="CMIP6_phymiscos" field_ref="PHYSFC_E3T" expr="@PHYSFC_E3T / @E3TSFC * 1e-3" > PHYSFC_E3T / E3TSFC * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_miscellaneous_phytoplankton_expressed_as_carbon_in_sea_water : carbon concentration from additional phytoplankton component alone --> 473 <field id="CMIP6_phyn" field_ref="dummy_XYO" /> <!-- P2 (mol m-3) mole_concentration_of_phytoplankton_expressed_as_nitrogen_in_sea_water : sum of phytoplankton nitrogen component concentrations --> 474 <field id="CMIP6_phynos" field_ref="dummy_XY" /> <!-- P2 (mol m-3) mole_concentration_of_phytoplankton_expressed_as_nitrogen_in_sea_water : sum of phytoplankton nitrogen component concentrations --> 459 475 <field id="CMIP6_phyp" field_ref="dummy_XYO" /> <!-- P2 (mol m-3) mole_concentration_of_phytoplankton_expressed_as_phosphorus_in_sea_water : sum of phytoplankton phosphorus components --> 460 <field id="CMIP6_phypico" field_ref="dummy_XY" /> <!-- P1 (mol m-3) mole_concentration_of_picophytoplankton_expressed_as_carbon_in_sea_water : carbon concentration from the picophytoplankton (<2 um) component alone --> 461 <field id="CMIP6_phypos" field_ref="dummy_XYO" /> <!-- P3 (mol m-3) phypos : sum of phytoplankton phosphorus components --> 476 <field id="CMIP6_phypico" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) mole_concentration_of_picophytoplankton_expressed_as_carbon_in_sea_water : carbon concentration from the picophytoplankton (<2 um) component alone --> 477 <field id="CMIP6_phypicoos" field_ref="dummy_XY" /> <!-- P2 (mol m-3) mole_concentration_of_picophytoplankton_expressed_as_carbon_in_sea_water : carbon concentration from the picophytoplankton (<2 um) component alone --> 478 <field id="CMIP6_phypos" field_ref="dummy_XY" /> <!-- P2 (mol m-3) mole_concentration_of_phytoplankton_expressed_as_phosphorus_in_sea_water : sum of phytoplankton phosphorus components --> 462 479 <field id="CMIP6_physi" field_ref="DSi_E3T" expr="@DSi_E3T / @e3t * 1e-3" > DSi_E3T / e3t * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_phytoplankton_expressed_as_silicon_in_sea_water : sum of phytoplankton silica component concentrations --> 463 <field id="CMIP6_physios" field_ref="DSiSFC_E3T" expr="@DSiSFC_E3T / @E3TSFC * 1e-3" > DSiSFC_E3T / E3TSFC * 1e-3 </field> <!-- P3 (mol m-3) physios : sum of phytoplankton silica component concentrations --> 464 <field id="CMIP6_pnitrate" field_ref="TPNEW" /> <!-- P2 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_nitrate_utilization : Primary (organic carbon) production by phytoplankton due to nitrate uptake alone --> 465 <field id="CMIP6_po4" field_ref="PO4_E3T" expr="@PO4_E3T / @e3t * 1e-3" > PO4_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_phosphate_in_sea_water : Dissolved Phosphate Concentration --> 466 <field id="CMIP6_poc" field_ref="POC_E3T" expr="@POC_E3T / @e3t * 1e-3 + @GOC_E3T / @e3t * 1e-3" > POC_E3T / e3t * 1e-3 + GOC_E3T / e3t * 1e-3 </field> <!-- (mol m-3) mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water : sum of particulate organic carbon component concentrations --> 467 <field id="CMIP6_pocos" field_ref="POCSFC_E3T" expr="@POCSFC_E3T / @E3TSFC * 1e-3 + @GOCSFC_E3T / @E3TSFC * 1e-3" > POCSFC_E3T / E3TSFC * 1e-3 + GOCSFC_E3T / E3TSFC * 1e-3 </field> <!-- (mol m-3) pocos : sum of Surface particulate organic carbon component concentrations --> 468 <field id="CMIP6_pon" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) mole_concentration_of_particulate_organic_matter_expressed_as_nitrogen_in_sea_water : sum of particulate organic nitrogen component concentrations --> 469 <field id="CMIP6_ponos" field_ref="dummy_XY" /> <!-- P3 (mol m-3) ponos : sum of particulate organic nitrogen component concentrations --> 470 <field id="CMIP6_pop" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) mole_concentration_of_particulate_organic_matter_expressed_as_phosphorus_in_sea_water : sum of particulate organic phosphorus component concentrations --> 471 <field id="CMIP6_popos" field_ref="dummy_XY" /> <!-- P3 (mol m-3) popos : sum of particulate organic phosphorus component concentrations --> 472 <field id="CMIP6_pp" field_ref="TPP" /> <!-- P2 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production : total primary (organic carbon) production by phytoplankton --> 473 <field id="CMIP6_ppcalc" field_ref="dummy_XYO" /> <!-- P3 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_by_calcareous_phytoplankton : Primary (organic carbon) production by the calcite-producing phytoplankton component alone --> 474 <field id="CMIP6_ppdiat" field_ref="PPPHY2" /> <!-- P3 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_by_diatoms : Primary (organic carbon) production by the diatom component alone --> 480 <field id="CMIP6_physios" field_ref="DSiSFC_E3T" expr="@DSiSFC_E3T / @E3TSFC * 1e-3" > DSiSFC_E3T / E3TSFC * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_phytoplankton_expressed_as_silicon_in_sea_water : sum of phytoplankton silica component concentrations --> 481 <field id="CMIP6_pnitrate" field_ref="TPNEW" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_nitrate_utilization : Primary (organic carbon) production by phytoplankton due to nitrate uptake alone --> 482 <field id="CMIP6_po4" field_ref="PO4_E3T" expr="@PO4_E3T / @e3t * 1e-3" > PO4_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_dissolved_inorganic_phosphorus_in_sea_water : Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". "Dissolved inorganic phosphorus" means the sum of all inorganic phosphorus in solution (including phosphate, hydrogen phosphate, dihydrogen phosphate, and phosphoric acid). --> 483 <field id="CMIP6_po4os" field_ref="PO4SFC_E3T" expr="@PO4SFC_E3T / @E3TSFC * 1e-3" > PO4SFC_E3T / E3TSFC * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_dissolved_inorganic_phosphorus_in_sea_water : Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". "Dissolved inorganic phosphorus" means the sum of all inorganic phosphorus in solution (including phosphate, hydrogen phosphate, dihydrogen phosphate, and phosphoric acid). --> 484 <field id="CMIP6_pon" field_ref="dummy_XYO" /> <!-- P2 (mol m-3) mole_concentration_of_particulate_organic_matter_expressed_as_nitrogen_in_sea_water : sum of particulate organic nitrogen component concentrations --> 485 <field id="CMIP6_ponos" field_ref="dummy_XY" /> <!-- P2 (mol m-3) mole_concentration_of_particulate_organic_matter_expressed_as_nitrogen_in_sea_water : sum of particulate organic nitrogen component concentrations --> 486 <field id="CMIP6_pop" field_ref="dummy_XYO" /> <!-- P2 (mol m-3) mole_concentration_of_particulate_organic_matter_expressed_as_phosphorus_in_sea_water : sum of particulate organic phosphorus component concentrations --> 487 <field id="CMIP6_popos" field_ref="dummy_XY" /> <!-- P2 (mol m-3) mole_concentration_of_particulate_organic_matter_expressed_as_phosphorus_in_sea_water : sum of particulate organic phosphorus component concentrations --> 488 <field id="CMIP6_pp" field_ref="TPP" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production : total primary (organic carbon) production by phytoplankton --> 489 <field id="CMIP6_ppcalc" field_ref="dummy_XYO" /> <!-- P3 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_by_calcareous_phytoplankton : Primary (organic carbon) production by calcareous phytoplankton components alone --> 490 <field id="CMIP6_ppdiat" field_ref="PPPHY2" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_by_diatoms : Primary (organic carbon) production by diatom phytoplankton components alone --> 475 491 <field id="CMIP6_ppdiaz" field_ref="dummy_XYO" /> <!-- P3 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_by_diazotrophs : Primary (organic carbon) production by the diazotrophic phytoplankton component alone --> 476 <field id="CMIP6_ppmisc" field_ref="PPPHY" /> <!-- P3 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_by_miscellaneous_phytoplankton : Primary (organic carbon) production by other phytoplankton components alone --> 492 <field id="CMIP6_ppmisc" field_ref="PPPHY" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_by_miscellaneous_phytoplankton : Primary (organic carbon) production by other phytoplankton components alone --> 493 <field id="CMIP6_ppos" field_ref="TPPSFC" /> <!-- P1 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production : total primary (organic carbon) production by phytoplankton --> 477 494 <field id="CMIP6_pppico" field_ref="dummy_XYO" /> <!-- P3 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_by_picophytoplankton : Primary (organic carbon) production by the picophytoplankton (<2 um) component alone --> 478 <field id="CMIP6_remoc" field_ref="REMIN" /> <!-- P2 (mol m-3 s-1) remoc : Remineralization of Organic Carbon --> 479 <field id="CMIP6_si" field_ref="Si_E3T" expr="@Si_E3T / @e3t * 1e-3" > Si_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_silicate_in_sea_water : Total Dissolved Inorganic Silicon Concentration --> 480 <field id="CMIP6_sios" field_ref="SiSFC_E3T" expr="@SiSFC_E3T / @E3TSFC * 1e-3" > SiSFC_E3T / E3TSFC * 1e-3 </field> <!-- P1 (mol m-3) sios : Surface Total Dissolved Inorganic Silicon Concentration --> 481 <field id="CMIP6_spco2" field_ref="pCO2sea" > this * 0.101325 </field> <!-- P1 (Pa) surface_partial_pressure_of_carbon_dioxide_in_sea_water : Surface Aqueous Partial Pressure of CO2 --> 482 <field id="CMIP6_spco2abio" field_ref="dummy_XY" /> <!-- P1 (Pa) spco2abio : Abiotic Surface Aqueous Partial Pressure of CO2 --> 483 <field id="CMIP6_spco2nat" field_ref="dummy_XY" /> <!-- P1 (Pa) spco2nat : Natural Surface Aqueous Partial Pressure of CO2 --> 484 <field id="CMIP6_talk" field_ref="Alkalini_E3T" expr="@Alkalini_E3T / @e3t * 1e-3" > Alkalini_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) sea_water_alkalinity_expressed_as_mole_equivalent : total alkalinity equivalent concentration (including carbonate, nitrogen, silicate, and borate components) --> 485 <field id="CMIP6_talknat" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) talknat : total alkalinity equivalent concentration (including carbonate, borate, phosphorus, silicon, and nitrogen components) at preindustrial atmospheric xCO2 --> 486 <field id="CMIP6_talknatos" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) talknatos : total alkalinity equivalent concentration (including carbonate, borate, phosphorus, silicon, and nitrogen components) at preindustrial atmospheric xCO2 --> 487 <field id="CMIP6_zmeso" field_ref="ZOO2_E3T" expr="@ZOO2_E3T / @e3t * 1e-3" > ZOO2_E3T / e3t * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_mesozooplankton_expressed_as_carbon_in_sea_water : carbon concentration from mesozooplankton (20-200 um) component alone --> 488 <field id="CMIP6_zmicro" field_ref="ZOO_E3T" expr="@ZOO_E3T / @e3t * 1e-3" > ZOO_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_microzooplankton_expressed_as_carbon_in_sea_water : carbon concentration from the microzooplankton (<20 um) component alone --> 489 <field id="CMIP6_zmisc" field_ref="dummy_XYO" /> <!-- P3 (mol m-3) mole_concentration_of_miscellaneous_zooplankton_expressed_as_carbon_in_sea_water : carbon from additional zooplankton component concentrations alone (e.g. Micro, meso). Since the models all have different numbers of components, this variable has been included to provide a check for intercomparison between models since some phytoplankton groups are supersets. --> 490 <field id="CMIP6_zo2min" field_ref="ZO2MIN" /> <!-- P1 (m) depth_at_shallowest_local_minimum_in_vertical_profile_of_mole_concentration_of_dissolved_molecular_oxygen_in_sea_water : Depth of vertical minimum concentration of dissolved oxygen gas (if two, then the shallower) --> 491 <field id="CMIP6_zooc" field_ref="ZOO_E3T" expr="@ZOO_E3T / @e3t * 1e-3 + @ZOO2_E3T / @e3t * 1e-3" > ZOO_E3T / e3t * 1e-3 + ZOO2_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_zooplankton_expressed_as_carbon_in_sea_water : sum of zooplankton carbon component concentrations --> 492 <field id="CMIP6_zsatarag" field_ref="dummy_XYO" /> <!-- P1 (m) minimum_depth_of_aragonite_undersaturation_in_sea_water : Depth of aragonite saturation horizon (0 if undersaturated at all depths, "missing" if supersaturated at all depths; if multiple horizons exist, the shallowest should be taken). --> 493 <field id="CMIP6_zsatcalc" field_ref="dummy_XYO" /> <!-- P1 (m) minimum_depth_of_calcite_undersaturation_in_sea_water : Depth of calcite saturation horizon (0 if undersaturated at all depths, and missing saturated through whole depth; if two or more horizons exist, then the shallowest is reported) --> 495 <field id="CMIP6_remoc" field_ref="REMIN" /> <!-- P2 (mol m-3 s-1) tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_remineralization : "tendency_of_X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". The phrase "expressed_as" is used in the construction A_expressed_as_B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_to_" process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Remineralization is the degradation of organic matter into inorganic forms of carbon, nitrogen, phosphorus and other micronutrients, which consumes oxygen and releases energy. --> 496 <field id="CMIP6_si" field_ref="Si_E3T" expr="@Si_E3T / @e3t * 1e-3" > Si_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_dissolved_inorganic_silicon_in_sea_water : Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". "Dissolved inorganic silicon" means the sum of all inorganic silicon in solution (including silicic acid and its first dissociated anion SiO(OH)3-). --> 497 <field id="CMIP6_sios" field_ref="SiSFC_E3T" expr="@SiSFC_E3T / @E3TSFC * 1e-3" > SiSFC_E3T / E3TSFC * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_dissolved_inorganic_silicon_in_sea_water : Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_concentration_of_X_in_Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_expressed_as_nitrogen". "Dissolved inorganic silicon" means the sum of all inorganic silicon in solution (including silicic acid and its first dissociated anion SiO(OH)3-). --> 498 <field id="CMIP6_spco2" field_ref="pCO2sea" > this * 0.101325 </field> <!-- P1 (Pa) surface_partial_pressure_of_carbon_dioxide_in_sea_water : The surface called "surface" means the lower boundary of the atmosphere. The partial pressure of a dissolved gas in sea water is the partial pressure in air with which it would be in equilibrium. The partial pressure of a gaseous constituent of air is the pressure which it alone would exert with unchanged temperature and number of moles per unit volume. The chemical formula for carbon dioxide is CO2. --> 499 <field id="CMIP6_spco2abio" field_ref="dummy_XY" /> <!-- P1 (Pa) surface_carbon_dioxide_abiotic_analogue_partial_pressure_difference_between_sea_water_and_air : The surface called "surface" means the lower boundary of the atmosphere. The chemical formula for carbon dioxide is CO2. In ocean biogeochemistry models, an "abiotic analogue" is used to simulate the effect on a modelled variable when biological effects on ocean carbon concentration and alkalinity are ignored. The partial pressure of a gaseous constituent of air is the pressure which it alone would exert with unchanged temperature and number of moles per unit volume. The partial pressure of a dissolved gas in sea water is the partial pressure in air with which it would be in equilibrium. The partial pressure difference between sea water and air is positive when the partial pressure of the dissolved gas in sea water is greater than the partial pressure in air. --> 500 <field id="CMIP6_spco2nat" field_ref="dummy_XY" /> <!-- P1 (Pa) surface_carbon_dioxide_natural_analogue_partial_pressure_difference_between_sea_water_and_air : The surface called "surface" means the lower boundary of the atmosphere. The chemical formula for carbon dioxide is CO2. In ocean biogeochemistry models, a "natural analogue" is used to simulate the effect on a modelled variable of imposing preindustrial atmospheric carbon dioxide concentrations, even when the model as a whole may be subjected to varying forcings. The partial pressure of a gaseous constituent of air is the pressure which it alone would exert with unchanged temperature and number of moles per unit volume. The partial pressure of a dissolved gas in sea water is the partial pressure in air with which it would be in equilibrium. The partial pressure difference between sea water and air is positive when the partial pressure of the dissolved gas in sea water is greater than the partial pressure in air. --> 501 <field id="CMIP6_talk" field_ref="Alkalini_E3T" expr="@Alkalini_E3T / @e3t * 1e-3" > Alkalini_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) sea_water_alkalinity_expressed_as_mole_equivalent : total alkalinity equivalent concentration (including carbonate, borate, phosphorus, silicon, and nitrogen components) --> 502 <field id="CMIP6_talknat" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) sea_water_alkalinity_natural_analogue_expressed_as_mole_equivalent : total alkalinity equivalent concentration (including carbonate, borate, phosphorus, silicon, and nitrogen components) at preindustrial atmospheric xCO2 --> 503 <field id="CMIP6_talknatos" field_ref="dummy_XY" /> <!-- P1 (mol m-3) sea_water_alkalinity_natural_analogue_expressed_as_mole_equivalent : total alkalinity equivalent concentration (including carbonate, borate, phosphorus, silicon, and nitrogen components) at preindustrial atmospheric xCO2 --> 504 <field id="CMIP6_talkos" field_ref="AlkaliniSFC_E3T" expr="@AlkaliniSFC_E3T / @E3TSFC * 1e-3" > AlkaliniSFC_E3T / E3TSFC * 1e-3 </field> <!-- P1 (mol m-3) sea_water_alkalinity_expressed_as_mole_equivalent : total alkalinity equivalent concentration (including carbonate, borate, phosphorus, silicon, and nitrogen components) --> 505 <field id="CMIP6_zmeso" field_ref="ZOO2_E3T" expr="@ZOO2_E3T / @e3t * 1e-3" > ZOO2_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_mesozooplankton_expressed_as_carbon_in_sea_water : carbon concentration from mesozooplankton (20-200 um) component alone --> 506 <field id="CMIP6_zmesoos" field_ref="ZOO2SFC_E3T" expr="@ZOO2SFC_E3T / @E3TSFC * 1e-3" > ZOO2SFC_E3T / E3TSFC * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_mesozooplankton_expressed_as_carbon_in_sea_water : carbon concentration from mesozooplankton (20-200 um) component alone --> 507 <field id="CMIP6_zmicro" field_ref="ZOO_E3T" expr="@ZOO_E3T / @e3t * 1e-3" > ZOO_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_microzooplankton_expressed_as_carbon_in_sea_water : carbon concentration from the microzooplankton (<20 um) component alone --> 508 <field id="CMIP6_zmicroos" field_ref="ZOOSFC_E3T" expr="@ZOOSFC_E3T / @E3TSFC * 1e-3" > ZOOSFC_E3T / E3TSFC * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_microzooplankton_expressed_as_carbon_in_sea_water : carbon concentration from the microzooplankton (<20 um) component alone --> 509 <field id="CMIP6_zmisc" field_ref="dummy_XYO" /> <!-- P1 (mol m-3) mole_concentration_of_miscellaneous_zooplankton_expressed_as_carbon_in_sea_water : carbon from additional zooplankton component concentrations alone (e.g. Micro, meso). Since the models all have different numbers of components, this variable has been included to provide a check for intercomparison between models since some phytoplankton groups are supersets. --> 510 <field id="CMIP6_zmiscos" field_ref="dummy_XY" /> <!-- P2 (mol m-3) mole_concentration_of_miscellaneous_zooplankton_expressed_as_carbon_in_sea_water : carbon from additional zooplankton component concentrations alone (e.g. Micro, meso). Since the models all have different numbers of components, this variable has been included to provide a check for intercomparison between models since some phytoplankton groups are supersets. --> 511 <field id="CMIP6_zo2min" field_ref="ZO2MIN" /> <!-- P1 (m) depth_at_shallowest_local_minimum_in_vertical_profile_of_mole_concentration_of_dissolved_molecular_oxygen_in_sea_water : Depth of vertical minimum concentration of dissolved oxygen gas (if two, then the shallower) --> 512 <field id="CMIP6_zooc" field_ref="ZOO_E3T" expr="@ZOO_E3T / @e3t * 1e-3 + @ZOO2_E3T / @e3t * 1e-3" > ZOO_E3T / e3t * 1e-3 + ZOO2_E3T / e3t * 1e-3 </field> <!-- P1 (mol m-3) mole_concentration_of_zooplankton_expressed_as_carbon_in_sea_water : sum of zooplankton carbon component concentrations --> 513 <field id="CMIP6_zoocos" field_ref="ZOOSFC_E3T" expr="@ZOOSFC_E3T / @E3TSFC * 1e-3 + @ZOO2SFC_E3T / @E3TSFC * 1e-3" > ZOOSFC_E3T / E3TSFC * 1e-3 + ZOO2SFC_E3T / E3TSFC * 1e-3 </field> <!-- P2 (mol m-3) mole_concentration_of_zooplankton_expressed_as_carbon_in_sea_water : sum of zooplankton carbon component concentrations --> 514 <field id="CMIP6_zsatarag" field_ref="dummy_XY" /> <!-- P1 (m) minimum_depth_of_aragonite_undersaturation_in_sea_water : Depth of aragonite saturation horizon (0 if < surface, "missing" if > bottom, if two, then the shallower) --> 515 <field id="CMIP6_zsatcalc" field_ref="dummy_XY" /> <!-- P1 (m) minimum_depth_of_calcite_undersaturation_in_sea_water : Depth of calcite saturation horizon (0 if < surface, "missing" if > bottom, if two, then the shallower) --> 516 494 517 </field_group> 495 518 </field_definition> -
CONFIG/UNIFORM/v6/IPSLESM6/GENERAL/PARAM/ping_orchidee.xml
r3758 r4217 7 7 <!-- field_ref="dummy" means that the corresponding output variable in ORCHIDEE has not yet been identified or coded. --> 8 8 <!-- --> 9 <!-- $HeadURL: svn://forge.ipsl.jussieu.fr/orchidee/t runk/ORCHIDEE/src_xml/CMIP6_ping_land.xml $-->10 <!-- $Date: 2018- 03-13 17:38:36 +0100 (Tue, 13 Mar 2018) $-->11 <!-- $Revision: 5 091$ -->9 <!-- $HeadURL: svn://forge.ipsl.jussieu.fr/orchidee/tags/ORCHIDEE_2_0/ORCHIDEE/src_xml/CMIP6_ping_land.xml $ --> 10 <!-- $Date: 2018-11-27 12:15:46 +0100 (Tue, 27 Nov 2018) $ --> 11 <!-- $Revision: 5625 $ --> 12 12 <!-- ==================================================================================================================== --> 13 13 14 <!-- Ping files generated by dr2xml 0.27 using Data Request 01.00.21 --> 14 <!-- Ping files generated by dr2xml 1.16 using Data Request 01.00.28 --> 15 <!-- Note that comments are not updated since ping files were generated by dr2xml 0.27 using Data Request 01.00.21 --> 15 16 <!-- lrealms= ['land'] --> 16 17 <!-- exact= False --> … … 28 29 grid_policy : native 29 30 path_special_defs : None 30 mips : {'LR': set(['C ORDEX', 'GMMIP', 'RFMIP', 'VolMIP', 'CMIP6', 'ScenarioMIP', 'GeoMIP', 'C4MIP', 'PDRMIP', 'CMIP', 'DECK', 'LUMIP', 'CMIP5', 'CFMIP', 'OMIP', 'DAMIP', 'CCMI', 'SolarMIP', 'VIACSAB', 'SIMIP', 'DCPP', 'ISMIP6', 'AerChemMIP', 'PMIP', 'FAFMIP', 'DynVar', 'LS3MIP', 'SPECS', 'HighResMIP'])}31 mips : {'LR': set(['CDRMIP', 'CORDEX', 'GMMIP', 'RFMIP', 'VolMIP', 'CMIP6', 'ScenarioMIP', 'GeoMIP', 'C4MIP', 'PDRMIP', 'CMIP', 'DECK', 'LUMIP', 'CMIP5', 'CFMIP', 'OMIP', 'DAMIP', 'CCMI', 'SolarMIP', 'VIACSAB', 'SIMIP', 'DCPP', 'ISMIP6', 'AerChemMIP', 'PMIP', 'FAFMIP', 'DynVar', 'LS3MIP', 'SPECS', 'HighResMIP'])} 31 32 excluded_vars : [] 32 33 orphan_variables : {} … … 76 77 <field id="CMIP6_cSoil" field_ref="cSoil" /> <!-- P1 (kg m-2) soil_carbon_content : Carbon Mass in Soil Pool --> 77 78 <field id="CMIP6_cSoilAbove1m" field_ref="dummy_XY_not_provided" /> <!-- P1 (kg m-2) soil_carbon_content : Carbon mass in soil pool above 1m depth --> 78 <field id="CMIP6_cSoilBelow1m" field_ref="dummy_XY_not_provided" /> <!-- P1 (kg m-2) soil_carbon_content : Carbon Mass in Soil Pool below 1m Depth -->79 79 <field id="CMIP6_cSoilFast" field_ref="cSoilFast" /> <!-- P1 (kg m-2) fast_soil_pool_carbon_content : fast is meant as lifetime of less than 10 years for reference climate conditions (20 C, no water limitations). --> 80 80 <field id="CMIP6_cSoilGrass" field_ref="cSoilGrass" /> <!-- P2 (kg m-2) soil_carbon_content : Carbon mass in soil on grass tiles --> … … 101 101 <field id="CMIP6_cw" field_ref="qsintveg_tot" /> <!-- P1 (kg m-2) canopy_water_amount : canopy_water_amount --> 102 102 <field id="CMIP6_dcw" field_ref="delintercept" /> <!-- P1 (kg m-2) change_over_time_in_canopy_water_amount : change_over_time_in_canopy_water_amount --> 103 <field id="CMIP6_dfr" field_ref="dummy_XY_not_provided" /> <!-- P1 (m) depth_of_frozen_soil : depth_of_frozen_soil -->104 103 <field id="CMIP6_dgw" field_ref="delslowr" /> <!-- P1 (kg m-2) change_over_time_in_groundwater : change_over_time_in_groundwater Warning: It can be either undef or delslowr. We take the second option for the moment. --> 105 104 <field id="CMIP6_dmlt" field_ref="dummy_XY_not_provided" /> <!-- P1 (m) depth_of_subsurface_melting : depth_of_subsurface_melting --> … … 114 113 <field id="CMIP6_es" field_ref="vevapnu" /> <!-- P1 (kg m-2 s-1) liquid_water_evaporation_flux_from_soil : liquid_water_evaporation_flux_from_soil --> 115 114 <field id="CMIP6_esn" field_ref="vevapsno" /> <!-- P1 (kg m-2 s-1) liquid_water_evaporation_flux_from_surface_snow : liquid_water_evaporation_flux_from_surface_snow --> 116 <field id="CMIP6_e t"field_ref="vevapp" /> <!-- P1 (kg m-2 s-1) surface_evapotranspiration : surface_evapotranspiration -->115 <field id="CMIP6_evspsbl" field_ref="vevapp" /> <!-- P1 (kg m-2 s-1) surface_evapotranspiration : surface_evapotranspiration --> 117 116 <field id="CMIP6_evspsblpot" field_ref="evapot" /> <!-- P1 (kg m-2 s-1) water_potential_evaporation_flux : Potential Evapotranspiration --> 118 117 <field id="CMIP6_evspsblsoi" field_ref="evspsblsoi" /> <!-- P1 (kg m-2 s-1) water_evaporation_flux_from_soil : includes sublimation. --> … … 163 162 <field id="CMIP6_fVegSoilSenescence" field_ref="dummy_XY_not_provided" /> <!-- P2 (kg m-2 s-1) senescence_vegtosoil_carbon_flux : Total Carbon Mass Flux from Vegetation to Soil as a result of leaf, branch, and root senescence --> 164 163 <field id="CMIP6_fahLut" field_ref="dummy_XY_landUse_not_provided" /> <!-- P1 (W m-2) surface_upward_heat_flux_due_to_anthropogenic_energy_consumption : Anthropogenic heat flux generated from non-renewable human primary energy consumption, including energy use by vehicles, commercial and residential buildings, industry, and power plants. Primary energy refers to energy in natural resources, fossil and nonfossil, before conversion into other forms, such as electricity. --> 165 <field id="CMIP6_fldcapacity" field_ref="fldcapacity" /> <!-- P1 (%) : Field Capacity Warning: Defined as wilt/saturation, may still evolve (AD)-->164 <field id="CMIP6_fldcapacity" field_ref="fldcapacity" /> <!-- P1 (%) volume_fraction_of_condensed_water_in_soil_at_field_capacity : Field Capacity --> 166 165 <field id="CMIP6_fracInLut" field_ref="dummy_XY_landUse_not_provided" /> <!-- P1 (%) area_fraction : annual gross fraction that was transferred into this tile from other land use tiles --> 167 166 <field id="CMIP6_fracLut" field_ref="fraclut" /> <!-- P1 (%) area_fraction : fraction of grid cell for each land use tile --> … … 178 177 <field id="CMIP6_grassFracC4" field_ref="grassFracC4" /> <!-- P1 (%) area_fraction : C4 grass Area Percentage --> 179 178 <field id="CMIP6_hfdsn" field_ref="snowflxtot" /> <!-- P1 (W m-2) surface_downward_heat_flux_in_snow : the net downward heat flux from the atmosphere into the snow that lies on land divided by the land area in the grid cell; reported as missing for snow-free land regions or where the land fraction is 0. --> 179 <field id="CMIP6_hfls" field_ref="fluxlat" /> <!-- P1 (W m-2) surface_upward_latent_heat_flux : The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). The surface latent heat flux is the exchange of heat between the surface and the air on account of evaporation (including sublimation). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. --> 180 180 <field id="CMIP6_hflsLut" field_ref="dummy_XY_landUse_not_provided" /> <!-- P1 (W m-2) surface_upward_latent_heat_flux : latent heat flux on land use tile --> 181 <field id="CMIP6_hfss" field_ref="fluxsens" /> <!-- P1 (W m-2) surface_upward_sensible_heat_flux : The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). The surface sensible heat flux, also called "turbulent" heat flux, is the exchange of heat between the surface and the air by motion of air. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Unless indicated in the cell_methods attribute, a quantity is assumed to apply to the whole area of each horizontal grid box. Previously, the qualifier where_type was used to specify that the quantity applies only to the part of the grid box of the named type. Names containing the where_type qualifier are deprecated and newly created data should use the cell_methods attribute to indicate the horizontal area to which the quantity applies. --> 181 182 <field id="CMIP6_hfssLut" field_ref="dummy_XY_landUse_not_provided" /> <!-- P1 (W m-2) surface_upward_sensible_heat_flux : sensible heat flux on land use tile --> 182 183 <field id="CMIP6_hussLut" field_ref="dummy_XY_landUse_not_provided" /> <!-- P1 (1) specific_humidity : near-surface specific humidity on land use tile --> … … 192 193 <field id="CMIP6_mrlso" field_ref="humtot_liquid" /> <!-- P1 (kg m-2) soil_liquid_water_content : Soil Liquid Water Content --> 193 194 <field id="CMIP6_mrro" field_ref="mrro" /> <!-- P1 (kg m-2 s-1) runoff_flux : the total runoff (including "drainage" through the base of the soil model) leaving the land portion of the grid cell divided by the land area in the grid cell, averaged over the 3-hour interval. --> 195 <field id="CMIP6_mrroLi" field_ref="dummy_XY_not_provided" /> <!-- P1 (kg m-2 s-1) land_ice_runoff_flux : Runoff flux over land ice is the difference between any available liquid water in the snowpack less any refreezing. Computed as the sum of rainfall and melt of snow or ice less any refreezing or water retained in the snowpack --> 194 196 <field id="CMIP6_mrroLut" field_ref="mrro_lut" /> <!-- P1 (kg m-2 s-1) runoff_flux : Total runoff from land use tile --> 195 197 <field id="CMIP6_mrrob" field_ref="drainage" /> <!-- P1 (kg m-2 s-1) subsurface_runoff_flux : subsurface_runoff_flux --> … … 203 205 <field id="CMIP6_mrsos" field_ref="humtot_top" /> <!-- P1 (kg m-2) moisture_content_of_soil_layer : the mass of water in all phases in a thin surface soil layer. --> 204 206 <field id="CMIP6_mrsosLut" field_ref="humtot_top_lut" /> <!-- P1 (kg m-2) moisture_content_of_soil_layer : Moisture in Upper Portion of Soil Column of land use tile --> 205 <field id="CMIP6_mrsow" field_ref=" mrsow" /> <!-- P1 (1) volume_fraction_of_condensed_water_in_soil_at_field_capacity : relative_soil_moisture_content_above_field_capacity Warning: weird mention to field capacity in the description, overlooked.-->207 <field id="CMIP6_mrsow" field_ref="dummy_not_provided" /> <!-- P1 (1) volume_fraction_of_condensed_water_in_soil_at_field_capacity : relative_soil_moisture_content_above_field_capacity Warning: weird mention to field capacity in the description, overlooked. AD: 3 differents definintions, we do not know what to do --> 206 208 <field id="CMIP6_mrtws" field_ref="tws" /> <!-- P1 (kg m-2) total_water_storage : canopy_and_surface_and_subsurface_water_amount --> 207 209 <field id="CMIP6_nLand" field_ref="dummy_XY_not_provided" /> <!-- P1 (kg m-2) total_land_nitrogen : Total nitrogen in all terrestrial nitrogen pools --> … … 239 241 <field id="CMIP6_nudgincswe" field_ref="nudgincswe" /> <!-- P1 (kg m-2) nudging_increment_in_surface_snow_and_ice_amount : nudging_increment_in_surface_snow_and_ice_amount --> 240 242 <field id="CMIP6_nwdFracLut" field_ref="nwdFraclut" /> <!-- P1 (%) : fraction of land use tile tile that is non-woody vegetation ( e.g. herbaceous crops) --> 241 <field id="CMIP6_orog _ist"field_ref="dummy_XY" /> <!-- P1 (m) surface_altitude : Surface Altitude -->243 <field id="CMIP6_orog" field_ref="dummy_XY" /> <!-- P1 (m) surface_altitude : Surface Altitude --> 242 244 <field id="CMIP6_orog_ist" field_ref="dummy_XY" /> <!-- P1 (m) surface_altitude : This is needed in case the ice sheet elevation changes in time --> 243 245 <field id="CMIP6_pastureFrac" field_ref="dummy_XY_not_provided" /> <!-- P1 (%) area_fraction : fraction of entire grid cell that is covered by anthropogenic pasture. --> … … 245 247 <field id="CMIP6_pastureFracC4" field_ref="dummy_XY_not_provided" /> <!-- P2 (%) area_fraction : C4 Pasture Area Percentage --> 246 248 <field id="CMIP6_pflw" field_ref="dummy_XY_not_provided" /> <!-- P1 (kg m-2) liquid_water_content_of_permafrost_layer : "where land over land", i.e., this is the total mass of liquid water contained within the permafrost layer within the land portion of a grid cell divided by the area of the land portion of the cell. --> 249 <field id="CMIP6_prra" field_ref="precip_rain" /> <!-- P1 (kg m-2 s-1) rainfall_flux : over Land Ice//quantity averaged over ice sheet (grounded ice sheet and floating ice shelf) only. Needed to analyse the impact of downscaling methods --> 250 <field id="CMIP6_prsn" field_ref="precip_snow" /> <!-- P1 (kg m-2 s-1) snowfall_flux : quantity averaged over ice sheet (grounded ice sheet and floating ice shelf) only. Needed to analyse the impact of downscaling methods --> 247 251 <field id="CMIP6_prveg" field_ref="prveg" /> <!-- P1 (kg m-2 s-1) precipitation_flux_onto_canopy : the precipitation flux that is intercepted by the vegetation canopy (if present in model) before reaching the ground. --> 248 252 <field id="CMIP6_qgwr" field_ref="drainage" /> <!-- P1 (kg m-2 s-1) water_flux_from_soil_layer_to_groundwater : water_flux_from_soil_layer_to_groundwater Warning: It can be either undef or drainage. We take the second option for the moment. --> … … 272 276 <field id="CMIP6_rivi" field_ref="dummy_XY_not_provided" /> <!-- P1 (m3 s-1) water_flux_from_upstream : water_flux_to_downstream --> 273 277 <field id="CMIP6_rivo" field_ref="hydrographs" /> <!-- P1 (m3 s-1) water_flux_to_downstream : water_flux_from_upstream --> 278 <field id="CMIP6_rlds" field_ref="lwdown" /> <!-- P1 (W m-2) surface_downwelling_longwave_flux_in_air : The surface called "surface" means the lower boundary of the atmosphere. "longwave" means longwave radiation. Downwelling radiation is radiation from above. It does not mean "net downward". When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. --> 279 <field id="CMIP6_rlus" field_ref="lwdown" > lwdown - lwnet </field> <!-- P1 (W m-2) surface_upwelling_longwave_flux_in_air : The surface called "surface" means the lower boundary of the atmosphere. "longwave" means longwave radiation. Upwelling radiation is radiation from below. It does not mean "net upward". When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. --> 274 280 <field id="CMIP6_rlusLut" field_ref="dummy_XY_landUse_not_provided" /> <!-- P1 (W m-2) surface_upwelling_longwave_flux_in_air : Surface Upwelling Longwave on Land Use Tile --> 275 281 <field id="CMIP6_rootd" field_ref="zmaxh" /> <!-- P1 (m) root_depth : report the maximum soil depth reachable by plant roots (if defined in model), i.e., the maximum soil depth from which they can extract moisture; report as "missing" where the land fraction is 0. --> 276 <field id="CMIP6_rootdsl" field_ref="nroot" /> <!-- P1 (kg m-3) : Root Distribution Warning: It's a relative root density per layer in Orchidee with no dimension. --> 282 <field id="CMIP6_rootdsl" field_ref="dummy_XYSo" /> <!-- P1 (kg m-2) root_mass_content_of_carbon : Root Distribution --> 283 <field id="CMIP6_rsds" field_ref="swdown" /> <!-- P1 (W m-2) surface_downwelling_shortwave_flux_in_air : surface solar irradiance for UV calculations --> 284 <field id="CMIP6_rsus" field_ref="swdown" > swdown - swnet </field> <!-- P1 (W m-2) surface_upwelling_shortwave_flux_in_air : The surface called "surface" means the lower boundary of the atmosphere. "shortwave" means shortwave radiation. Upwelling radiation is radiation from below. It does not mean "net upward". When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. --> 277 285 <field id="CMIP6_rsusLut" field_ref="dummy_XY_landUse_not_provided" /> <!-- P1 (W m-2) surface_upwelling_shortwave_flux_in_air : Surface Upwelling Shortwave on Land Use Tile --> 278 286 <field id="CMIP6_rzwc" field_ref="humtot" /> <!-- P1 (kg m-2) water_content_of_root_zone : water_content_of_root_zone --> … … 287 295 <field id="CMIP6_snm_land" field_ref="snowmelt" /> <!-- P1 (kg m-2 s-1) surface_snow_melt_flux : surface_snow_and_ice_melt_flux --> 288 296 <field id="CMIP6_snm_ist" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) surface_snow_melt_flux : Surface Snow Melt --> 289 <field id="CMIP6_snw_land" field_ref="snow" /> <!-- P1 (kg m-2) surface_snow_amount : Computed as the mass of surface snow on the land portion of the grid cell divided by the land area in the grid cell; reported as missing where the land fraction is 0; excluded is snow on vegetation canopy or on sea ice. --> 290 <field id="CMIP6_snw_land" field_ref="snow" /> <!-- P1 (kg m-2) surface_snow_amount : the mass of surface snow on the land portion of the grid cell divided by the land area in the grid cell; reported as missing where the land fraction is 0; excludes snow on vegetation canopy or on sea ice. --> 297 <field id="CMIP6_snw" field_ref="snow" /> <!-- P1 (kg m-2) surface_snow_amount : Computed as the mass of surface snow on the land portion of the grid cell divided by the land area in the grid cell; reported as missing where the land fraction is 0; excluded is snow on vegetation canopy or on sea ice. --> 291 298 <field id="CMIP6_sootsn" field_ref="dummy_XY_not_provided" /> <!-- P1 (kg m-2) soot_content_of_surface_snow : the entire land portion of the grid cell is considered, with snow soot content set to 0.0 in regions free of snow. --> 292 299 <field id="CMIP6_sw" field_ref="surfwater" /> <!-- P1 (kg m-2) surface_water_amount_assuming_no_snow : surface_water_amount_assuming_no_snow Warning: includes the fast reservoire --> 293 300 <field id="CMIP6_sweLut" field_ref="dummy_XY_landUse_not_provided" /> <!-- P1 (m) : snow water equivalent on land use tile --> 294 301 <field id="CMIP6_tSoilPools" field_ref="tSoilPools"/> <!-- P2 (s-1) soil_carbon_turnover_rate_by_pool : turnover rate of each model soil carbon pool --> 302 <field id="CMIP6_tas" field_ref="dummy_XY" /> <!-- P1 (K) air_temperature : quantity averaged over ice sheet (grounded ice sheet and floating ice shelf) only. Needed to analyse the impact of downscaling methods --> 295 303 <field id="CMIP6_tasLut" field_ref="dummy_XY_landUse_not_provided" /> <!-- P1 (K) air_temperature : near-surface air temperature (2m above displacement height, i.e. t_ref) on land use tile --> 296 304 <field id="CMIP6_tcs" field_ref="dummy_XY_not_provided" /> <!-- P1 (K) canopy_temperature : Vegetation Canopy Temperature --> … … 307 315 <field id="CMIP6_treeFracSecDec" field_ref="dummy_XY_not_provided" /> <!-- P1 (%) area_fraction : fraction of entire grid cell that is covered by secondary deciduous trees. --> 308 316 <field id="CMIP6_treeFracSecEver" field_ref="dummy_XY_not_provided" /> <!-- P1 (%) area_fraction : fraction of entire grid cell that is covered by secondary evergreen trees. --> 317 <field id="CMIP6_ts" field_ref="dummy_XY" /> <!-- P1 (K) surface_temperature : quantity averaged over ice sheet (grounded ice sheet and floating ice shelf) only. Needed to analyse the impact of downscaling methods --> 309 318 <field id="CMIP6_tsl" field_ref="ptn" /> <!-- P1 (K) soil_temperature : Temperature of single near-surface soil layer. Reported as "missing" for grid cells occupied entirely by "sea". --> 310 319 <field id="CMIP6_tslsi" field_ref="temp_sol_new" /> <!-- P1 (K) surface_temperature : Surface temperature of all surfaces except open ocean. --> 311 320 <field id="CMIP6_tslsiLut" field_ref="dummy_XY_landUse_not_provided" /> <!-- P1 (K) surface_temperature : Surface Temperature on Landuse Tile --> 312 <field id="CMIP6_tsn_ ist"field_ref="dummy_XY" /> <!-- P1 (K) temperature_in_surface_snow : quantity averaged over ice sheet (grounded ice sheet and floating ice shelf) only. Needed to analyse the impact of downscaling methods -->321 <field id="CMIP6_tsn_land" field_ref="dummy_XY" /> <!-- P1 (K) temperature_in_surface_snow : quantity averaged over ice sheet (grounded ice sheet and floating ice shelf) only. Needed to analyse the impact of downscaling methods --> 313 322 <field id="CMIP6_tsn_ist" field_ref="dummy_XY" /> <!-- P1 (K) temperature_in_surface_snow : quantity averaged over ice sheet (grounded ice sheet and floating ice shelf) only. Needed to analyse the impact of downscaling methods --> 314 323 <field id="CMIP6_tsn_land" field_ref="dummy_XY_not_provided" /> <!-- P1 (K) temperature_in_surface_snow : This temperature is averaged over all the snow in the grid cell that rests on land or land ice. When computing the time-mean here, the time samples, weighted by the mass of snow on the land portion of the grid cell, are accumulated and then divided by the sum of the weights. Reported as "missing in regions free of snow on land. Warning: Doable but painful with the two different snow schemes. --> 315 <field id="CMIP6_tsnl" field_ref="snowtemp" /> <!-- P1 (K) snow_temperature : Density-weighted average temperature of the snow in layers (for models with 3D snow schemes) Warning: Computed only for the layered scheme on vegetated and bare soil area. -->316 324 <field id="CMIP6_vegFrac" field_ref="vegFrac" /> <!-- P1 (%) area_fraction : Total vegetated fraction --> 317 <field id="CMIP6_vegHeight" field_ref="dummy_XY_not_provided" /> <!-- P1 (m) canopy_height : canopy height --> 325 <field id="CMIP6_vegHeight_land" field_ref="dummy_XY_not_provided" /> <!-- P2 (m) canopy_height : Vegetation height averaged over all vegetation types and over the vegetated fraction of a grid cell. --> 326 <field id="CMIP6_vegHeight_veg" field_ref="dummy_XY_not_provided" /> <!-- P1 (m) canopy_height : Vegetation height averaged over all vegetation types and over the vegetated fraction of a grid cell. --> 318 327 <field id="CMIP6_vegHeightCrop" field_ref="dummy_XY_not_provided" /> <!-- P2 (m) canopy_height : Vegetation height averaged over the crop fraction of a grid cell. --> 319 328 <field id="CMIP6_vegHeightGrass" field_ref="dummy_XY_not_provided" /> <!-- P2 (m) canopy_height : Vegetation height averaged over the grass fraction of a grid cell. --> … … 325 334 <field id="CMIP6_wetlandCH4prod" field_ref="dummy_XY_not_provided" /> <!-- P2 (kg m-2 s-1) wetland_methane_production : Grid averaged methane production (methanogenesis) from wetlands --> 326 335 <field id="CMIP6_wetlandFrac" field_ref="dummy_XY_not_provided" /> <!-- P2 (%) wetland_fraction : Fraction of a grid cell covered by wetland. --> 327 <field id="CMIP6_wilt" field_ref="wilt" /> <!-- P1 (%) : Wilting Point Warning: Defined as wilt/saturation, may still evolve (AD)-->336 <field id="CMIP6_wilt" field_ref="wilt" /> <!-- P1 (%) volume_fraction_of_condensed_water_in_soil_at_wilting_point : Wilting Point --> 328 337 <field id="CMIP6_wtd" field_ref="dummy_XY_not_provided" /> <!-- P1 (m) depth_of_soil_moisture_saturation : depth_of_soil_moisture_saturation --> 329 338 </field_definition>
Note: See TracChangeset
for help on using the changeset viewer.