1 | /*! |
---|
2 | \file mesh.cpp |
---|
3 | \author Olga Abramkina |
---|
4 | \brief Definition of class CMesh. |
---|
5 | */ |
---|
6 | |
---|
7 | #include "mesh.hpp" |
---|
8 | #include <boost/functional/hash.hpp> |
---|
9 | //#include <unordered_map> |
---|
10 | |
---|
11 | namespace xios { |
---|
12 | |
---|
13 | /// ////////////////////// Définitions ////////////////////// /// |
---|
14 | |
---|
15 | CMesh::CMesh(void) : nbNodesGlo(0), nbEdgesGlo(0) |
---|
16 | , node_start(0), node_count(0) |
---|
17 | , edge_start(0), edge_count(0) |
---|
18 | , nbFaces_(0), nbNodes_(0), nbEdges_(0) |
---|
19 | , nodesAreWritten(false), edgesAreWritten(false), facesAreWritten(false) |
---|
20 | , node_lon(), node_lat() |
---|
21 | , edge_lon(), edge_lat(), edge_nodes() |
---|
22 | , face_lon(), face_lat() |
---|
23 | , face_nodes() |
---|
24 | , pNodeGlobalIndex(NULL), pEdgeGlobalIndex(NULL) |
---|
25 | { |
---|
26 | } |
---|
27 | |
---|
28 | |
---|
29 | CMesh::~CMesh(void) |
---|
30 | { |
---|
31 | if (pNodeGlobalIndex != NULL) delete pNodeGlobalIndex; |
---|
32 | if (pEdgeGlobalIndex != NULL) delete pEdgeGlobalIndex; |
---|
33 | } |
---|
34 | |
---|
35 | std::map <StdString, CMesh> CMesh::meshList = std::map <StdString, CMesh>(); |
---|
36 | std::map <StdString, vector<int> > CMesh::domainList = std::map <StdString, vector<int> >(); |
---|
37 | |
---|
38 | ///--------------------------------------------------------------- |
---|
39 | /*! |
---|
40 | * \fn bool CMesh::getMesh (StdString meshName) |
---|
41 | * Returns a pointer to a mesh. If a mesh has not been created, creates it and adds its name to the list of meshes meshList. |
---|
42 | * \param [in] meshName The name of a mesh ("name" attribute of a domain). |
---|
43 | * \param [in] nvertex Number of verteces (1 for nodes, 2 for edges, 3 and up for faces). |
---|
44 | */ |
---|
45 | CMesh* CMesh::getMesh (StdString meshName, int nvertex) |
---|
46 | { |
---|
47 | CMesh::domainList[meshName].push_back(nvertex); |
---|
48 | |
---|
49 | if ( CMesh::meshList.begin() != CMesh::meshList.end() ) |
---|
50 | { |
---|
51 | for (std::map<StdString, CMesh>::iterator it=CMesh::meshList.begin(); it!=CMesh::meshList.end(); ++it) |
---|
52 | { |
---|
53 | if (it->first == meshName) |
---|
54 | return &meshList[meshName]; |
---|
55 | else |
---|
56 | { |
---|
57 | CMesh newMesh; |
---|
58 | CMesh::meshList.insert( make_pair(meshName, newMesh) ); |
---|
59 | return &meshList[meshName]; |
---|
60 | } |
---|
61 | } |
---|
62 | } |
---|
63 | else |
---|
64 | { |
---|
65 | CMesh newMesh; |
---|
66 | CMesh::meshList.insert( make_pair(meshName, newMesh) ); |
---|
67 | return &meshList[meshName]; |
---|
68 | } |
---|
69 | } |
---|
70 | |
---|
71 | ///---------------------------------------------------------------- |
---|
72 | size_t hashPair(size_t first, size_t second) |
---|
73 | { |
---|
74 | HashXIOS<size_t> sizetHash; |
---|
75 | size_t seed = sizetHash(first) + 0x9e3779b9 ; |
---|
76 | seed ^= sizetHash(second) + 0x9e3779b9 + (seed << 6) + (seed >> 2); |
---|
77 | return seed ; |
---|
78 | } |
---|
79 | |
---|
80 | ///---------------------------------------------------------------- |
---|
81 | size_t hashPairOrdered(size_t first, size_t second) |
---|
82 | { |
---|
83 | size_t seed; |
---|
84 | HashXIOS<size_t> sizetHash; |
---|
85 | if (first < second) |
---|
86 | { |
---|
87 | seed = sizetHash(first) + 0x9e3779b9 ; |
---|
88 | seed ^= sizetHash(second) + 0x9e3779b9 + (seed << 6) + (seed >> 2); |
---|
89 | } |
---|
90 | else |
---|
91 | { |
---|
92 | seed = sizetHash(second) + 0x9e3779b9 ; |
---|
93 | seed ^= sizetHash(first) + 0x9e3779b9 + (seed << 6) + (seed >> 2); |
---|
94 | } |
---|
95 | return seed ; |
---|
96 | } |
---|
97 | |
---|
98 | ///---------------------------------------------------------------- |
---|
99 | /*! |
---|
100 | * \fn size_t generateNodeIndex(vector<size_t>& valList, int rank) |
---|
101 | * Generates a node index. |
---|
102 | * If the same node is generated by two processes, each process will have its own node index. |
---|
103 | * \param [in] valList Vector storing four node hashes. |
---|
104 | * \param [in] rank MPI process rank. |
---|
105 | */ |
---|
106 | size_t generateNodeIndex(vector<size_t>& valList, int rank) |
---|
107 | { |
---|
108 | // Sort is needed to avoid problems for nodes with lon = 0 generated by faces in east and west semisphere |
---|
109 | vector<size_t> vec = valList; |
---|
110 | sort (vec.begin(), vec.end()); |
---|
111 | size_t seed = rank ; |
---|
112 | int it = 0; |
---|
113 | for(; it != vec.size(); ++it) |
---|
114 | { |
---|
115 | seed = hashPair(seed, vec[it]); |
---|
116 | } |
---|
117 | return seed ; |
---|
118 | } |
---|
119 | |
---|
120 | ///---------------------------------------------------------------- |
---|
121 | /*! |
---|
122 | * \fn size_t generateNodeIndex(vector<size_t>& valList) |
---|
123 | * Generates a node index unique for all processes. |
---|
124 | * \param [in] valList Vector storing four node hashes. |
---|
125 | */ |
---|
126 | size_t generateNodeIndex(vector<size_t>& valList) |
---|
127 | { |
---|
128 | // Sort is needed to avoid problems for nodes with lon = 0 generated by faces in east and west semisphere |
---|
129 | vector<size_t> vec = valList; |
---|
130 | sort (vec.begin(), vec.end()); |
---|
131 | size_t seed = vec[0] ; |
---|
132 | int it = 1; |
---|
133 | for(; it != vec.size(); ++it) |
---|
134 | { |
---|
135 | seed = hashPair(seed, vec[it]); |
---|
136 | } |
---|
137 | return seed ; |
---|
138 | } |
---|
139 | |
---|
140 | ///---------------------------------------------------------------- |
---|
141 | /*! |
---|
142 | * \fn CArray<size_t,1>& CMesh::createHashes (const double longitude, const double latitude) |
---|
143 | * Creates two hash values for each dimension, longitude and latitude. |
---|
144 | * \param [in] longitude Node longitude in degrees. |
---|
145 | * \param [in] latitude Node latitude in degrees ranged from 0 to 360. |
---|
146 | */ |
---|
147 | |
---|
148 | vector<size_t> CMesh::createHashes (const double longitude, const double latitude) |
---|
149 | { |
---|
150 | double minBoundLon = 0. ; |
---|
151 | double maxBoundLon = 360. ; |
---|
152 | double minBoundLat = -90. ; |
---|
153 | double maxBoundLat = 90. ; |
---|
154 | double prec=1e-11 ; |
---|
155 | double precLon=prec ; |
---|
156 | double precLat=prec ; |
---|
157 | double lon = longitude; |
---|
158 | double lat = latitude; |
---|
159 | |
---|
160 | if (lon > (360.- prec)) lon = 0.; |
---|
161 | |
---|
162 | size_t maxsize_t=numeric_limits<size_t>::max() ; |
---|
163 | if ( (maxBoundLon-minBoundLon)/maxsize_t > precLon) precLon=(maxBoundLon-minBoundLon)/maxsize_t ; |
---|
164 | if ( (maxBoundLat-minBoundLat)/maxsize_t > precLat) precLat=(maxBoundLat-minBoundLat)/maxsize_t ; |
---|
165 | |
---|
166 | size_t iMinLon=0 ; |
---|
167 | size_t iMaxLon=(maxBoundLon-minBoundLon)/precLon ; |
---|
168 | size_t iMinLat=0 ; |
---|
169 | size_t iMaxLat=(maxBoundLat-minBoundLat)/precLat ; |
---|
170 | |
---|
171 | vector<size_t> hash(4); |
---|
172 | size_t lon0,lon1,lat0,lat1 ; |
---|
173 | |
---|
174 | lon0=(lon-minBoundLon)/precLon ; |
---|
175 | if ( ((lon0+1)*precLon + lon0*precLon)/2 > lon-minBoundLon) |
---|
176 | { |
---|
177 | if (lon0==iMinLon) lon1=iMaxLon ; |
---|
178 | else lon1=lon0-1 ; |
---|
179 | } |
---|
180 | else |
---|
181 | { |
---|
182 | if (lon0==iMaxLon) lon1=iMinLon ; |
---|
183 | else lon1=lon0+1 ; |
---|
184 | } |
---|
185 | |
---|
186 | lat0=(lat-minBoundLat)/precLat ; |
---|
187 | if ( ((lat0+1)*precLat + lat0*precLat)/2 > lat-minBoundLat) |
---|
188 | { |
---|
189 | if (lat0==iMinLat) lat1=lat0 ; |
---|
190 | else lat1=lat0-1 ; |
---|
191 | } |
---|
192 | else |
---|
193 | { |
---|
194 | if (lat0==iMaxLat) lat1=lat0 ; |
---|
195 | else lat1=lat0+1 ; |
---|
196 | } |
---|
197 | |
---|
198 | hash[0] = hashPair(lon0,lat0) ; |
---|
199 | hash[1] = hashPair(lon0,lat1) ; |
---|
200 | hash[2] = hashPair(lon1,lat0) ; |
---|
201 | hash[3] = hashPair(lon1,lat1) ; |
---|
202 | |
---|
203 | return hash; |
---|
204 | |
---|
205 | } // createHashes |
---|
206 | |
---|
207 | ///---------------------------------------------------------------- |
---|
208 | std::pair<int,int> make_ordered_pair(int a, int b) |
---|
209 | { |
---|
210 | if ( a < b ) |
---|
211 | return std::pair<int,int>(a,b); |
---|
212 | else |
---|
213 | return std::pair<int,int>(b,a); |
---|
214 | } |
---|
215 | |
---|
216 | ///---------------------------------------------------------------- |
---|
217 | /*! |
---|
218 | * \fn void CMesh::createMesh(const CArray<double, 1>& lonvalue, const CArray<double, 1>& latvalue, |
---|
219 | const CArray<double, 2>& bounds_lon, const CArray<double, 2>& bounds_lat) |
---|
220 | * Creates or updates a mesh for the three types of mesh elements: nodes, edges, and faces. |
---|
221 | * \param [in] lonvalue Array of longitudes. |
---|
222 | * \param [in] latvalue Array of latitudes. |
---|
223 | * \param [in] bounds_lon Array of boundary longitudes. Its size depends on the element type. |
---|
224 | * \param [in] bounds_lat Array of boundary latitudes. Its size depends on the element type. |
---|
225 | */ |
---|
226 | // void CMesh::createMesh(const CArray<double, 1>& lonvalue, const CArray<double, 1>& latvalue, |
---|
227 | // const CArray<double, 2>& bounds_lon, const CArray<double, 2>& bounds_lat) |
---|
228 | // { |
---|
229 | // int nvertex = (bounds_lon.numElements() == 0) ? 1 : bounds_lon.rows(); |
---|
230 | // |
---|
231 | // if (nvertex == 1) |
---|
232 | // { |
---|
233 | // nbNodes_ = lonvalue.numElements(); |
---|
234 | // node_lon.resizeAndPreserve(nbNodes_); |
---|
235 | // node_lat.resizeAndPreserve(nbNodes_); |
---|
236 | // for (int nn = 0; nn < nbNodes_; ++nn) |
---|
237 | // { |
---|
238 | // if (map_nodes.find(make_pair (lonvalue(nn), latvalue(nn))) == map_nodes.end()) |
---|
239 | // { |
---|
240 | // map_nodes[make_pair (lonvalue(nn), latvalue(nn))] = nn ; |
---|
241 | // node_lon(nn) = lonvalue(nn); |
---|
242 | // node_lat(nn) = latvalue(nn); |
---|
243 | // } |
---|
244 | // } |
---|
245 | // } |
---|
246 | // else if (nvertex == 2) |
---|
247 | // { |
---|
248 | // nbEdges_ = bounds_lon.shape()[1]; |
---|
249 | // |
---|
250 | // // Create nodes and edge_node connectivity |
---|
251 | // node_lon.resizeAndPreserve(nbEdges_*nvertex); // Max possible number of nodes |
---|
252 | // node_lat.resizeAndPreserve(nbEdges_*nvertex); |
---|
253 | // edge_nodes.resizeAndPreserve(nvertex, nbEdges_); |
---|
254 | // |
---|
255 | // for (int ne = 0; ne < nbEdges_; ++ne) |
---|
256 | // { |
---|
257 | // for (int nv = 0; nv < nvertex; ++nv) |
---|
258 | // { |
---|
259 | // if (map_nodes.find(make_pair (bounds_lon(nv, ne), bounds_lat(nv ,ne))) == map_nodes.end()) |
---|
260 | // { |
---|
261 | // map_nodes[make_pair (bounds_lon(nv, ne), bounds_lat(nv, ne))] = nbNodes_ ; |
---|
262 | // edge_nodes(nv,ne) = nbNodes_ ; |
---|
263 | // node_lon(nbNodes_) = bounds_lon(nv, ne); |
---|
264 | // node_lat(nbNodes_) = bounds_lat(nv, ne); |
---|
265 | // ++nbNodes_ ; |
---|
266 | // } |
---|
267 | // else |
---|
268 | // edge_nodes(nv,ne) = map_nodes[make_pair (bounds_lon(nv, ne), bounds_lat(nv ,ne))]; |
---|
269 | // } |
---|
270 | // } |
---|
271 | // node_lon.resizeAndPreserve(nbNodes_); |
---|
272 | // node_lat.resizeAndPreserve(nbNodes_); |
---|
273 | // |
---|
274 | // // Create edges |
---|
275 | // edge_lon.resizeAndPreserve(nbEdges_); |
---|
276 | // edge_lat.resizeAndPreserve(nbEdges_); |
---|
277 | // |
---|
278 | // for (int ne = 0; ne < nbEdges_; ++ne) |
---|
279 | // { |
---|
280 | // if (map_edges.find(make_ordered_pair (edge_nodes(0,ne), edge_nodes(1,ne))) == map_edges.end()) |
---|
281 | // { |
---|
282 | // map_edges[make_ordered_pair ( edge_nodes(0,ne), edge_nodes(1,ne) )] = ne ; |
---|
283 | // edge_lon(ne) = lonvalue(ne); |
---|
284 | // edge_lat(ne) = latvalue(ne); |
---|
285 | // } |
---|
286 | // |
---|
287 | // } |
---|
288 | // edgesAreWritten = true; |
---|
289 | // } |
---|
290 | // else |
---|
291 | // { |
---|
292 | // nbFaces_ = bounds_lon.shape()[1]; |
---|
293 | // |
---|
294 | // // Create nodes and face_node connectivity |
---|
295 | // node_lon.resizeAndPreserve(nbFaces_*nvertex); // Max possible number of nodes |
---|
296 | // node_lat.resizeAndPreserve(nbFaces_*nvertex); |
---|
297 | // face_nodes.resize(nvertex, nbFaces_); |
---|
298 | // |
---|
299 | // for (int nf = 0; nf < nbFaces_; ++nf) |
---|
300 | // { |
---|
301 | // for (int nv = 0; nv < nvertex; ++nv) |
---|
302 | // { |
---|
303 | // if (map_nodes.find(make_pair (bounds_lon(nv, nf), bounds_lat(nv ,nf))) == map_nodes.end()) |
---|
304 | // { |
---|
305 | // map_nodes[make_pair (bounds_lon(nv, nf), bounds_lat(nv, nf))] = nbNodes_ ; |
---|
306 | // face_nodes(nv,nf) = nbNodes_ ; |
---|
307 | // node_lon(nbNodes_) = bounds_lon(nv, nf); |
---|
308 | // node_lat(nbNodes_) = bounds_lat(nv ,nf); |
---|
309 | // ++nbNodes_ ; |
---|
310 | // } |
---|
311 | // else |
---|
312 | // { |
---|
313 | // face_nodes(nv,nf) = map_nodes[make_pair (bounds_lon(nv, nf), bounds_lat(nv ,nf))]; |
---|
314 | // } |
---|
315 | // } |
---|
316 | // } |
---|
317 | // node_lon.resizeAndPreserve(nbNodes_); |
---|
318 | // node_lat.resizeAndPreserve(nbNodes_); |
---|
319 | // |
---|
320 | // // Create edges and edge_nodes connectivity |
---|
321 | // edge_lon.resizeAndPreserve(nbFaces_*nvertex); // Max possible number of edges |
---|
322 | // edge_lat.resizeAndPreserve(nbFaces_*nvertex); |
---|
323 | // edge_nodes.resizeAndPreserve(2, nbFaces_*nvertex); |
---|
324 | // edge_faces.resize(2, nbFaces_*nvertex); |
---|
325 | // face_edges.resize(nvertex, nbFaces_); |
---|
326 | // face_faces.resize(nvertex, nbFaces_); |
---|
327 | // |
---|
328 | // vector<int> countEdges(nbFaces_*nvertex); // needed in case if edges have been already generated |
---|
329 | // vector<int> countFaces(nbFaces_); |
---|
330 | // countEdges.assign(nbFaces_*nvertex, 0); |
---|
331 | // countFaces.assign(nbFaces_, 0); |
---|
332 | // int edge; |
---|
333 | // for (int nf = 0; nf < nbFaces_; ++nf) |
---|
334 | // { |
---|
335 | // for (int nv1 = 0; nv1 < nvertex; ++nv1) |
---|
336 | // { |
---|
337 | // int nv = 0; |
---|
338 | // int nv2 = (nv1 < nvertex -1 ) ? (nv1 + 1) : (nv1 + 1 - nvertex); // cyclic rotation |
---|
339 | // if (map_edges.find(make_ordered_pair (face_nodes(nv1,nf), face_nodes(nv2,nf))) == map_edges.end()) |
---|
340 | // { |
---|
341 | // map_edges[make_ordered_pair (face_nodes(nv1,nf), face_nodes(nv2,nf))] = nbEdges_ ; |
---|
342 | // face_edges(nv1,nf) = map_edges[make_ordered_pair (face_nodes(nv1,nf), face_nodes(nv2,nf))]; |
---|
343 | // edge_faces(0,nbEdges_) = nf; |
---|
344 | // edge_faces(1,nbEdges_) = -999; |
---|
345 | // face_faces(nv1,nf) = 999999; |
---|
346 | // edge_nodes(Range::all(),nbEdges_) = face_nodes(nv1,nf), face_nodes(nv2,nf); |
---|
347 | // edge_lon(nbEdges_) = ( abs( node_lon(face_nodes(nv1,nf)) - node_lon(face_nodes(nv2,nf))) < 180.) ? |
---|
348 | // (( node_lon(face_nodes(nv1,nf)) + node_lon(face_nodes(nv2,nf))) * 0.5) : |
---|
349 | // (( node_lon(face_nodes(nv1,nf)) + node_lon(face_nodes(nv2,nf))) * 0.5 -180.); |
---|
350 | // edge_lat(nbEdges_) = ( node_lat(face_nodes(nv1,nf)) + node_lat(face_nodes(nv2,nf)) ) * 0.5; |
---|
351 | // ++nbEdges_; |
---|
352 | // } |
---|
353 | // else |
---|
354 | // { |
---|
355 | // edge = map_edges[make_ordered_pair (face_nodes(nv1,nf), face_nodes(nv2,nf))]; |
---|
356 | // face_edges(nv1,nf) = edge; |
---|
357 | // if (edgesAreWritten) |
---|
358 | // { |
---|
359 | // edge_faces(countEdges[edge], edge) = nf; |
---|
360 | // if (countEdges[edge]==0) |
---|
361 | // { |
---|
362 | // face_faces(nv1,nf) = 999999; |
---|
363 | // } |
---|
364 | // else |
---|
365 | // { |
---|
366 | // int face1 = nf; // = edge_faces(1,edge) |
---|
367 | // int face2 = edge_faces(0,edge); |
---|
368 | // face_faces(countFaces[face1], face1) = face2; |
---|
369 | // face_faces(countFaces[face2], face2) = face1; |
---|
370 | // ++(countFaces[face1]); |
---|
371 | // ++(countFaces[face2]); |
---|
372 | // } |
---|
373 | // } |
---|
374 | // else |
---|
375 | // { |
---|
376 | // edge_faces(1,edge) = nf; |
---|
377 | // int face1 = nf; // = edge_faces(1,edge) |
---|
378 | // int face2 = edge_faces(0,edge); |
---|
379 | // face_faces(countFaces[face1], face1) = face2; |
---|
380 | // face_faces(countFaces[face2], face2) = face1; |
---|
381 | // ++(countFaces[face1]); |
---|
382 | // ++(countFaces[face2]); |
---|
383 | // } |
---|
384 | // ++(countEdges[edge]); |
---|
385 | // } |
---|
386 | // } |
---|
387 | // } |
---|
388 | // edge_nodes.resizeAndPreserve(2, nbEdges_); |
---|
389 | // edge_faces.resizeAndPreserve(2, nbEdges_); |
---|
390 | // edge_lon.resizeAndPreserve(nbEdges_); |
---|
391 | // edge_lat.resizeAndPreserve(nbEdges_); |
---|
392 | // |
---|
393 | // // Create faces |
---|
394 | // face_lon.resize(nbFaces_); |
---|
395 | // face_lat.resize(nbFaces_); |
---|
396 | // face_lon = lonvalue; |
---|
397 | // face_lat = latvalue; |
---|
398 | // facesAreWritten = true; |
---|
399 | // |
---|
400 | // } // nvertex > 2 |
---|
401 | // |
---|
402 | // } // createMesh() |
---|
403 | |
---|
404 | ///---------------------------------------------------------------- |
---|
405 | /*! |
---|
406 | * \fn void CMesh::createMeshEpsilon(const CArray<double, 1>& lonvalue, const CArray<double, 1>& latvalue, |
---|
407 | const CArray<double, 2>& bounds_lon, const CArray<double, 2>& bounds_lat) |
---|
408 | * Creates or updates a mesh for the three types of mesh elements: nodes, edges, and faces. |
---|
409 | * Precision check is implemented with two hash values for each dimension, longitude and latitude. |
---|
410 | * \param [in] comm |
---|
411 | * \param [in] lonvalue Array of longitudes. |
---|
412 | * \param [in] latvalue Array of latitudes. |
---|
413 | * \param [in] bounds_lon Array of boundary longitudes. Its size depends on the element type. |
---|
414 | * \param [in] bounds_lat Array of boundary latitudes. Its size depends on the element type. |
---|
415 | */ |
---|
416 | void CMesh::createMeshEpsilon(const ep_lib::MPI_Comm& comm, |
---|
417 | const CArray<double, 1>& lonvalue, const CArray<double, 1>& latvalue, |
---|
418 | const CArray<double, 2>& bounds_lon, const CArray<double, 2>& bounds_lat) |
---|
419 | { |
---|
420 | |
---|
421 | int nvertex = (bounds_lon.numElements() == 0) ? 1 : bounds_lon.rows(); |
---|
422 | int mpiRank, mpiSize; |
---|
423 | ep_lib::MPI_Comm_rank(comm, &mpiRank); |
---|
424 | ep_lib::MPI_Comm_size(comm, &mpiSize); |
---|
425 | double prec = 1e-11; // used in calculations of edge_lon/lat |
---|
426 | |
---|
427 | if (nvertex == 1) |
---|
428 | { |
---|
429 | nbNodes_ = lonvalue.numElements(); |
---|
430 | node_lon.resize(nbNodes_); |
---|
431 | node_lat.resize(nbNodes_); |
---|
432 | node_lon = lonvalue; |
---|
433 | node_lat = latvalue; |
---|
434 | |
---|
435 | // Global node indexes |
---|
436 | vector<size_t> hashValues(4); |
---|
437 | CClientClientDHTSizet::Index2VectorInfoTypeMap nodeHash2IdxGlo; |
---|
438 | for (size_t nn = 0; nn < nbNodes_; ++nn) |
---|
439 | { |
---|
440 | hashValues = CMesh::createHashes(lonvalue(nn), latvalue(nn)); |
---|
441 | for (size_t nh = 0; nh < 4; ++nh) |
---|
442 | { |
---|
443 | nodeHash2IdxGlo[hashValues[nh]].push_back(mpiRank*nbNodes_ + nn); |
---|
444 | } |
---|
445 | } |
---|
446 | pNodeGlobalIndex = new CClientClientDHTSizet (nodeHash2IdxGlo, comm); |
---|
447 | nodesAreWritten = true; |
---|
448 | } |
---|
449 | |
---|
450 | else if (nvertex == 2) |
---|
451 | { |
---|
452 | nbEdges_ = bounds_lon.shape()[1]; |
---|
453 | edge_lon.resize(nbEdges_); |
---|
454 | edge_lat.resize(nbEdges_); |
---|
455 | edge_lon = lonvalue; |
---|
456 | edge_lat = latvalue; |
---|
457 | edge_nodes.resize(nvertex, nbEdges_); |
---|
458 | |
---|
459 | // For determining the global edge index |
---|
460 | unsigned long nbEdgesOnProc = nbEdges_; |
---|
461 | unsigned long nbEdgesAccum; |
---|
462 | ep_lib::MPI_Scan(&nbEdgesOnProc, &nbEdgesAccum, 1, EP_UNSIGNED_LONG, EP_SUM, comm); |
---|
463 | nbEdgesAccum -= nbEdges_; |
---|
464 | |
---|
465 | CClientClientDHTSizet::Index2VectorInfoTypeMap edgeHash2IdxGlo; |
---|
466 | CClientClientDHTSizet::Index2VectorInfoTypeMap edgeHash2Idx; |
---|
467 | |
---|
468 | // Case (1): node indexes have been generated by domain "nodes" |
---|
469 | if (nodesAreWritten) |
---|
470 | { |
---|
471 | vector<size_t> hashValues(4); |
---|
472 | CArray<size_t,1> nodeHashList(nbEdges_*nvertex*4); |
---|
473 | for (int ne = 0; ne < nbEdges_; ++ne) // size_t doesn't work with CArray<double, 2> |
---|
474 | { |
---|
475 | for (int nv = 0; nv < nvertex; ++nv) |
---|
476 | { |
---|
477 | hashValues = CMesh::createHashes(bounds_lon(nv, ne), bounds_lat(nv, ne)); |
---|
478 | for (int nh = 0; nh < 4; ++nh) |
---|
479 | { |
---|
480 | nodeHashList((ne*nvertex + nv)*4 + nh) = hashValues[nh]; |
---|
481 | } |
---|
482 | } |
---|
483 | } |
---|
484 | |
---|
485 | // Recuperating the node global indexing and writing edge_nodes |
---|
486 | // Creating map edgeHash2IdxGlo <hash, idxGlo> |
---|
487 | pNodeGlobalIndex->computeIndexInfoMapping(nodeHashList); |
---|
488 | CClientClientDHTSizet::Index2VectorInfoTypeMap& nodeHash2IdxGlo = pNodeGlobalIndex->getInfoIndexMap(); |
---|
489 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it; |
---|
490 | size_t nodeIdxGlo1, nodeIdxGlo2; |
---|
491 | for (int ne = 0; ne < nbEdges_; ++ne) |
---|
492 | { |
---|
493 | for (int nv = 0; nv < nvertex; ++nv) |
---|
494 | { |
---|
495 | int nh = 0; |
---|
496 | it = nodeHash2IdxGlo.find(nodeHashList((ne*nvertex + nv)*4 + nh)); |
---|
497 | // The loop below is needed in case if a hash generated by domain "edges" differs |
---|
498 | // from that generated by domain "nodes" because of possible precision issues |
---|
499 | while (it == nodeHash2IdxGlo.end()) |
---|
500 | { |
---|
501 | ++nh; |
---|
502 | it = nodeHash2IdxGlo.find(nodeHashList((ne*nvertex + nv)*4 + nh)); |
---|
503 | } |
---|
504 | edge_nodes(nv,ne) = it->second[0]; |
---|
505 | if (nv ==0) |
---|
506 | nodeIdxGlo1 = it->second[0]; |
---|
507 | else |
---|
508 | nodeIdxGlo2 = it->second[0]; |
---|
509 | } |
---|
510 | size_t edgeIdxGlo = nbEdgesAccum + ne; |
---|
511 | edgeHash2IdxGlo[ hashPairOrdered(nodeIdxGlo1, nodeIdxGlo2) ].push_back(edgeIdxGlo); |
---|
512 | } |
---|
513 | } // nodesAreWritten |
---|
514 | |
---|
515 | |
---|
516 | // Case (2): node indexes have not been generated previously |
---|
517 | else |
---|
518 | { |
---|
519 | // (2.1) Creating a list of hashes for each node and a map nodeHash2Idx <hash, <idx,rank> > |
---|
520 | vector<size_t> hashValues(4); |
---|
521 | CClientClientDHTSizet::Index2VectorInfoTypeMap nodeHash2Idx; |
---|
522 | CArray<size_t,1> nodeHashList(nbEdges_*nvertex*4); |
---|
523 | int nbHash = 0; |
---|
524 | for (int ne = 0; ne < nbEdges_; ++ne) |
---|
525 | { |
---|
526 | for (int nv = 0; nv < nvertex; ++nv) |
---|
527 | { |
---|
528 | hashValues = CMesh::createHashes(bounds_lon(nv, ne), bounds_lat(nv, ne)); |
---|
529 | for (int nh = 0; nh < 4; ++nh) |
---|
530 | { |
---|
531 | if (nodeHash2Idx[hashValues[nh]].size() == 0) |
---|
532 | { |
---|
533 | nodeHash2Idx[hashValues[nh]].push_back(generateNodeIndex(hashValues)); |
---|
534 | nodeHash2Idx[hashValues[nh]].push_back(mpiRank); |
---|
535 | nodeHashList(nbHash) = hashValues[nh]; |
---|
536 | ++nbHash; |
---|
537 | } |
---|
538 | } |
---|
539 | } |
---|
540 | } |
---|
541 | nodeHashList.resizeAndPreserve(nbHash); |
---|
542 | |
---|
543 | // (2.2) Generating global node indexes |
---|
544 | // The ownership criterion: priority of the process of smaller index |
---|
545 | // Maps generated in this step are: |
---|
546 | // Maps generated in this step are: |
---|
547 | // nodeHash2Info = <hash, [[idx, rankMin], [idx, rank1], [idx, rank3]..]> |
---|
548 | // nodeIdx2Idx = <idx, <rankOwner, idx>> |
---|
549 | |
---|
550 | CClientClientDHTSizet dhtNodeHash(nodeHash2Idx, comm); |
---|
551 | dhtNodeHash.computeIndexInfoMapping(nodeHashList); |
---|
552 | CClientClientDHTSizet::Index2VectorInfoTypeMap& nodeHash2Info = dhtNodeHash.getInfoIndexMap(); |
---|
553 | |
---|
554 | |
---|
555 | CClientClientDHTSizet::Index2VectorInfoTypeMap nodeIdx2Idx; |
---|
556 | CArray<size_t,1> nodeIdxList(nbEdges_*nvertex*4); |
---|
557 | size_t nIdx = 0; |
---|
558 | |
---|
559 | for (CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it = nodeHash2Info.begin(); it != nodeHash2Info.end(); ++it) |
---|
560 | { |
---|
561 | size_t rankMin = (it->second)[1]; |
---|
562 | size_t idx = (it->second)[0]; |
---|
563 | for (int i = 2; i < (it->second).size();) |
---|
564 | { |
---|
565 | if ( (it->second)[i+1] < rankMin) |
---|
566 | { |
---|
567 | idx = (it->second)[i]; |
---|
568 | rankMin = (it->second)[i+1]; |
---|
569 | (it->second)[i+1] = (it->second)[i-1]; |
---|
570 | } |
---|
571 | i += 2; |
---|
572 | } |
---|
573 | if (nodeIdx2Idx.count(idx) == 0) |
---|
574 | { |
---|
575 | if (mpiRank == rankMin) |
---|
576 | { |
---|
577 | nodeIdx2Idx[idx].push_back(rankMin); |
---|
578 | nodeIdx2Idx[idx].push_back(idx); |
---|
579 | } |
---|
580 | nodeIdxList(nIdx) = idx; |
---|
581 | ++nIdx; |
---|
582 | } |
---|
583 | } |
---|
584 | nodeIdxList.resizeAndPreserve(nIdx); |
---|
585 | |
---|
586 | // CDHTAutoIndexing will not give consistent node numbering for varying number of procs. => |
---|
587 | // Solution: global node indexing by hand. |
---|
588 | // Maps modified in this step: |
---|
589 | // nodeIdx2Idx = <idx, idxGlo> |
---|
590 | unsigned long nodeCount = nodeIdx2Idx.size(); |
---|
591 | unsigned long nodeStart, nbNodes; |
---|
592 | ep_lib::MPI_Scan(&nodeCount, &nodeStart, 1, EP_UNSIGNED_LONG, EP_SUM, comm); |
---|
593 | int nNodes = nodeStart; |
---|
594 | ep_lib::MPI_Bcast(&nNodes, 1, EP_UNSIGNED_LONG, mpiSize-1, comm); |
---|
595 | nbNodesGlo = nNodes; |
---|
596 | |
---|
597 | nodeStart -= nodeCount; |
---|
598 | node_start = nodeStart; |
---|
599 | node_count = nodeCount; |
---|
600 | CClientClientDHTSizet::Index2VectorInfoTypeMap dummyMap; // just a dummy map used to ensure that each node is numbered only once |
---|
601 | size_t count = 0; |
---|
602 | |
---|
603 | for (int ne = 0; ne < nbEdges_; ++ne) |
---|
604 | { |
---|
605 | for (int nv = 0; nv < nvertex; ++nv) |
---|
606 | { |
---|
607 | vector<size_t> hashValues = CMesh::createHashes(bounds_lon(nv, ne), bounds_lat(nv, ne)); |
---|
608 | size_t nodeIdx = generateNodeIndex(hashValues); |
---|
609 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it = nodeIdx2Idx.find(nodeIdx); |
---|
610 | if (it != nodeIdx2Idx.end()) |
---|
611 | { |
---|
612 | if (dummyMap.count(nodeIdx) == 0) |
---|
613 | { |
---|
614 | dummyMap[nodeIdx].push_back(nodeIdx); |
---|
615 | (it->second)[1] = node_start + count; |
---|
616 | ++count; |
---|
617 | } |
---|
618 | } |
---|
619 | } |
---|
620 | } |
---|
621 | |
---|
622 | CClientClientDHTSizet dhtNodeIdx(nodeIdx2Idx, comm); |
---|
623 | dhtNodeIdx.computeIndexInfoMapping(nodeIdxList); |
---|
624 | CClientClientDHTSizet::Index2VectorInfoTypeMap& nodeIdx2IdxGlo = dhtNodeIdx.getInfoIndexMap(); |
---|
625 | |
---|
626 | // (2.3) Saving variables: node_lon, node_lat, edge_nodes |
---|
627 | // Creating map nodeHash2IdxGlo <hash, idxGlo> |
---|
628 | // Creating map edgeHash2IdxGlo <hash, idxGlo> |
---|
629 | // nbNodesGlo = dhtNodeIdxGlo.getNbIndexesGlobal(); |
---|
630 | // node_count = dhtNodeIdxGlo.getIndexCount(); |
---|
631 | // node_start = dhtNodeIdxGlo.getIndexStart(); |
---|
632 | CClientClientDHTSizet::Index2VectorInfoTypeMap nodeHash2IdxGlo; |
---|
633 | node_lon.resize(node_count); |
---|
634 | node_lat.resize(node_count); |
---|
635 | vector <size_t> edgeNodes; |
---|
636 | size_t idxGlo = 0; |
---|
637 | |
---|
638 | for (int ne = 0; ne < nbEdges_; ++ne) |
---|
639 | { |
---|
640 | for (int nv = 0; nv < nvertex; ++nv) |
---|
641 | { |
---|
642 | hashValues = CMesh::createHashes(bounds_lon(nv, ne), bounds_lat(nv, ne)); |
---|
643 | size_t myIdx = generateNodeIndex(hashValues); |
---|
644 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator itIdx = nodeIdx2IdxGlo.find(myIdx); |
---|
645 | idxGlo = (itIdx->second)[1]; |
---|
646 | |
---|
647 | if (mpiRank == (itIdx->second)[0]) |
---|
648 | { |
---|
649 | // node_lon(idxGlo - node_start) = (bounds_lon(nv, ne) == 360.) ? (0.) : (bounds_lon(nv, ne)); |
---|
650 | node_lon(idxGlo - node_start) = bounds_lon(nv, ne); |
---|
651 | node_lat(idxGlo - node_start) = bounds_lat(nv, ne); |
---|
652 | } |
---|
653 | edge_nodes(nv,ne) = idxGlo; |
---|
654 | for (int nh = 0; nh < 4; ++nh) |
---|
655 | nodeHash2IdxGlo[hashValues[nh]].push_back(idxGlo); |
---|
656 | edgeNodes.push_back(idxGlo); |
---|
657 | } |
---|
658 | if (edgeNodes[0] != edgeNodes[1]) |
---|
659 | { |
---|
660 | size_t edgeIdxGlo = nbEdgesAccum + ne; |
---|
661 | edgeHash2IdxGlo[ hashPairOrdered(edgeNodes[0], edgeNodes[1]) ].push_back(edgeIdxGlo); |
---|
662 | } |
---|
663 | edgeNodes.clear(); |
---|
664 | } |
---|
665 | pNodeGlobalIndex = new CClientClientDHTSizet (nodeHash2IdxGlo, comm); |
---|
666 | } // !nodesAreWritten |
---|
667 | |
---|
668 | pEdgeGlobalIndex = new CClientClientDHTSizet (edgeHash2IdxGlo, comm); |
---|
669 | edgesAreWritten = true; |
---|
670 | } //nvertex = 2 |
---|
671 | |
---|
672 | else |
---|
673 | { |
---|
674 | nbFaces_ = bounds_lon.shape()[1]; |
---|
675 | face_lon.resize(nbFaces_); |
---|
676 | face_lat.resize(nbFaces_); |
---|
677 | face_lon = lonvalue; |
---|
678 | face_lat = latvalue; |
---|
679 | face_nodes.resize(nvertex, nbFaces_); |
---|
680 | face_edges.resize(nvertex, nbFaces_); |
---|
681 | |
---|
682 | // For determining the global face index |
---|
683 | unsigned long nbFacesOnProc = nbFaces_; |
---|
684 | unsigned long nbFacesAccum; |
---|
685 | ep_lib::MPI_Scan(&nbFacesOnProc, &nbFacesAccum, 1, EP_UNSIGNED_LONG, EP_SUM, comm); |
---|
686 | nbFacesAccum -= nbFaces_; |
---|
687 | |
---|
688 | // Case (1): edges have been previously generated |
---|
689 | if (edgesAreWritten) |
---|
690 | { |
---|
691 | // (1.1) Recuperating node global indexing and saving face_nodes |
---|
692 | vector<size_t> hashValues(4); |
---|
693 | CArray<size_t,1> nodeHashList(nbFaces_*nvertex*4); |
---|
694 | for (int nf = 0; nf < nbFaces_; ++nf) |
---|
695 | { |
---|
696 | for (int nv = 0; nv < nvertex; ++nv) |
---|
697 | { |
---|
698 | hashValues = CMesh::createHashes(bounds_lon(nv, nf), bounds_lat(nv, nf)); |
---|
699 | for (int nh = 0; nh < 4; ++nh) |
---|
700 | nodeHashList((nf*nvertex + nv)*4 + nh) = hashValues[nh]; |
---|
701 | } |
---|
702 | } |
---|
703 | pNodeGlobalIndex->computeIndexInfoMapping(nodeHashList); |
---|
704 | CClientClientDHTSizet::Index2VectorInfoTypeMap& nodeHash2IdxGlo = pNodeGlobalIndex->getInfoIndexMap(); |
---|
705 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it1, it2; |
---|
706 | CArray<size_t,1> edgeHashList(nbFaces_*nvertex); |
---|
707 | size_t nEdge = 0; |
---|
708 | for (int nf = 0; nf < nbFaces_; ++nf) |
---|
709 | { |
---|
710 | for (int nv1 = 0; nv1 < nvertex; ++nv1) |
---|
711 | { |
---|
712 | int nh1 = 0; |
---|
713 | int nv2 = (nv1 < nvertex -1 ) ? (nv1 + 1) : (nv1 + 1 - nvertex); // cyclic rotation |
---|
714 | it1 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh1)); |
---|
715 | while (it1 == nodeHash2IdxGlo.end()) |
---|
716 | { |
---|
717 | ++nh1; |
---|
718 | it1 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh1)); |
---|
719 | } |
---|
720 | int nh2 = 0; |
---|
721 | it2 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv2)*4 + nh2)); |
---|
722 | while (it2 == nodeHash2IdxGlo.end()) |
---|
723 | { |
---|
724 | ++nh2; |
---|
725 | it2 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh2)); |
---|
726 | } |
---|
727 | face_nodes(nv1,nf) = it1->second[0]; |
---|
728 | if (it1->second[0] != it2->second[0]) |
---|
729 | { |
---|
730 | edgeHashList(nEdge) = hashPairOrdered(it1->second[0], it2->second[0]); |
---|
731 | ++nEdge; |
---|
732 | } |
---|
733 | } |
---|
734 | } |
---|
735 | edgeHashList.resizeAndPreserve(nEdge); |
---|
736 | |
---|
737 | // (1.2) Recuperating edge global indexing and saving face_edges |
---|
738 | pEdgeGlobalIndex->computeIndexInfoMapping(edgeHashList); |
---|
739 | CClientClientDHTSizet::Index2VectorInfoTypeMap& edgeHash2IdxGlo = pEdgeGlobalIndex->getInfoIndexMap(); |
---|
740 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator itEdgeHash; |
---|
741 | CClientClientDHTSizet::Index2VectorInfoTypeMap edgeHash2Rank; |
---|
742 | CClientClientDHTSizet::Index2VectorInfoTypeMap edgeIdxGlo2Face; |
---|
743 | CArray<size_t,1> edgeIdxList(nbFaces_*nvertex); |
---|
744 | size_t iIdx = 0; |
---|
745 | |
---|
746 | for (int nf = 0; nf < nbFaces_; ++nf) |
---|
747 | { |
---|
748 | for (int nv1 = 0; nv1 < nvertex; ++nv1) |
---|
749 | { |
---|
750 | int nh1 = 0; |
---|
751 | int nv2 = (nv1 < nvertex -1 ) ? (nv1 + 1) : (nv1 + 1 - nvertex); // cyclic rotation |
---|
752 | it1 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh1)); |
---|
753 | while (it1 == nodeHash2IdxGlo.end()) |
---|
754 | { |
---|
755 | ++nh1; |
---|
756 | it1 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh1)); |
---|
757 | } |
---|
758 | int nh2 = 0; |
---|
759 | it2 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv2)*4 + nh2)); |
---|
760 | while (it2 == nodeHash2IdxGlo.end()) |
---|
761 | { |
---|
762 | ++nh2; |
---|
763 | it2 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh2)); |
---|
764 | } |
---|
765 | if (it1->second[0] != it2->second[0]) |
---|
766 | { |
---|
767 | size_t faceIdxGlo = nbFacesAccum + nf; |
---|
768 | size_t edgeHash = hashPairOrdered(it1->second[0], it2->second[0]); |
---|
769 | itEdgeHash = edgeHash2IdxGlo.find(edgeHash); |
---|
770 | size_t edgeIdxGlo = itEdgeHash->second[0]; |
---|
771 | face_edges(nv1,nf) = edgeIdxGlo; |
---|
772 | if (edgeIdxGlo2Face.count(edgeIdxGlo) == 0) |
---|
773 | { |
---|
774 | edgeIdxList(iIdx) = edgeIdxGlo; |
---|
775 | ++iIdx; |
---|
776 | } |
---|
777 | edgeIdxGlo2Face[edgeIdxGlo].push_back(faceIdxGlo); |
---|
778 | edgeHash2Rank[edgeHash].push_back(mpiRank); |
---|
779 | edgeHash2Rank[edgeHash].push_back(itEdgeHash->second[0]); |
---|
780 | } |
---|
781 | else |
---|
782 | { |
---|
783 | face_edges(nv1,nf) = 999999; |
---|
784 | } |
---|
785 | } |
---|
786 | } |
---|
787 | edgeIdxList.resizeAndPreserve(iIdx); |
---|
788 | |
---|
789 | // (1.3) Saving remaining variables edge_faces and face_faces |
---|
790 | |
---|
791 | // Establishing edge ownership |
---|
792 | // The ownership criterion: priority of the process with smaller rank |
---|
793 | CClientClientDHTSizet dhtEdgeHash (edgeHash2Rank, comm); |
---|
794 | dhtEdgeHash.computeIndexInfoMapping(edgeHashList); |
---|
795 | CClientClientDHTSizet::Index2VectorInfoTypeMap& edgeHash2Info = dhtEdgeHash.getInfoIndexMap(); |
---|
796 | |
---|
797 | // edgeHash2Info = <edgeHash, < rank1, idxGlo, rank2, idxGlo>> |
---|
798 | int edgeCount = 0; |
---|
799 | for (CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it = edgeHash2Info.begin(); it != edgeHash2Info.end(); ++it) |
---|
800 | { |
---|
801 | vector <size_t> edgeInfo = it->second; |
---|
802 | if (edgeInfo[0] == mpiRank) |
---|
803 | { |
---|
804 | ++edgeCount; |
---|
805 | } |
---|
806 | } |
---|
807 | |
---|
808 | unsigned long edgeStart, nbEdges; |
---|
809 | ep_lib::MPI_Scan(&edgeCount, &edgeStart, 1, EP_UNSIGNED_LONG, EP_SUM, comm); |
---|
810 | int nEdges = edgeStart; |
---|
811 | ep_lib::MPI_Bcast(&nEdges, 1, EP_UNSIGNED_LONG, mpiSize-1, comm); |
---|
812 | nbEdgesGlo = nEdges; |
---|
813 | |
---|
814 | // edges to be splitted equally between procs |
---|
815 | if ( (nbEdgesGlo % mpiSize) == 0) |
---|
816 | { |
---|
817 | edge_count = nbEdgesGlo/mpiSize; |
---|
818 | edge_start = mpiRank*edge_count; |
---|
819 | } |
---|
820 | else |
---|
821 | { |
---|
822 | if (mpiRank == (mpiSize - 1) ) |
---|
823 | { |
---|
824 | edge_count = nbEdgesGlo/mpiSize; |
---|
825 | edge_start = mpiRank*(nbEdgesGlo/mpiSize + 1); |
---|
826 | } |
---|
827 | else |
---|
828 | { |
---|
829 | edge_count = nbEdgesGlo/mpiSize + 1; |
---|
830 | edge_start = mpiRank*edge_count; |
---|
831 | } |
---|
832 | } |
---|
833 | CArray<size_t,1> edgeIdxGloList(edge_count); |
---|
834 | for (int i = 0; i < edge_count; ++i) |
---|
835 | { |
---|
836 | edgeIdxGloList(i) = i + edge_start; |
---|
837 | } |
---|
838 | |
---|
839 | CClientClientDHTSizet dhtEdgeIdxGlo2Face (edgeIdxGlo2Face, comm); |
---|
840 | CClientClientDHTSizet dhtEdge2Face (edgeIdxGlo2Face, comm); |
---|
841 | dhtEdgeIdxGlo2Face.computeIndexInfoMapping(edgeIdxGloList); |
---|
842 | CClientClientDHTSizet::Index2VectorInfoTypeMap& edgeIdxGlo2FaceIdx = dhtEdgeIdxGlo2Face.getInfoIndexMap(); |
---|
843 | dhtEdge2Face.computeIndexInfoMapping(edgeIdxList); |
---|
844 | CClientClientDHTSizet::Index2VectorInfoTypeMap& edgeIdx2FaceIdx = dhtEdge2Face.getInfoIndexMap(); |
---|
845 | |
---|
846 | |
---|
847 | edge_faces.resize(2, edge_count); |
---|
848 | for (int i = 0; i < edge_count; ++i) |
---|
849 | { |
---|
850 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it = edgeIdxGlo2FaceIdx.find(i + edge_start); |
---|
851 | int indexGlo = it->first; |
---|
852 | vector<size_t> faces = it->second; |
---|
853 | int face1 = faces[0]; |
---|
854 | edge_faces(0, indexGlo - edge_start) = face1; |
---|
855 | if (faces.size() == 2) |
---|
856 | { |
---|
857 | int face2 = faces[1]; |
---|
858 | edge_faces(1, indexGlo - edge_start) = face2; |
---|
859 | } |
---|
860 | else |
---|
861 | { |
---|
862 | edge_faces(1, indexGlo - edge_start) = -999; |
---|
863 | } |
---|
864 | } |
---|
865 | |
---|
866 | size_t tmp; |
---|
867 | vector<size_t> tmpVec; |
---|
868 | for (CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it = edgeIdx2FaceIdx.begin(); it != edgeIdx2FaceIdx.end(); it++) |
---|
869 | { |
---|
870 | tmp = it->first; |
---|
871 | tmpVec = it->second; |
---|
872 | tmp++; |
---|
873 | } |
---|
874 | |
---|
875 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator itFace1, itFace2, itIndex; |
---|
876 | face_faces.resize(nvertex, nbFaces_); |
---|
877 | for (int nf = 0; nf < nbFaces_; ++nf) |
---|
878 | { |
---|
879 | for (int nv1 = 0; nv1 < nvertex; ++nv1) |
---|
880 | { |
---|
881 | int nh1 = 0; |
---|
882 | int nv2 = (nv1 < nvertex -1 ) ? (nv1 + 1) : (nv1 + 1 - nvertex); // cyclic rotation |
---|
883 | it1 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh1)); |
---|
884 | while (it1 == nodeHash2IdxGlo.end()) |
---|
885 | { |
---|
886 | ++nh1; |
---|
887 | it1 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh1)); |
---|
888 | } |
---|
889 | int nh2 = 0; |
---|
890 | it2 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv2)*4 + nh2)); |
---|
891 | while (it2 == nodeHash2IdxGlo.end()) |
---|
892 | { |
---|
893 | ++nh2; |
---|
894 | it2 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh2)); |
---|
895 | } |
---|
896 | |
---|
897 | if (it1->second[0] != it2->second[0]) |
---|
898 | { |
---|
899 | size_t faceIdxGlo = nbFacesAccum + nf; |
---|
900 | size_t edgeHash = hashPairOrdered(it1->second[0], it2->second[0]); |
---|
901 | itEdgeHash = edgeHash2Info.find(edgeHash); |
---|
902 | int edgeIdxGlo = (itEdgeHash->second)[1]; |
---|
903 | |
---|
904 | if ( (itEdgeHash->second)[0] == mpiRank) |
---|
905 | { |
---|
906 | itFace1 = edgeIdx2FaceIdx.find(edgeIdxGlo); |
---|
907 | int face1 = itFace1->second[0]; |
---|
908 | if (itFace1->second.size() == 1) |
---|
909 | { |
---|
910 | face_faces(nv1, nf) = 999999; |
---|
911 | } |
---|
912 | else |
---|
913 | { |
---|
914 | int face2 = itFace1->second[1]; |
---|
915 | face_faces(nv1, nf) = (faceIdxGlo == face1 ? face2 : face1); |
---|
916 | } |
---|
917 | } // edge owner |
---|
918 | else |
---|
919 | { |
---|
920 | itFace1 = edgeIdx2FaceIdx.find(edgeIdxGlo); |
---|
921 | int face1 = itFace1->second[0]; |
---|
922 | int face2 = itFace1->second[1]; |
---|
923 | face_faces(nv1, nf) = (faceIdxGlo == face1 ? face2 : face1); |
---|
924 | } // not an edge owner |
---|
925 | } // node1 != node2 |
---|
926 | else |
---|
927 | { |
---|
928 | face_faces(nv1, nf) = 999999; |
---|
929 | } |
---|
930 | } |
---|
931 | } |
---|
932 | } // edgesAreWritten |
---|
933 | |
---|
934 | // Case (2): nodes have been previously generated |
---|
935 | else if (nodesAreWritten) |
---|
936 | { |
---|
937 | // (2.1) Generating nodeHashList |
---|
938 | vector<size_t> hashValues(4); |
---|
939 | CArray<size_t,1> nodeHashList(nbFaces_*nvertex*4); |
---|
940 | for (int nf = 0; nf < nbFaces_; ++nf) |
---|
941 | { |
---|
942 | for (int nv = 0; nv < nvertex; ++nv) |
---|
943 | { |
---|
944 | hashValues = CMesh::createHashes(bounds_lon(nv, nf), bounds_lat(nv, nf)); |
---|
945 | for (int nh = 0; nh < 4; ++nh) |
---|
946 | nodeHashList((nf*nvertex + nv)*4 + nh) = hashValues[nh]; |
---|
947 | } |
---|
948 | } |
---|
949 | |
---|
950 | // (2.2) Recuperating node global indexing and saving face_nodes |
---|
951 | // Generating edgeHash2Info = <hash, <idx, rank>> and edgeHashList |
---|
952 | pNodeGlobalIndex->computeIndexInfoMapping(nodeHashList); |
---|
953 | CClientClientDHTSizet::Index2VectorInfoTypeMap& nodeHash2IdxGlo = pNodeGlobalIndex->getInfoIndexMap(); |
---|
954 | CClientClientDHTSizet::Index2VectorInfoTypeMap edgeHash2Idx; |
---|
955 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it1, it2; |
---|
956 | CArray<size_t,1> edgeHashList(nbFaces_*nvertex); |
---|
957 | int nEdgeHash = 0; |
---|
958 | for (int nf = 0; nf < nbFaces_; ++nf) |
---|
959 | { |
---|
960 | for (int nv1 = 0; nv1 < nvertex; ++nv1) |
---|
961 | { |
---|
962 | int nh1 = 0; |
---|
963 | int nv2 = (nv1 < nvertex -1 ) ? (nv1 + 1) : (nv1 + 1 - nvertex); // cyclic rotation |
---|
964 | it1 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh1)); |
---|
965 | while (it1 == nodeHash2IdxGlo.end()) |
---|
966 | { |
---|
967 | ++nh1; |
---|
968 | it1 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh1)); |
---|
969 | } |
---|
970 | int nh2 = 0; |
---|
971 | it2 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv2)*4 + nh2)); |
---|
972 | while (it2 == nodeHash2IdxGlo.end()) |
---|
973 | { |
---|
974 | ++nh2; |
---|
975 | it2 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh2)); |
---|
976 | } |
---|
977 | face_nodes(nv1,nf) = it1->second[0]; |
---|
978 | size_t edgeHash = hashPairOrdered(it1->second[0], it2->second[0]); |
---|
979 | if (edgeHash2Idx.count(edgeHash) == 0) |
---|
980 | { |
---|
981 | edgeHash2Idx[edgeHash].push_back(edgeHash); |
---|
982 | edgeHash2Idx[edgeHash].push_back(mpiRank); |
---|
983 | edgeHashList(nEdgeHash) = edgeHash; |
---|
984 | ++nEdgeHash; |
---|
985 | } |
---|
986 | } |
---|
987 | } |
---|
988 | edgeHashList.resizeAndPreserve(nEdgeHash); |
---|
989 | |
---|
990 | // (2.3) Generating global edge indexes |
---|
991 | // The ownership criterion: priority of the process with smaller rank |
---|
992 | // Maps generated in this step are: |
---|
993 | // edgeIdx2Idx = = <idx, <rankOwner, idx>> |
---|
994 | // edgeIdx2IdxGlo = <idxMin, <rankOwner, idxGlo>> |
---|
995 | |
---|
996 | CClientClientDHTSizet dhtEdgeHash(edgeHash2Idx, comm); |
---|
997 | dhtEdgeHash.computeIndexInfoMapping(edgeHashList); |
---|
998 | CClientClientDHTSizet::Index2VectorInfoTypeMap& edgeHash2Info = dhtEdgeHash.getInfoIndexMap(); |
---|
999 | // edgeHash2Info = <hash, [[idx1, rank1], [idx2, rank2], [idx3, rank3]..]> |
---|
1000 | |
---|
1001 | CClientClientDHTSizet::Index2VectorInfoTypeMap edgeIdx2Idx; |
---|
1002 | |
---|
1003 | for (CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it = edgeHash2Info.begin(); it != edgeHash2Info.end(); ++it) |
---|
1004 | { |
---|
1005 | size_t rankMin = (it->second)[1]; |
---|
1006 | size_t idx = (it->second)[0]; |
---|
1007 | |
---|
1008 | for (int i = 2; i < (it->second).size();) |
---|
1009 | { |
---|
1010 | if ((it->second)[i+1] < rankMin) |
---|
1011 | { |
---|
1012 | rankMin = (it->second)[i+1]; |
---|
1013 | idx = (it->second)[i]; |
---|
1014 | (it->second)[i+1] = (it->second)[i-1]; |
---|
1015 | } |
---|
1016 | i += 2; |
---|
1017 | } |
---|
1018 | if (edgeIdx2Idx.count(idx) == 0) |
---|
1019 | { |
---|
1020 | if (mpiRank == rankMin) |
---|
1021 | { |
---|
1022 | edgeIdx2Idx[idx].push_back(rankMin); |
---|
1023 | edgeIdx2Idx[idx].push_back(idx); |
---|
1024 | } |
---|
1025 | } |
---|
1026 | } |
---|
1027 | |
---|
1028 | unsigned long edgeCount = edgeIdx2Idx.size(); |
---|
1029 | unsigned long edgeStart, nbEdges; |
---|
1030 | ep_lib::MPI_Scan(&edgeCount, &edgeStart, 1, EP_UNSIGNED_LONG, EP_SUM, comm); |
---|
1031 | int nEdges = edgeStart; |
---|
1032 | ep_lib::MPI_Bcast(&nEdges, 1, EP_UNSIGNED_LONG, mpiSize-1, comm); |
---|
1033 | nbEdgesGlo = nEdges; |
---|
1034 | |
---|
1035 | edgeStart -= edgeCount; |
---|
1036 | edge_start = edgeStart; |
---|
1037 | edge_count = edgeCount; |
---|
1038 | CClientClientDHTSizet::Index2VectorInfoTypeMap dummyEdgeMap; |
---|
1039 | int count = 0; |
---|
1040 | |
---|
1041 | for (int nf = 0; nf < nbFaces_; ++nf) |
---|
1042 | { |
---|
1043 | for (int nv1 = 0; nv1 < nvertex; ++nv1) |
---|
1044 | { |
---|
1045 | // Getting global indexes of edge's nodes |
---|
1046 | int nh1 = 0; |
---|
1047 | int nv2 = (nv1 < nvertex -1 ) ? (nv1 + 1) : (nv1 + 1 - nvertex); // cyclic rotation |
---|
1048 | it1 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh1)); |
---|
1049 | while (it1 == nodeHash2IdxGlo.end()) |
---|
1050 | { |
---|
1051 | ++nh1; |
---|
1052 | it1 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh1)); |
---|
1053 | } |
---|
1054 | int nh2 = 0; |
---|
1055 | it2 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv2)*4 + nh2)); |
---|
1056 | while (it2 == nodeHash2IdxGlo.end()) |
---|
1057 | { |
---|
1058 | ++nh2; |
---|
1059 | it2 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh2)); |
---|
1060 | } |
---|
1061 | size_t nodeIdxGlo1 = it1->second[0]; |
---|
1062 | size_t nodeIdxGlo2 = it2->second[0]; |
---|
1063 | |
---|
1064 | if (nodeIdxGlo1 != nodeIdxGlo2) |
---|
1065 | { |
---|
1066 | size_t edgeIdx = hashPairOrdered(nodeIdxGlo1, nodeIdxGlo2); |
---|
1067 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it = edgeIdx2Idx.find(edgeIdx); |
---|
1068 | if (it != edgeIdx2Idx.end()) |
---|
1069 | { |
---|
1070 | if (dummyEdgeMap.count(edgeIdx) == 0) |
---|
1071 | { |
---|
1072 | dummyEdgeMap[edgeIdx].push_back(edgeIdx); |
---|
1073 | (it->second)[1] = edge_start + count; |
---|
1074 | ++count; |
---|
1075 | } |
---|
1076 | } |
---|
1077 | } |
---|
1078 | } |
---|
1079 | } |
---|
1080 | |
---|
1081 | CClientClientDHTSizet dhtEdgeIdx(edgeIdx2Idx, comm); |
---|
1082 | dhtEdgeIdx.computeIndexInfoMapping(edgeHashList); |
---|
1083 | CClientClientDHTSizet::Index2VectorInfoTypeMap& edgeIdx2IdxGlo = dhtEdgeIdx.getInfoIndexMap(); |
---|
1084 | |
---|
1085 | // (2.4) Saving variables: edge_lon, edge_lat, face_edges |
---|
1086 | edge_lon.resize(edge_count); |
---|
1087 | edge_lat.resize(edge_count); |
---|
1088 | edge_nodes.resize(2, edge_count); |
---|
1089 | face_edges.resize(nvertex, nbFaces_); |
---|
1090 | |
---|
1091 | CClientClientDHTSizet::Index2VectorInfoTypeMap edgeIdxGlo2Face; |
---|
1092 | CArray<size_t,1> edgeIdxGloList(nbFaces_*nvertex); |
---|
1093 | size_t iIdx = 0; |
---|
1094 | |
---|
1095 | for (int nf = 0; nf < nbFaces_; ++nf) |
---|
1096 | { |
---|
1097 | for (int nv1 = 0; nv1 < nvertex; ++nv1) |
---|
1098 | { |
---|
1099 | // Getting global indexes of edge's nodes |
---|
1100 | int nh1 = 0; |
---|
1101 | int nv2 = (nv1 < nvertex -1 ) ? (nv1 + 1) : (nv1 + 1 - nvertex); // cyclic rotation |
---|
1102 | it1 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh1)); |
---|
1103 | while (it1 == nodeHash2IdxGlo.end()) |
---|
1104 | { |
---|
1105 | ++nh1; |
---|
1106 | it1 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh1)); |
---|
1107 | } |
---|
1108 | int nh2 = 0; |
---|
1109 | it2 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv2)*4 + nh2)); |
---|
1110 | while (it2 == nodeHash2IdxGlo.end()) |
---|
1111 | { |
---|
1112 | ++nh2; |
---|
1113 | it2 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh2)); |
---|
1114 | } |
---|
1115 | // Getting edge global index |
---|
1116 | size_t nodeIdxGlo1 = it1->second[0]; |
---|
1117 | size_t nodeIdxGlo2 = it2->second[0]; |
---|
1118 | size_t myIdx = hashPairOrdered(nodeIdxGlo1, nodeIdxGlo2); |
---|
1119 | if (nodeIdxGlo1 != nodeIdxGlo2) |
---|
1120 | { |
---|
1121 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator itIdx = edgeIdx2IdxGlo.find(myIdx); |
---|
1122 | int edgeIdxGlo = (itIdx->second)[1]; |
---|
1123 | size_t faceIdxGlo = nbFacesAccum + nf; |
---|
1124 | |
---|
1125 | if (mpiRank == (itIdx->second)[0]) |
---|
1126 | { |
---|
1127 | double edgeLon; |
---|
1128 | double diffLon = abs(bounds_lon(nv1, nf) - bounds_lon(nv2, nf)); |
---|
1129 | if (diffLon < (180.- prec)) |
---|
1130 | edgeLon = ( bounds_lon(nv1, nf) + bounds_lon(nv2, nf)) * 0.5; |
---|
1131 | else if (diffLon > (180.+ prec)) |
---|
1132 | edgeLon = (bounds_lon(nv1, nf) + bounds_lon(nv2, nf)) * 0.5 -180.; |
---|
1133 | else |
---|
1134 | edgeLon = 0.; |
---|
1135 | edge_lon(edgeIdxGlo - edge_start) = edgeLon; |
---|
1136 | edge_lat(edgeIdxGlo - edge_start) = ( bounds_lat(nv1, nf) + bounds_lat(nv2, nf) ) * 0.5; |
---|
1137 | edge_nodes(0, edgeIdxGlo - edge_start) = nodeIdxGlo1; |
---|
1138 | edge_nodes(1, edgeIdxGlo - edge_start) = nodeIdxGlo2; |
---|
1139 | } |
---|
1140 | face_edges(nv1,nf) = edgeIdxGlo; |
---|
1141 | if (edgeIdxGlo2Face.count(edgeIdxGlo) == 0) |
---|
1142 | { |
---|
1143 | edgeIdxGloList(iIdx) = edgeIdxGlo; |
---|
1144 | ++iIdx; |
---|
1145 | } |
---|
1146 | edgeIdxGlo2Face[edgeIdxGlo].push_back(faceIdxGlo); |
---|
1147 | } // nodeIdxGlo1 != nodeIdxGlo2 |
---|
1148 | else |
---|
1149 | { |
---|
1150 | face_edges(nv1,nf) = 999999; |
---|
1151 | } |
---|
1152 | } |
---|
1153 | } |
---|
1154 | edgeIdxGloList.resizeAndPreserve(iIdx); |
---|
1155 | |
---|
1156 | // (2.5) Saving remaining variables edge_faces and face_faces |
---|
1157 | edge_faces.resize(2, edge_count); |
---|
1158 | face_faces.resize(nvertex, nbFaces_); |
---|
1159 | |
---|
1160 | CClientClientDHTSizet dhtEdge2Face (edgeIdxGlo2Face, comm); |
---|
1161 | dhtEdge2Face.computeIndexInfoMapping(edgeIdxGloList); |
---|
1162 | CClientClientDHTSizet::Index2VectorInfoTypeMap& edgeIdxGlo2FaceIdx = dhtEdge2Face.getInfoIndexMap(); |
---|
1163 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator itNodeIdxGlo1, itNodeIdxGlo2; |
---|
1164 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator itIdx; |
---|
1165 | |
---|
1166 | for (int nf = 0; nf < nbFaces_; ++nf) |
---|
1167 | { |
---|
1168 | for (int nv1 = 0; nv1 < nvertex; ++nv1) |
---|
1169 | { |
---|
1170 | // Getting global indexes of edge's nodes |
---|
1171 | int nh1 = 0; |
---|
1172 | int nv2 = (nv1 < nvertex -1 ) ? (nv1 + 1) : (nv1 + 1 - nvertex); // cyclic rotation |
---|
1173 | it1 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh1)); |
---|
1174 | while (it1 == nodeHash2IdxGlo.end()) |
---|
1175 | { |
---|
1176 | ++nh1; |
---|
1177 | it1 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh1)); |
---|
1178 | } |
---|
1179 | int nh2 = 0; |
---|
1180 | it2 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv2)*4 + nh2)); |
---|
1181 | while (it2 == nodeHash2IdxGlo.end()) |
---|
1182 | { |
---|
1183 | ++nh2; |
---|
1184 | it2 = nodeHash2IdxGlo.find(nodeHashList((nf*nvertex + nv1)*4 + nh2)); |
---|
1185 | } |
---|
1186 | size_t nodeIdxGlo1 = it1->second[0]; |
---|
1187 | size_t nodeIdxGlo2 = it2->second[0]; |
---|
1188 | |
---|
1189 | size_t myIdx = hashPairOrdered(nodeIdxGlo1, nodeIdxGlo2); |
---|
1190 | itIdx = edgeIdx2IdxGlo.find(myIdx); |
---|
1191 | size_t faceIdxGlo = nbFacesAccum + nf; |
---|
1192 | int edgeIdxGlo = (itIdx->second)[1]; |
---|
1193 | |
---|
1194 | if (mpiRank == (itIdx->second)[0]) |
---|
1195 | { |
---|
1196 | it1 = edgeIdxGlo2FaceIdx.find(edgeIdxGlo); |
---|
1197 | int face1 = it1->second[0]; |
---|
1198 | if (it1->second.size() == 1) |
---|
1199 | { |
---|
1200 | edge_faces(0, edgeIdxGlo - edge_start) = face1; |
---|
1201 | edge_faces(1, edgeIdxGlo - edge_start) = -999; |
---|
1202 | face_faces(nv1, nf) = 999999; |
---|
1203 | } |
---|
1204 | else |
---|
1205 | { |
---|
1206 | int face2 = it1->second[1]; |
---|
1207 | edge_faces(0, edgeIdxGlo - edge_start) = face1; |
---|
1208 | edge_faces(1, edgeIdxGlo - edge_start) = face2; |
---|
1209 | face_faces(nv1, nf) = (faceIdxGlo == face1 ? face2 : face1); |
---|
1210 | } |
---|
1211 | } |
---|
1212 | else |
---|
1213 | { |
---|
1214 | it1 = edgeIdxGlo2FaceIdx.find(edgeIdxGlo); |
---|
1215 | int face1 = it1->second[0]; |
---|
1216 | int face2 = it1->second[1]; |
---|
1217 | face_faces(nv1, nf) = (faceIdxGlo == face1 ? face2 : face1); |
---|
1218 | } |
---|
1219 | } |
---|
1220 | } |
---|
1221 | } // nodesAreWritten |
---|
1222 | |
---|
1223 | // Case (3): Neither nodes nor edges have been previously generated |
---|
1224 | else |
---|
1225 | { |
---|
1226 | // (3.1) Creating a list of hashes for each node and a map nodeHash2Idx <hash, <idx,rank> > |
---|
1227 | vector<size_t> hashValues(4); |
---|
1228 | CClientClientDHTSizet::Index2VectorInfoTypeMap nodeHash2Idx; |
---|
1229 | CArray<size_t,1> nodeHashList(nbFaces_*nvertex*4); |
---|
1230 | size_t iHash = 0; |
---|
1231 | for (int nf = 0; nf < nbFaces_; ++nf) |
---|
1232 | { |
---|
1233 | for (int nv = 0; nv < nvertex; ++nv) |
---|
1234 | { |
---|
1235 | hashValues = CMesh::createHashes(bounds_lon(nv, nf), bounds_lat(nv, nf)); |
---|
1236 | // size_t nodeIndex = generateNodeIndex(hashValues, mpiRank); |
---|
1237 | size_t nodeIndex = generateNodeIndex(hashValues); |
---|
1238 | for (int nh = 0; nh < 4; ++nh) |
---|
1239 | { |
---|
1240 | if (nodeHash2Idx.count(hashValues[nh])==0) |
---|
1241 | { |
---|
1242 | nodeHash2Idx[hashValues[nh]].push_back(nodeIndex); |
---|
1243 | nodeHash2Idx[hashValues[nh]].push_back(mpiRank); |
---|
1244 | nodeHashList(iHash) = hashValues[nh]; |
---|
1245 | ++iHash; |
---|
1246 | } |
---|
1247 | } |
---|
1248 | } |
---|
1249 | } |
---|
1250 | nodeHashList.resizeAndPreserve(iHash); |
---|
1251 | |
---|
1252 | // (3.2) Generating global node indexes |
---|
1253 | // The ownership criterion: priority of the process with smaller rank. |
---|
1254 | // With any other criterion it is not possible to have consistent node indexing for different number of procs. |
---|
1255 | // Maps generated in this step are: |
---|
1256 | // nodeHash2Info = <hash, [[idx, rankMin], [idx, rank1], [idx, rank3]..]> |
---|
1257 | // nodeIdx2Idx = <idx, <rankOwner, idx>> |
---|
1258 | |
---|
1259 | CClientClientDHTSizet dhtNodeHash(nodeHash2Idx, comm); |
---|
1260 | dhtNodeHash.computeIndexInfoMapping(nodeHashList); |
---|
1261 | CClientClientDHTSizet::Index2VectorInfoTypeMap& nodeHash2Info = dhtNodeHash.getInfoIndexMap(); |
---|
1262 | |
---|
1263 | CClientClientDHTSizet::Index2VectorInfoTypeMap nodeIdx2Idx; |
---|
1264 | CArray<size_t,1> nodeIdxList(nbFaces_*nvertex*4); |
---|
1265 | size_t nIdx = 0; |
---|
1266 | |
---|
1267 | for (CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it = nodeHash2Info.begin(); it != nodeHash2Info.end(); ++it) |
---|
1268 | { |
---|
1269 | size_t rankMin = (it->second)[1]; |
---|
1270 | size_t idx = (it->second)[0]; |
---|
1271 | for (int i = 2; i < (it->second).size();) |
---|
1272 | { |
---|
1273 | if ( (it->second)[i+1] < rankMin) |
---|
1274 | { |
---|
1275 | idx = (it->second)[i]; |
---|
1276 | rankMin = (it->second)[i+1]; |
---|
1277 | (it->second)[i+1] = (it->second)[i-1]; |
---|
1278 | } |
---|
1279 | i += 2; |
---|
1280 | } |
---|
1281 | if (nodeIdx2Idx.count(idx) == 0) |
---|
1282 | { |
---|
1283 | if (mpiRank == rankMin) |
---|
1284 | { |
---|
1285 | nodeIdx2Idx[idx].push_back(rankMin); |
---|
1286 | nodeIdx2Idx[idx].push_back(idx); |
---|
1287 | } |
---|
1288 | nodeIdxList(nIdx) = idx; |
---|
1289 | ++nIdx; |
---|
1290 | } |
---|
1291 | } |
---|
1292 | |
---|
1293 | // CDHTAutoIndexing dhtNodeIdxGlo = CDHTAutoIndexing(nodeIdx2Idx, comm); |
---|
1294 | // CDHTAutoIndexing will not give consistent node numbering for varying number of procs. => |
---|
1295 | // Solution: global node indexing by hand. |
---|
1296 | // Maps modified in this step: |
---|
1297 | // nodeIdx2Idx = <idx, idxGlo> |
---|
1298 | unsigned long nodeCount = nodeIdx2Idx.size(); |
---|
1299 | unsigned long nodeStart, nbNodes; |
---|
1300 | ep_lib::MPI_Scan(&nodeCount, &nodeStart, 1, EP_UNSIGNED_LONG, EP_SUM, comm); |
---|
1301 | int nNodes = nodeStart; |
---|
1302 | ep_lib::MPI_Bcast(&nNodes, 1, EP_UNSIGNED_LONG, mpiSize-1, comm); |
---|
1303 | nbNodesGlo = nNodes; |
---|
1304 | |
---|
1305 | nodeStart -= nodeCount; |
---|
1306 | node_start = nodeStart; |
---|
1307 | node_count = nodeCount; |
---|
1308 | CClientClientDHTSizet::Index2VectorInfoTypeMap dummyMap; // just a dummy map used to ensure that each node is numbered only once |
---|
1309 | size_t count = 0; |
---|
1310 | |
---|
1311 | for (int nf = 0; nf < nbFaces_; ++nf) |
---|
1312 | { |
---|
1313 | for (int nv = 0; nv < nvertex; ++nv) |
---|
1314 | { |
---|
1315 | vector<size_t> hashValues = CMesh::createHashes(bounds_lon(nv, nf), bounds_lat(nv, nf)); |
---|
1316 | size_t nodeIdx = generateNodeIndex(hashValues); |
---|
1317 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it = nodeIdx2Idx.find(nodeIdx); |
---|
1318 | if (it != nodeIdx2Idx.end()) |
---|
1319 | { |
---|
1320 | if (dummyMap.count(nodeIdx) == 0) |
---|
1321 | { |
---|
1322 | dummyMap[nodeIdx].push_back(nodeIdx); |
---|
1323 | (it->second)[1] = node_start + count; |
---|
1324 | ++count; |
---|
1325 | } |
---|
1326 | } |
---|
1327 | } |
---|
1328 | } |
---|
1329 | nodeIdxList.resizeAndPreserve(nIdx); |
---|
1330 | CClientClientDHTSizet dhtNodeIdx(nodeIdx2Idx, comm); |
---|
1331 | dhtNodeIdx.computeIndexInfoMapping(nodeIdxList); |
---|
1332 | CClientClientDHTSizet::Index2VectorInfoTypeMap& nodeIdx2IdxGlo = dhtNodeIdx.getInfoIndexMap(); |
---|
1333 | |
---|
1334 | // (3.3) Saving node data: node_lon, node_lat, and face_nodes |
---|
1335 | // Generating edgeHash2Info = <hash, <idx, rank>> and edgeHashList |
---|
1336 | // nbNodesGlo = dhtNodeIdxGlo.getNbIndexesGlobal(); |
---|
1337 | // node_count = dhtNodeIdxGlo.getIndexCount(); |
---|
1338 | // node_start = dhtNodeIdxGlo.getIndexStart(); |
---|
1339 | node_lon.resize(node_count); |
---|
1340 | node_lat.resize(node_count); |
---|
1341 | size_t nodeIdxGlo1 = 0; |
---|
1342 | size_t nodeIdxGlo2 = 0; |
---|
1343 | CClientClientDHTSizet::Index2VectorInfoTypeMap edgeHash2Idx; |
---|
1344 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator itNodeIdxGlo1, itNodeIdxGlo2; |
---|
1345 | CArray<size_t,1> edgeHashList(nbFaces_*nvertex); |
---|
1346 | size_t nEdgeHash = 0; |
---|
1347 | |
---|
1348 | for (int nf = 0; nf < nbFaces_; ++nf) |
---|
1349 | { |
---|
1350 | for (int nv1 = 0; nv1 < nvertex; ++nv1) |
---|
1351 | { |
---|
1352 | int nv2 = (nv1 < nvertex -1 ) ? (nv1 + 1) : (nv1 + 1 - nvertex); // cyclic rotation |
---|
1353 | vector<size_t> hashValues1 = CMesh::createHashes(bounds_lon(nv1, nf), bounds_lat(nv1, nf)); |
---|
1354 | vector<size_t> hashValues2 = CMesh::createHashes(bounds_lon(nv2, nf), bounds_lat(nv2, nf)); |
---|
1355 | size_t nodeIdx1 = generateNodeIndex(hashValues1); |
---|
1356 | size_t nodeIdx2 = generateNodeIndex(hashValues2); |
---|
1357 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator itNodeIdx1 = nodeIdx2IdxGlo.find(nodeIdx1); |
---|
1358 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator itNodeIdx2 = nodeIdx2IdxGlo.find(nodeIdx2); |
---|
1359 | size_t ownerRank = (itNodeIdx1->second)[0]; |
---|
1360 | nodeIdxGlo1 = (itNodeIdx1->second)[1]; |
---|
1361 | nodeIdxGlo2 = (itNodeIdx2->second)[1]; |
---|
1362 | |
---|
1363 | if (mpiRank == ownerRank) |
---|
1364 | { |
---|
1365 | node_lon(nodeIdxGlo1 - node_start) = bounds_lon(nv1, nf); |
---|
1366 | node_lat(nodeIdxGlo1 - node_start) = bounds_lat(nv1, nf); |
---|
1367 | } |
---|
1368 | if (nodeIdxGlo1 != nodeIdxGlo2) |
---|
1369 | { |
---|
1370 | size_t edgeHash = hashPairOrdered(nodeIdxGlo1, nodeIdxGlo2); |
---|
1371 | edgeHash2Idx[edgeHash].push_back(edgeHash); |
---|
1372 | edgeHash2Idx[edgeHash].push_back(mpiRank); |
---|
1373 | edgeHashList(nEdgeHash) = edgeHash; |
---|
1374 | ++nEdgeHash; |
---|
1375 | } |
---|
1376 | face_nodes(nv1,nf) = nodeIdxGlo1; |
---|
1377 | } |
---|
1378 | } |
---|
1379 | edgeHashList.resizeAndPreserve(nEdgeHash); |
---|
1380 | |
---|
1381 | // (3.4) Generating global edge indexes |
---|
1382 | // Maps generated in this step are: |
---|
1383 | // edgeIdx2Idx = = <idx, <rankOwner, idx>> |
---|
1384 | // edgeIdx2IdxGlo = <idxMin, <rankOwner, idxGlo>> |
---|
1385 | |
---|
1386 | CClientClientDHTSizet dhtEdgeHash(edgeHash2Idx, comm); |
---|
1387 | dhtEdgeHash.computeIndexInfoMapping(edgeHashList); |
---|
1388 | CClientClientDHTSizet::Index2VectorInfoTypeMap& edgeHash2Info = dhtEdgeHash.getInfoIndexMap(); |
---|
1389 | // edgeHash2Info = <hash, [[idx1, rank1], [idx2, rank2], [idx3, rank3]..]> |
---|
1390 | |
---|
1391 | CClientClientDHTSizet::Index2VectorInfoTypeMap edgeIdx2Idx; |
---|
1392 | |
---|
1393 | for (CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it = edgeHash2Info.begin(); it != edgeHash2Info.end(); ++it) |
---|
1394 | { |
---|
1395 | size_t rankMin = (it->second)[1]; |
---|
1396 | size_t idx = (it->second)[0]; |
---|
1397 | |
---|
1398 | for (int i = 2; i < (it->second).size();) |
---|
1399 | { |
---|
1400 | if ((it->second)[i+1] < rankMin) |
---|
1401 | { |
---|
1402 | rankMin = (it->second)[i+1]; |
---|
1403 | idx = (it->second)[i]; |
---|
1404 | (it->second)[i+1] = (it->second)[i-1]; |
---|
1405 | } |
---|
1406 | i += 2; |
---|
1407 | } |
---|
1408 | if (edgeIdx2Idx.count(idx) == 0) |
---|
1409 | { |
---|
1410 | if (mpiRank == rankMin) |
---|
1411 | { |
---|
1412 | edgeIdx2Idx[idx].push_back(rankMin); |
---|
1413 | edgeIdx2Idx[idx].push_back(idx); |
---|
1414 | } |
---|
1415 | } |
---|
1416 | } |
---|
1417 | |
---|
1418 | unsigned long edgeCount = edgeIdx2Idx.size(); |
---|
1419 | unsigned long edgeStart, nbEdges; |
---|
1420 | ep_lib::MPI_Scan(&edgeCount, &edgeStart, 1, EP_UNSIGNED_LONG, EP_SUM, comm); |
---|
1421 | int nEdges = edgeStart; |
---|
1422 | ep_lib::MPI_Bcast(&nEdges, 1, EP_UNSIGNED_LONG, mpiSize-1, comm); |
---|
1423 | nbEdgesGlo = nEdges; |
---|
1424 | |
---|
1425 | edgeStart -= edgeCount; |
---|
1426 | edge_start = edgeStart; |
---|
1427 | edge_count = edgeCount; |
---|
1428 | CClientClientDHTSizet::Index2VectorInfoTypeMap dummyEdgeMap; |
---|
1429 | count = 0; |
---|
1430 | |
---|
1431 | for (int nf = 0; nf < nbFaces_; ++nf) |
---|
1432 | { |
---|
1433 | for (int nv1 = 0; nv1 < nvertex; ++nv1) |
---|
1434 | { |
---|
1435 | int nv2 = (nv1 < nvertex -1 ) ? (nv1 + 1) : (nv1 + 1 - nvertex); // cyclic rotation |
---|
1436 | vector<size_t> hashValues1 = CMesh::createHashes(bounds_lon(nv1, nf), bounds_lat(nv1, nf)); |
---|
1437 | vector<size_t> hashValues2 = CMesh::createHashes(bounds_lon(nv2, nf), bounds_lat(nv2, nf)); |
---|
1438 | size_t nodeIdx1 = generateNodeIndex(hashValues1); |
---|
1439 | size_t nodeIdx2 = generateNodeIndex(hashValues2); |
---|
1440 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator itNodeIdx1 = nodeIdx2IdxGlo.find(nodeIdx1); |
---|
1441 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator itNodeIdx2 = nodeIdx2IdxGlo.find(nodeIdx2); |
---|
1442 | nodeIdxGlo1 = (itNodeIdx1->second)[1]; |
---|
1443 | nodeIdxGlo2 = (itNodeIdx2->second)[1]; |
---|
1444 | |
---|
1445 | if (nodeIdxGlo1 != nodeIdxGlo2) |
---|
1446 | { |
---|
1447 | size_t edgeIdx = hashPairOrdered(nodeIdxGlo1, nodeIdxGlo2); |
---|
1448 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it = edgeIdx2Idx.find(edgeIdx); |
---|
1449 | if (it != edgeIdx2Idx.end()) |
---|
1450 | { |
---|
1451 | if (dummyEdgeMap.count(edgeIdx) == 0) |
---|
1452 | { |
---|
1453 | dummyEdgeMap[edgeIdx].push_back(edgeIdx); |
---|
1454 | (it->second)[1] = edge_start + count; |
---|
1455 | ++count; |
---|
1456 | } |
---|
1457 | } |
---|
1458 | } |
---|
1459 | } |
---|
1460 | } |
---|
1461 | CClientClientDHTSizet dhtEdgeIdx(edgeIdx2Idx, comm); |
---|
1462 | dhtEdgeIdx.computeIndexInfoMapping(edgeHashList); |
---|
1463 | CClientClientDHTSizet::Index2VectorInfoTypeMap& edgeIdx2IdxGlo = dhtEdgeIdx.getInfoIndexMap(); |
---|
1464 | |
---|
1465 | // (3.5) Saving variables: edge_lon, edge_lat, face_edges |
---|
1466 | // Creating map edgeIdxGlo2Face <idxGlo, face> |
---|
1467 | // nbEdgesGlo = dhtEdgeIdxGlo.getNbIndexesGlobal(); |
---|
1468 | // edge_count = dhtEdgeIdxGlo.getIndexCount(); |
---|
1469 | // edge_start = dhtEdgeIdxGlo.getIndexStart(); |
---|
1470 | |
---|
1471 | edge_lon.resize(edge_count); |
---|
1472 | edge_lat.resize(edge_count); |
---|
1473 | edge_nodes.resize(2, edge_count); |
---|
1474 | face_edges.resize(nvertex, nbFaces_); |
---|
1475 | |
---|
1476 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it1, it2; |
---|
1477 | CClientClientDHTSizet::Index2VectorInfoTypeMap edgeIdxGlo2Face; |
---|
1478 | CArray<size_t,1> edgeIdxGloList(nbFaces_*nvertex); |
---|
1479 | size_t nEdge = 0; |
---|
1480 | |
---|
1481 | for (int nf = 0; nf < nbFaces_; ++nf) |
---|
1482 | { |
---|
1483 | for (int nv1 = 0; nv1 < nvertex; ++nv1) |
---|
1484 | { |
---|
1485 | // Getting global indexes of edge's nodes |
---|
1486 | int nv2 = (nv1 < nvertex -1 ) ? (nv1 + 1) : (nv1 + 1 - nvertex); // cyclic rotation |
---|
1487 | vector<size_t> hashValues1 = CMesh::createHashes(bounds_lon(nv1, nf), bounds_lat(nv1, nf)); |
---|
1488 | vector<size_t> hashValues2 = CMesh::createHashes(bounds_lon(nv2, nf), bounds_lat(nv2, nf)); |
---|
1489 | |
---|
1490 | size_t nodeIdx1 = generateNodeIndex(hashValues1); |
---|
1491 | size_t nodeIdx2 = generateNodeIndex(hashValues2); |
---|
1492 | it1 = nodeIdx2IdxGlo.find(nodeIdx1); |
---|
1493 | it2 = nodeIdx2IdxGlo.find(nodeIdx2); |
---|
1494 | size_t nodeIdxGlo1 = (it1->second)[1]; |
---|
1495 | size_t nodeIdxGlo2 = (it2->second)[1]; |
---|
1496 | |
---|
1497 | if (nodeIdxGlo1 != nodeIdxGlo2) |
---|
1498 | { |
---|
1499 | size_t myIdx = hashPairOrdered(nodeIdxGlo1, nodeIdxGlo2); |
---|
1500 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator itIdx = edgeIdx2IdxGlo.find(myIdx); |
---|
1501 | int edgeIdxGlo = (itIdx->second)[1]; |
---|
1502 | size_t faceIdxGlo = nbFacesAccum + nf; |
---|
1503 | |
---|
1504 | if (mpiRank == (itIdx->second)[0]) |
---|
1505 | { |
---|
1506 | double edgeLon; |
---|
1507 | double diffLon = abs(bounds_lon(nv1, nf) - bounds_lon(nv2, nf)); |
---|
1508 | if (diffLon < (180.- prec)) |
---|
1509 | edgeLon = ( bounds_lon(nv1, nf) + bounds_lon(nv2, nf)) * 0.5; |
---|
1510 | else if (diffLon > (180.+ prec)) |
---|
1511 | edgeLon = (bounds_lon(nv1, nf) + bounds_lon(nv2, nf)) * 0.5 -180.; |
---|
1512 | else |
---|
1513 | edgeLon = 0.; |
---|
1514 | edge_lon(edgeIdxGlo - edge_start) = edgeLon; |
---|
1515 | edge_lat(edgeIdxGlo-edge_start) = ( bounds_lat(nv1, nf) + bounds_lat(nv2, nf) ) * 0.5; |
---|
1516 | edge_nodes(0, edgeIdxGlo - edge_start) = nodeIdxGlo1; |
---|
1517 | edge_nodes(1, edgeIdxGlo - edge_start) = nodeIdxGlo2; |
---|
1518 | } |
---|
1519 | face_edges(nv1,nf) = edgeIdxGlo; |
---|
1520 | if (edgeIdxGlo2Face.count(edgeIdxGlo) == 0) |
---|
1521 | { |
---|
1522 | edgeIdxGloList(nEdge) = edgeIdxGlo; |
---|
1523 | ++nEdge; |
---|
1524 | } |
---|
1525 | edgeIdxGlo2Face[edgeIdxGlo].push_back(faceIdxGlo); |
---|
1526 | } // nodeIdxGlo1 != nodeIdxGlo2 |
---|
1527 | else |
---|
1528 | { |
---|
1529 | face_edges(nv1,nf) = 999999; |
---|
1530 | } |
---|
1531 | } |
---|
1532 | } |
---|
1533 | edgeIdxGloList.resizeAndPreserve(nEdge); |
---|
1534 | |
---|
1535 | // (3.6) Saving remaining variables edge_faces and face_faces |
---|
1536 | edge_faces.resize(2, edge_count); |
---|
1537 | face_faces.resize(nvertex, nbFaces_); |
---|
1538 | |
---|
1539 | CClientClientDHTSizet dhtEdge2Face (edgeIdxGlo2Face, comm); |
---|
1540 | dhtEdge2Face.computeIndexInfoMapping(edgeIdxGloList); |
---|
1541 | CClientClientDHTSizet::Index2VectorInfoTypeMap& edgeIdxGlo2FaceIdx = dhtEdge2Face.getInfoIndexMap(); |
---|
1542 | |
---|
1543 | for (int nf = 0; nf < nbFaces_; ++nf) |
---|
1544 | { |
---|
1545 | for (int nv1 = 0; nv1 < nvertex; ++nv1) |
---|
1546 | { |
---|
1547 | // Getting global indexes of edge's nodes |
---|
1548 | int nv2 = (nv1 < nvertex -1 ) ? (nv1 + 1) : (nv1 + 1 - nvertex); // cyclic rotation |
---|
1549 | vector<size_t> hashValues1 = CMesh::createHashes(bounds_lon(nv1, nf), bounds_lat(nv1, nf)); |
---|
1550 | vector<size_t> hashValues2 = CMesh::createHashes(bounds_lon(nv2, nf), bounds_lat(nv2, nf)); |
---|
1551 | |
---|
1552 | size_t myNodeIdx1 = generateNodeIndex(hashValues1); |
---|
1553 | size_t myNodeIdx2 = generateNodeIndex(hashValues2); |
---|
1554 | if (myNodeIdx1 != myNodeIdx2) |
---|
1555 | { |
---|
1556 | it1 = nodeIdx2IdxGlo.find(myNodeIdx1); |
---|
1557 | it2 = nodeIdx2IdxGlo.find(myNodeIdx2); |
---|
1558 | size_t nodeIdxGlo1 = (it1->second)[1]; |
---|
1559 | size_t nodeIdxGlo2 = (it2->second)[1]; |
---|
1560 | size_t myIdx = hashPairOrdered(nodeIdxGlo1, nodeIdxGlo2); |
---|
1561 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator itIdx = edgeIdx2IdxGlo.find(myIdx); |
---|
1562 | int edgeIdxGlo = (itIdx->second)[1]; |
---|
1563 | |
---|
1564 | size_t faceIdxGlo = nbFacesAccum + nf; |
---|
1565 | |
---|
1566 | if (mpiRank == (itIdx->second)[0]) |
---|
1567 | { |
---|
1568 | it1 = edgeIdxGlo2FaceIdx.find(edgeIdxGlo); |
---|
1569 | int face1 = it1->second[0]; |
---|
1570 | if (it1->second.size() == 1) |
---|
1571 | { |
---|
1572 | edge_faces(0, edgeIdxGlo - edge_start) = face1; |
---|
1573 | edge_faces(1, edgeIdxGlo - edge_start) = -999; |
---|
1574 | face_faces(nv1, nf) = 999999; |
---|
1575 | } |
---|
1576 | else |
---|
1577 | { |
---|
1578 | size_t face2 = it1->second[1]; |
---|
1579 | edge_faces(0, edgeIdxGlo - edge_start) = face1; |
---|
1580 | edge_faces(1, edgeIdxGlo - edge_start) = face2; |
---|
1581 | face_faces(nv1, nf) = (faceIdxGlo == face1 ? face2 : face1); |
---|
1582 | } |
---|
1583 | } |
---|
1584 | else |
---|
1585 | { |
---|
1586 | it1 = edgeIdxGlo2FaceIdx.find(edgeIdxGlo); |
---|
1587 | int face1 = it1->second[0]; |
---|
1588 | int face2 = it1->second[1]; |
---|
1589 | face_faces(nv1, nf) = (faceIdxGlo == face1 ? face2 : face1); |
---|
1590 | } |
---|
1591 | } // myNodeIdx1 != myNodeIdx2 |
---|
1592 | else |
---|
1593 | face_faces(nv1, nf) = 999999; |
---|
1594 | } |
---|
1595 | } |
---|
1596 | |
---|
1597 | } |
---|
1598 | facesAreWritten = true; |
---|
1599 | } // nvertex >= 3 |
---|
1600 | |
---|
1601 | } // createMeshEpsilon |
---|
1602 | |
---|
1603 | ///---------------------------------------------------------------- |
---|
1604 | /*! |
---|
1605 | * \fn void CMesh::getGloNghbFacesNodeType(const MPI_Comm& comm, const CArray<int, 1>& face_idx, |
---|
1606 | const CArray<double, 2>& bounds_lon, const CArray<double, 2>& bounds_lat, |
---|
1607 | CArray<int, 2>& nghbFaces) |
---|
1608 | * Finds neighboring cells of a local domain for node-type of neighbors. |
---|
1609 | * \param [in] comm |
---|
1610 | * \param [in] face_idx Array with global indexes. |
---|
1611 | * \param [in] bounds_lon Array of boundary longitudes. |
---|
1612 | * \param [in] bounds_lat Array of boundary latitudes. |
---|
1613 | * \param [out] nghbFaces 2D array of storing global indexes of neighboring cells and their owner procs. |
---|
1614 | */ |
---|
1615 | |
---|
1616 | void CMesh::getGloNghbFacesNodeType(const ep_lib::MPI_Comm& comm, const CArray<int, 1>& face_idx, |
---|
1617 | const CArray<double, 2>& bounds_lon, const CArray<double, 2>& bounds_lat, |
---|
1618 | CArray<int, 2>& nghbFaces) |
---|
1619 | { |
---|
1620 | int nvertex = bounds_lon.rows(); |
---|
1621 | int nbFaces = bounds_lon.shape()[1]; |
---|
1622 | nghbFaces.resize(2, nbFaces*10); // some estimate on max number of neighbouring cells |
---|
1623 | |
---|
1624 | int mpiRank, mpiSize; |
---|
1625 | ep_lib::MPI_Comm_rank(comm, &mpiRank); |
---|
1626 | ep_lib::MPI_Comm_size(comm, &mpiSize); |
---|
1627 | |
---|
1628 | // (1) Generating unique node indexes |
---|
1629 | // (1.1) Creating a list of hashes for each node and a map nodeHash2Idx <hash, <idx,rank> > |
---|
1630 | vector<size_t> hashValues(4); |
---|
1631 | CClientClientDHTSizet::Index2VectorInfoTypeMap nodeHash2Idx; |
---|
1632 | CArray<size_t,1> nodeHashList(nbFaces*nvertex*4); |
---|
1633 | size_t iIdx = 0; |
---|
1634 | for (int nf = 0; nf < nbFaces; ++nf) |
---|
1635 | { |
---|
1636 | for (int nv = 0; nv < nvertex; ++nv) |
---|
1637 | { |
---|
1638 | hashValues = CMesh::createHashes(bounds_lon(nv, nf), bounds_lat(nv, nf)); |
---|
1639 | size_t nodeIndex = generateNodeIndex(hashValues, mpiRank); |
---|
1640 | for (int nh = 0; nh < 4; ++nh) |
---|
1641 | { |
---|
1642 | if (nodeHash2Idx.count(hashValues[nh])==0) |
---|
1643 | { |
---|
1644 | nodeHash2Idx[hashValues[nh]].push_back(nodeIndex); |
---|
1645 | nodeHash2Idx[hashValues[nh]].push_back(mpiRank); |
---|
1646 | nodeHashList(iIdx) = hashValues[nh]; |
---|
1647 | ++iIdx; |
---|
1648 | } |
---|
1649 | } |
---|
1650 | } |
---|
1651 | } |
---|
1652 | nodeHashList.resizeAndPreserve(iIdx); |
---|
1653 | |
---|
1654 | // (1.2) Generating node indexes |
---|
1655 | // The ownership criterion: priority of the process holding the smaller index |
---|
1656 | // Maps generated in this step are: |
---|
1657 | // nodeHash2Info = <hash, idx1, idx2, idx3....> |
---|
1658 | // nodeIdx2IdxMin = <idx, idxMin> |
---|
1659 | // idxMin is a unique node identifier |
---|
1660 | |
---|
1661 | CClientClientDHTSizet dhtNodeHash(nodeHash2Idx, comm); |
---|
1662 | dhtNodeHash.computeIndexInfoMapping(nodeHashList); |
---|
1663 | CClientClientDHTSizet::Index2VectorInfoTypeMap& nodeHash2Info = dhtNodeHash.getInfoIndexMap(); |
---|
1664 | |
---|
1665 | CClientClientDHTSizet::Index2VectorInfoTypeMap nodeIdx2IdxMin; |
---|
1666 | |
---|
1667 | for (CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it = nodeHash2Info.begin(); it != nodeHash2Info.end(); ++it) |
---|
1668 | { |
---|
1669 | size_t idxMin = (it->second)[0]; |
---|
1670 | size_t idx = (it->second)[0]; |
---|
1671 | for (int i = 2; i < (it->second).size();) |
---|
1672 | { |
---|
1673 | if (mpiRank == (it->second)[i+1]) |
---|
1674 | { |
---|
1675 | idx = (it->second)[i]; |
---|
1676 | } |
---|
1677 | if ((it->second)[i] < idxMin) |
---|
1678 | { |
---|
1679 | idxMin = (it->second)[i]; |
---|
1680 | (it->second)[i] = (it->second)[i-2]; |
---|
1681 | (it->second)[i+1] = (it->second)[i-1]; |
---|
1682 | } |
---|
1683 | i += 2; |
---|
1684 | } |
---|
1685 | (it->second)[0] = idxMin; |
---|
1686 | if (nodeIdx2IdxMin.count(idx) == 0) |
---|
1687 | { |
---|
1688 | nodeIdx2IdxMin[idx].push_back(idxMin); |
---|
1689 | } |
---|
1690 | } |
---|
1691 | |
---|
1692 | // (2) Creating maps nodeIdxMin2Face = <nodeIdxMin, [face1, face2, ...]> |
---|
1693 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it; |
---|
1694 | CClientClientDHTSizet::Index2VectorInfoTypeMap nodeIdxMin2Face; |
---|
1695 | CArray<size_t,1> nodeIdxMinList(nbFaces*nvertex*4); |
---|
1696 | |
---|
1697 | size_t nNode = 0; |
---|
1698 | |
---|
1699 | for (int nf = 0; nf < nbFaces; ++nf) |
---|
1700 | { |
---|
1701 | for (int nv = 0; nv < nvertex; ++nv) |
---|
1702 | { |
---|
1703 | vector<size_t> hashValues = CMesh::createHashes(bounds_lon(nv, nf), bounds_lat(nv, nf)); |
---|
1704 | size_t myNodeIdx = generateNodeIndex(hashValues, mpiRank); |
---|
1705 | it = nodeIdx2IdxMin.find(myNodeIdx); |
---|
1706 | size_t nodeIdxMin = (it->second)[0]; |
---|
1707 | size_t faceIdx = face_idx(nf); |
---|
1708 | if (nodeIdxMin2Face.count(nodeIdxMin) == 0) |
---|
1709 | { |
---|
1710 | nodeIdxMinList(nNode) = nodeIdxMin; |
---|
1711 | ++nNode; |
---|
1712 | } |
---|
1713 | nodeIdxMin2Face[nodeIdxMin].push_back(faceIdx); |
---|
1714 | nodeIdxMin2Face[nodeIdxMin].push_back(mpiRank); |
---|
1715 | } |
---|
1716 | } |
---|
1717 | nodeIdxMinList.resizeAndPreserve(nNode); |
---|
1718 | |
---|
1719 | // (3) Face_face connectivity |
---|
1720 | |
---|
1721 | // nodeIdxMin2Info = <nodeIdxMin, [face1, face2,...]> |
---|
1722 | CClientClientDHTSizet dhtNode2Face (nodeIdxMin2Face, comm); |
---|
1723 | dhtNode2Face.computeIndexInfoMapping(nodeIdxMinList); |
---|
1724 | CClientClientDHTSizet::Index2VectorInfoTypeMap& nodeIdxMin2Info = dhtNode2Face.getInfoIndexMap(); |
---|
1725 | CClientClientDHTSizet::Index2VectorInfoTypeMap mapFaces; // auxiliar map |
---|
1726 | |
---|
1727 | int nbNghb = 0; |
---|
1728 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator itNode; |
---|
1729 | |
---|
1730 | for (int nf = 0; nf < nbFaces; ++nf) |
---|
1731 | { |
---|
1732 | for (int nv = 0; nv < nvertex; ++nv) |
---|
1733 | { |
---|
1734 | vector<size_t> hashValues = CMesh::createHashes(bounds_lon(nv, nf), bounds_lat(nv, nf)); |
---|
1735 | size_t myNodeIdx = generateNodeIndex(hashValues, mpiRank); |
---|
1736 | itNode = nodeIdx2IdxMin.find(myNodeIdx); |
---|
1737 | size_t nodeIdxMin = (itNode->second)[0]; |
---|
1738 | |
---|
1739 | itNode = nodeIdxMin2Info.find(nodeIdxMin); |
---|
1740 | for (int i = 0; i < itNode->second.size();) |
---|
1741 | { |
---|
1742 | size_t face = itNode->second[i]; |
---|
1743 | size_t rank = itNode->second[i+1]; |
---|
1744 | if (rank != mpiRank) |
---|
1745 | if (mapFaces.count(face) == 0) |
---|
1746 | { |
---|
1747 | nghbFaces(0, nbNghb) = face; |
---|
1748 | nghbFaces(1, nbNghb) = rank; |
---|
1749 | ++nbNghb; |
---|
1750 | mapFaces[face].push_back(face); |
---|
1751 | } |
---|
1752 | i += 2; |
---|
1753 | } |
---|
1754 | } |
---|
1755 | } |
---|
1756 | nghbFaces.resizeAndPreserve(2, nbNghb); |
---|
1757 | } // getGloNghbFacesNodeType |
---|
1758 | |
---|
1759 | ///---------------------------------------------------------------- |
---|
1760 | /*! |
---|
1761 | * \fn void CMesh::getGloNghbFacesEdgeType(const MPI_Comm& comm, const CArray<int, 1>& face_idx, |
---|
1762 | const CArray<double, 2>& bounds_lon, const CArray<double, 2>& bounds_lat, |
---|
1763 | CArray<int, 2>& nghbFaces) |
---|
1764 | * Finds neighboring cells of a local domain for edge-type of neighbors. |
---|
1765 | * \param [in] comm |
---|
1766 | * \param [in] face_idx Array with global indexes. |
---|
1767 | * \param [in] bounds_lon Array of boundary longitudes. |
---|
1768 | * \param [in] bounds_lat Array of boundary latitudes. |
---|
1769 | * \param [out] nghbFaces 2D array of storing global indexes of neighboring cells and their owner procs. |
---|
1770 | */ |
---|
1771 | |
---|
1772 | void CMesh::getGloNghbFacesEdgeType(const ep_lib::MPI_Comm& comm, const CArray<int, 1>& face_idx, |
---|
1773 | const CArray<double, 2>& bounds_lon, const CArray<double, 2>& bounds_lat, |
---|
1774 | CArray<int, 2>& nghbFaces) |
---|
1775 | { |
---|
1776 | int nvertex = bounds_lon.rows(); |
---|
1777 | int nbFaces = bounds_lon.shape()[1]; |
---|
1778 | nghbFaces.resize(2, nbFaces*10); // estimate of max number of neighbouring cells |
---|
1779 | |
---|
1780 | int mpiRank, mpiSize; |
---|
1781 | ep_lib::MPI_Comm_rank(comm, &mpiRank); |
---|
1782 | ep_lib::MPI_Comm_size(comm, &mpiSize); |
---|
1783 | |
---|
1784 | // (1) Generating unique node indexes |
---|
1785 | // (1.1) Creating a list of hashes for each node and a map nodeHash2Idx <hash, <idx,rank> > |
---|
1786 | vector<size_t> hashValues(4); |
---|
1787 | CClientClientDHTSizet::Index2VectorInfoTypeMap nodeHash2Idx; |
---|
1788 | CArray<size_t,1> nodeHashList(nbFaces*nvertex*4); |
---|
1789 | size_t iIdx = 0; |
---|
1790 | for (int nf = 0; nf < nbFaces; ++nf) |
---|
1791 | { |
---|
1792 | for (int nv = 0; nv < nvertex; ++nv) |
---|
1793 | { |
---|
1794 | hashValues = CMesh::createHashes(bounds_lon(nv, nf), bounds_lat(nv, nf)); |
---|
1795 | size_t nodeIndex = generateNodeIndex(hashValues, mpiRank); |
---|
1796 | for (int nh = 0; nh < 4; ++nh) |
---|
1797 | { |
---|
1798 | if (nodeHash2Idx.count(hashValues[nh])==0) |
---|
1799 | { |
---|
1800 | nodeHash2Idx[hashValues[nh]].push_back(nodeIndex); |
---|
1801 | nodeHash2Idx[hashValues[nh]].push_back(mpiRank); |
---|
1802 | nodeHashList(iIdx) = hashValues[nh]; |
---|
1803 | ++iIdx; |
---|
1804 | } |
---|
1805 | } |
---|
1806 | } |
---|
1807 | } |
---|
1808 | nodeHashList.resizeAndPreserve(iIdx); |
---|
1809 | |
---|
1810 | // (1.2) Generating node indexes |
---|
1811 | // The ownership criterion: priority of the process holding the smaller index |
---|
1812 | // Maps generated in this step are: |
---|
1813 | // nodeHash2Info = <hash, idx1, idx2, idx3....> |
---|
1814 | // nodeIdx2IdxMin = <idx, idxMin> |
---|
1815 | // idxMin is a unique node identifier |
---|
1816 | |
---|
1817 | CClientClientDHTSizet dhtNodeHash(nodeHash2Idx, comm); |
---|
1818 | dhtNodeHash.computeIndexInfoMapping(nodeHashList); |
---|
1819 | CClientClientDHTSizet::Index2VectorInfoTypeMap& nodeHash2Info = dhtNodeHash.getInfoIndexMap(); |
---|
1820 | |
---|
1821 | CClientClientDHTSizet::Index2VectorInfoTypeMap nodeIdx2IdxMin; |
---|
1822 | |
---|
1823 | for (CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it = nodeHash2Info.begin(); it != nodeHash2Info.end(); ++it) |
---|
1824 | { |
---|
1825 | size_t idxMin = (it->second)[0]; |
---|
1826 | size_t idx = (it->second)[0]; |
---|
1827 | for (int i = 2; i < (it->second).size();) |
---|
1828 | { |
---|
1829 | if (mpiRank == (it->second)[i+1]) |
---|
1830 | { |
---|
1831 | idx = (it->second)[i]; |
---|
1832 | } |
---|
1833 | if ((it->second)[i] < idxMin) |
---|
1834 | { |
---|
1835 | idxMin = (it->second)[i]; |
---|
1836 | (it->second)[i] = (it->second)[i-2]; |
---|
1837 | (it->second)[i+1] = (it->second)[i-1]; |
---|
1838 | } |
---|
1839 | i += 2; |
---|
1840 | } |
---|
1841 | (it->second)[0] = idxMin; |
---|
1842 | if (nodeIdx2IdxMin.count(idx) == 0) |
---|
1843 | { |
---|
1844 | nodeIdx2IdxMin[idx].push_back(idxMin); |
---|
1845 | } |
---|
1846 | } |
---|
1847 | |
---|
1848 | // (2) Creating map edgeHash2Face = <edgeHash, [[face1, rank1], [face2, rank2]]>, where rank1 = rank2 = ... |
---|
1849 | |
---|
1850 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it1, it2, it; |
---|
1851 | CClientClientDHTSizet::Index2VectorInfoTypeMap edgeHash2Face; |
---|
1852 | CArray<size_t,1> edgeHashList(nbFaces*nvertex); |
---|
1853 | |
---|
1854 | size_t nEdge = 0; |
---|
1855 | |
---|
1856 | for (int nf = 0; nf < nbFaces; ++nf) |
---|
1857 | { |
---|
1858 | for (int nv1 = 0; nv1 < nvertex; ++nv1) |
---|
1859 | { |
---|
1860 | // Getting indexes of edge's nodes |
---|
1861 | int nv2 = (nv1 < nvertex -1 ) ? (nv1 + 1) : (nv1 + 1 - nvertex); // cyclic rotation |
---|
1862 | vector<size_t> hashValues1 = CMesh::createHashes(bounds_lon(nv1, nf), bounds_lat(nv1, nf)); |
---|
1863 | vector<size_t> hashValues2 = CMesh::createHashes(bounds_lon(nv2, nf), bounds_lat(nv2, nf)); |
---|
1864 | size_t myNodeIdx1 = generateNodeIndex(hashValues1, mpiRank); |
---|
1865 | size_t myNodeIdx2 = generateNodeIndex(hashValues2, mpiRank); |
---|
1866 | it1 = nodeIdx2IdxMin.find(myNodeIdx1); |
---|
1867 | it2 = nodeIdx2IdxMin.find(myNodeIdx2); |
---|
1868 | size_t nodeIdxMin1 = (it1->second)[0]; |
---|
1869 | size_t nodeIdxMin2 = (it2->second)[0]; |
---|
1870 | size_t faceIdx = face_idx(nf); |
---|
1871 | |
---|
1872 | if (nodeIdxMin1 != nodeIdxMin2) |
---|
1873 | { |
---|
1874 | size_t edgeHash = hashPairOrdered(nodeIdxMin1, nodeIdxMin2); |
---|
1875 | if (edgeHash2Face.count(edgeHash) == 0) |
---|
1876 | { |
---|
1877 | edgeHashList(nEdge) = edgeHash; |
---|
1878 | ++nEdge; |
---|
1879 | } |
---|
1880 | edgeHash2Face[edgeHash].push_back(faceIdx); |
---|
1881 | edgeHash2Face[edgeHash].push_back(mpiRank); |
---|
1882 | } // nodeIdxMin1 != nodeIdxMin2 |
---|
1883 | } |
---|
1884 | } |
---|
1885 | edgeHashList.resizeAndPreserve(nEdge); |
---|
1886 | |
---|
1887 | // (3) Face_face connectivity |
---|
1888 | |
---|
1889 | int nbNghb = 0; |
---|
1890 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator itNode1, itNode2; |
---|
1891 | |
---|
1892 | // edgeHash2Info = <edgeHash, [[face1, rank1], [face2, rank2]]> |
---|
1893 | CClientClientDHTSizet dhtEdge2Face (edgeHash2Face, comm); |
---|
1894 | dhtEdge2Face.computeIndexInfoMapping(edgeHashList); |
---|
1895 | CClientClientDHTSizet::Index2VectorInfoTypeMap& edgeHash2Info = dhtEdge2Face.getInfoIndexMap(); |
---|
1896 | CClientClientDHTSizet::Index2VectorInfoTypeMap mapFaces; // auxiliar map |
---|
1897 | |
---|
1898 | for (int nf = 0; nf < nbFaces; ++nf) |
---|
1899 | { |
---|
1900 | for (int nv1 = 0; nv1 < nvertex; ++nv1) |
---|
1901 | { |
---|
1902 | // Getting indexes of edge's nodes |
---|
1903 | int nv2 = (nv1 < nvertex -1 ) ? (nv1 + 1) : (nv1 + 1 - nvertex); // cyclic rotation |
---|
1904 | vector<size_t> hashValues1 = CMesh::createHashes(bounds_lon(nv1, nf), bounds_lat(nv1, nf)); |
---|
1905 | vector<size_t> hashValues2 = CMesh::createHashes(bounds_lon(nv2, nf), bounds_lat(nv2, nf)); |
---|
1906 | |
---|
1907 | size_t myNodeIdx1 = generateNodeIndex(hashValues1, mpiRank); |
---|
1908 | size_t myNodeIdx2 = generateNodeIndex(hashValues2, mpiRank); |
---|
1909 | itNode1 = nodeIdx2IdxMin.find(myNodeIdx1); |
---|
1910 | itNode2 = nodeIdx2IdxMin.find(myNodeIdx2); |
---|
1911 | size_t nodeIdxMin1 = (itNode1->second)[0]; |
---|
1912 | size_t nodeIdxMin2 = (itNode2->second)[0]; |
---|
1913 | |
---|
1914 | if (nodeIdxMin1 != nodeIdxMin2) |
---|
1915 | { |
---|
1916 | size_t edgeHash = hashPairOrdered(nodeIdxMin1, nodeIdxMin2); |
---|
1917 | it1 = edgeHash2Info.find(edgeHash); |
---|
1918 | |
---|
1919 | for (int i = 0; i < it1->second.size();) |
---|
1920 | { |
---|
1921 | size_t face = it1->second[i]; |
---|
1922 | size_t rank = it1->second[i+1]; |
---|
1923 | if (rank != mpiRank) |
---|
1924 | if (mapFaces.count(face) == 0) |
---|
1925 | { |
---|
1926 | nghbFaces(0, nbNghb) = face; |
---|
1927 | nghbFaces(1, nbNghb) = rank; |
---|
1928 | ++nbNghb; |
---|
1929 | mapFaces[face].push_back(face); |
---|
1930 | } |
---|
1931 | i += 2; |
---|
1932 | } |
---|
1933 | } // nodeIdxMin1 != nodeIdxMin2 |
---|
1934 | } |
---|
1935 | } |
---|
1936 | nghbFaces.resizeAndPreserve(2, nbNghb); |
---|
1937 | } // getGloNghbFacesEdgeType |
---|
1938 | |
---|
1939 | ///---------------------------------------------------------------- |
---|
1940 | /*! |
---|
1941 | * \fn void getGlobalNghbFaces (const int nghbType, const MPI_Comm& comm, const CArray<int, 1>& face_idx, |
---|
1942 | const CArray<double, 2>& bounds_lon, const CArray<double, 2>& bounds_lat, |
---|
1943 | CArray<size_t, 1>& nghbFaces) |
---|
1944 | * Finds neighboring faces owned by other procs. |
---|
1945 | * \param [in] nghbType 0 for faces sharing nodes, otherwise for faces sharing edges. |
---|
1946 | * \param [in] comm |
---|
1947 | * \param [in] face_idx Array with global indexes. |
---|
1948 | * \param [in] bounds_lon Array of boundary longitudes. |
---|
1949 | * \param [in] bounds_lat Array of boundary latitudes. |
---|
1950 | * \param [out] nghbFaces 2D array containing neighboring faces and owner ranks. |
---|
1951 | */ |
---|
1952 | |
---|
1953 | void CMesh::getGlobalNghbFaces(const int nghbType, const ep_lib::MPI_Comm& comm, |
---|
1954 | const CArray<int, 1>& face_idx, |
---|
1955 | const CArray<double, 2>& bounds_lon, const CArray<double, 2>& bounds_lat, |
---|
1956 | CArray<int, 2>& nghbFaces) |
---|
1957 | { |
---|
1958 | if (nghbType == 0) |
---|
1959 | getGloNghbFacesNodeType(comm, face_idx, bounds_lon, bounds_lat, nghbFaces); |
---|
1960 | else |
---|
1961 | getGloNghbFacesEdgeType(comm, face_idx, bounds_lon, bounds_lat, nghbFaces); |
---|
1962 | } // getGlobalNghbFaces |
---|
1963 | |
---|
1964 | ///---------------------------------------------------------------- |
---|
1965 | /*! |
---|
1966 | * \fn void getLocalNghbFaces (const int nghbType, |
---|
1967 | const CArray<double, 2>& bounds_lon, const CArray<double, 2>& bounds_lat, |
---|
1968 | CArray<size_t, 1>& nghbFaces) |
---|
1969 | * \param [in] nghbType 0 for faces sharing nodes, otherwise for faces sharing edges. |
---|
1970 | * \param [in] bounds_lon Array of boundary longitudes. |
---|
1971 | * \param [in] bounds_lat Array of boundary latitudes. |
---|
1972 | * \param [out] nghbFaces 1D array containing neighboring faces. |
---|
1973 | */ |
---|
1974 | |
---|
1975 | void CMesh::getLocalNghbFaces(const int nghbType, const CArray<int, 1>& face_idx, |
---|
1976 | const CArray<double, 2>& bounds_lon, const CArray<double, 2>& bounds_lat, |
---|
1977 | CArray<int, 2>& nghbFaces, CArray<int, 1>& nbNghbFaces) |
---|
1978 | { |
---|
1979 | if (nghbType == 0) |
---|
1980 | getLocNghbFacesNodeType(face_idx, bounds_lon, bounds_lat, nghbFaces, nbNghbFaces); |
---|
1981 | else |
---|
1982 | getLocNghbFacesEdgeType(face_idx, bounds_lon, bounds_lat, nghbFaces, nbNghbFaces); |
---|
1983 | } // getLocalNghbFaces |
---|
1984 | |
---|
1985 | ///---------------------------------------------------------------- |
---|
1986 | /*! |
---|
1987 | * \fn void getLocNghbFacesNodeType (const CArray<double, 2>& bounds_lon, const CArray<double, 2>& bounds_lat, |
---|
1988 | CArray<int, 2>& nghbFaces) |
---|
1989 | * \param [in] face_idx Array with local face indexing. |
---|
1990 | * \param [in] bounds_lon Array of boundary longitudes. |
---|
1991 | * \param [in] bounds_lat Array of boundary latitudes. |
---|
1992 | * \param [out] nghbFaces 2D array containing neighboring faces. |
---|
1993 | * \param [out] nbNghbFaces Array containing number of neighboring faces. |
---|
1994 | */ |
---|
1995 | |
---|
1996 | void CMesh::getLocNghbFacesNodeType (const CArray<int, 1>& face_idx, |
---|
1997 | const CArray<double, 2>& bounds_lon, const CArray<double, 2>& bounds_lat, |
---|
1998 | CArray<int, 2>& faceToFaces, CArray<int, 1>& nbNghbFaces) |
---|
1999 | { |
---|
2000 | int nvertex = bounds_lon.rows(); |
---|
2001 | int nbFaces = bounds_lon.shape()[1]; |
---|
2002 | int nbNodes = 0; |
---|
2003 | nbNghbFaces.resize(nbFaces); |
---|
2004 | nbNghbFaces = 0; |
---|
2005 | |
---|
2006 | // nodeToFaces connectivity |
---|
2007 | CClientClientDHTSizet::Index2VectorInfoTypeMap nodeToFaces; |
---|
2008 | for (int nf = 0; nf < nbFaces; ++nf) |
---|
2009 | for (int nv = 0; nv < nvertex; ++nv) |
---|
2010 | { |
---|
2011 | size_t nodeHash = (CMesh::createHashes(bounds_lon(nv, nf), bounds_lat(nv ,nf)))[0]; |
---|
2012 | nodeToFaces[nodeHash].push_back(face_idx(nf)); |
---|
2013 | } |
---|
2014 | |
---|
2015 | // faceToFaces connectivity |
---|
2016 | std::unordered_map <int, int> mapFaces; // mapFaces = < hash(face1, face2), hash> (the mapped value is irrelevant) |
---|
2017 | int maxNb = 20; // some assumption on the max possible number of neighboring cells |
---|
2018 | faceToFaces.resize(maxNb, nbFaces); |
---|
2019 | CClientClientDHTSizet::Index2VectorInfoTypeMap::iterator it; |
---|
2020 | for (it = nodeToFaces.begin(); it != nodeToFaces.end(); ++it) |
---|
2021 | { |
---|
2022 | int size = it->second.size(); |
---|
2023 | for (int i = 0; i < (size-1); ++i) |
---|
2024 | { |
---|
2025 | int face1 = it->second[i]; |
---|
2026 | for (int j = i+1; j < size; ++j) |
---|
2027 | { |
---|
2028 | int face2 = it->second[j]; |
---|
2029 | if (face2 != face1) |
---|
2030 | { |
---|
2031 | int hashFace = hashPairOrdered(face1, face2); |
---|
2032 | if (mapFaces.count(hashFace) == 0) |
---|
2033 | { |
---|
2034 | faceToFaces(nbNghbFaces(face1), face1) = face2; |
---|
2035 | faceToFaces(nbNghbFaces(face2), face2) = face1; |
---|
2036 | ++nbNghbFaces(face1); |
---|
2037 | ++nbNghbFaces(face2); |
---|
2038 | mapFaces[hashFace] = hashFace; |
---|
2039 | } |
---|
2040 | } |
---|
2041 | } |
---|
2042 | } |
---|
2043 | } |
---|
2044 | } //getLocNghbFacesNodeType |
---|
2045 | |
---|
2046 | |
---|
2047 | ///---------------------------------------------------------------- |
---|
2048 | /*! |
---|
2049 | * \fn void getLocNghbFacesEdgeType (const CArray<int, 1>& face_idx, |
---|
2050 | * const CArray<double, 2>& bounds_lon, const CArray<double, 2>& bounds_lat, |
---|
2051 | * CArray<int, 2>& nghbFaces, CArray<int, 1>& nbNghbFaces) |
---|
2052 | * \param [in] face_idx Array with local face indexing. |
---|
2053 | * \param [in] bounds_lon Array of boundary longitudes. |
---|
2054 | * \param [in] bounds_lat Array of boundary latitudes. |
---|
2055 | * \param [out] nghbFaces 2D array containing neighboring faces. |
---|
2056 | * \param [out] nbNghbFaces Array containing number of neighboring faces. |
---|
2057 | */ |
---|
2058 | |
---|
2059 | void CMesh::getLocNghbFacesEdgeType (const CArray<int, 1>& face_idx, |
---|
2060 | const CArray<double, 2>& bounds_lon, const CArray<double, 2>& bounds_lat, |
---|
2061 | CArray<int, 2>& faceToFaces, CArray<int, 1>& nbNghbFaces) |
---|
2062 | { |
---|
2063 | int nvertex = bounds_lon.rows(); |
---|
2064 | int nbFaces = bounds_lon.shape()[1]; |
---|
2065 | int nbNodes = 0; |
---|
2066 | int nbEdges = 0; |
---|
2067 | nbNghbFaces.resize(nbFaces); |
---|
2068 | nbNghbFaces = 0; |
---|
2069 | |
---|
2070 | // faceToNodes connectivity |
---|
2071 | CArray<double, 2> faceToNodes (nvertex, nbFaces); |
---|
2072 | |
---|
2073 | std::unordered_map <pairDouble, int, boost::hash<pairDouble> > mapNodes; |
---|
2074 | |
---|
2075 | for (int nf = 0; nf < nbFaces; ++nf) |
---|
2076 | for (int nv = 0; nv < nvertex; ++nv) |
---|
2077 | { |
---|
2078 | if (mapNodes.find(make_pair (bounds_lon(nv, nf), bounds_lat(nv ,nf))) == mapNodes.end()) |
---|
2079 | { |
---|
2080 | mapNodes[make_pair (bounds_lon(nv, nf), bounds_lat(nv, nf))] = nbNodes; |
---|
2081 | faceToNodes(nv,nf) = nbNodes ; |
---|
2082 | ++nbNodes ; |
---|
2083 | } |
---|
2084 | else |
---|
2085 | faceToNodes(nv,nf) = mapNodes[make_pair (bounds_lon(nv, nf), bounds_lat(nv ,nf))]; |
---|
2086 | } |
---|
2087 | |
---|
2088 | // faceToFaces connectivity |
---|
2089 | std::unordered_map <pairInt, int, boost::hash<pairInt> > mapEdges; |
---|
2090 | faceToFaces.resize(nvertex, nbFaces); |
---|
2091 | CArray<int, 2> edgeToFaces(2, nbFaces*nvertex); // max possible |
---|
2092 | |
---|
2093 | for (int nf = 0; nf < nbFaces; ++nf) |
---|
2094 | { |
---|
2095 | for (int nv1 = 0; nv1 < nvertex; ++nv1) |
---|
2096 | { |
---|
2097 | int nv2 = (nv1 < nvertex -1 ) ? (nv1 + 1) : (nv1 + 1 - nvertex); // cyclic rotation |
---|
2098 | int face = face_idx(nf); |
---|
2099 | int node1 = faceToNodes(nv1,face); |
---|
2100 | int node2 = faceToNodes(nv2,face); |
---|
2101 | if (node1 != node2) |
---|
2102 | { |
---|
2103 | if (mapEdges.find(make_ordered_pair (node1, node2)) == mapEdges.end()) |
---|
2104 | { |
---|
2105 | mapEdges[make_ordered_pair (node1, node2)] = nbEdges; |
---|
2106 | edgeToFaces(0,nbEdges) = face; |
---|
2107 | ++nbEdges; |
---|
2108 | } |
---|
2109 | else |
---|
2110 | { |
---|
2111 | int edge = mapEdges[make_ordered_pair (node1, node2)]; |
---|
2112 | edgeToFaces(1, edge) = face; |
---|
2113 | int face1 = face; |
---|
2114 | int face2 = edgeToFaces(0,edge); |
---|
2115 | faceToFaces(nbNghbFaces(face1), face1) = face2; |
---|
2116 | faceToFaces(nbNghbFaces(face2), face2) = face1; |
---|
2117 | ++nbNghbFaces(face1); |
---|
2118 | ++nbNghbFaces(face2); |
---|
2119 | } |
---|
2120 | } // node1 != node2 |
---|
2121 | } // nv |
---|
2122 | } // nf |
---|
2123 | |
---|
2124 | } //getLocNghbFacesEdgeType |
---|
2125 | |
---|
2126 | |
---|
2127 | } // namespace xios |
---|