1 | MODULE dynspg_ts |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE dynspg_ts *** |
---|
4 | !! Ocean dynamics: surface pressure gradient trend, split-explicit scheme |
---|
5 | !!====================================================================== |
---|
6 | !! History : 1.0 ! 2004-12 (L. Bessieres, G. Madec) Original code |
---|
7 | !! - ! 2005-11 (V. Garnier, G. Madec) optimization |
---|
8 | !! - ! 2006-08 (S. Masson) distributed restart using iom |
---|
9 | !! 2.0 ! 2007-07 (D. Storkey) calls to BDY routines |
---|
10 | !! - ! 2008-01 (R. Benshila) change averaging method |
---|
11 | !! 3.2 ! 2009-07 (R. Benshila, G. Madec) Complete revisit associated to vvl reactivation |
---|
12 | !! 3.3 ! 2010-09 (D. Storkey, E. O'Dea) update for BDY for Shelf configurations |
---|
13 | !! 3.3 ! 2011-03 (R. Benshila, R. Hordoir, P. Oddo) update calculation of ub_b |
---|
14 | !! 3.5 ! 2013-07 (J. Chanut) Switch to Forward-backward time stepping |
---|
15 | !! 3.6 ! 2013-11 (A. Coward) Update for z-tilde compatibility |
---|
16 | !! 3.7 ! 2015-11 (J. Chanut) free surface simplification |
---|
17 | !! - ! 2016-12 (G. Madec, E. Clementi) update for Stoke-Drift divergence |
---|
18 | !! 4.0 ! 2017-05 (G. Madec) drag coef. defined at t-point (zdfdrg.F90) |
---|
19 | !!--------------------------------------------------------------------- |
---|
20 | |
---|
21 | !!---------------------------------------------------------------------- |
---|
22 | !! dyn_spg_ts : compute surface pressure gradient trend using a time-splitting scheme |
---|
23 | !! dyn_spg_ts_init: initialisation of the time-splitting scheme |
---|
24 | !! ts_wgt : set time-splitting weights for temporal averaging (or not) |
---|
25 | !! ts_rst : read/write time-splitting fields in restart file |
---|
26 | !!---------------------------------------------------------------------- |
---|
27 | USE oce ! ocean dynamics and tracers |
---|
28 | USE dom_oce ! ocean space and time domain |
---|
29 | USE sbc_oce ! surface boundary condition: ocean |
---|
30 | USE zdf_oce ! vertical physics: variables |
---|
31 | USE zdfdrg ! vertical physics: top/bottom drag coef. |
---|
32 | USE sbcisf ! ice shelf variable (fwfisf) |
---|
33 | USE sbcapr ! surface boundary condition: atmospheric pressure |
---|
34 | USE dynadv , ONLY : ln_dynadv_vec |
---|
35 | USE dynvor ! vortivity scheme indicators |
---|
36 | USE phycst ! physical constants |
---|
37 | USE dynvor ! vorticity term |
---|
38 | USE wet_dry ! wetting/drying flux limter |
---|
39 | USE bdy_oce ! open boundary |
---|
40 | USE bdytides ! open boundary condition data |
---|
41 | USE bdydyn2d ! open boundary conditions on barotropic variables |
---|
42 | USE sbctide ! tides |
---|
43 | USE updtide ! tide potential |
---|
44 | USE sbcwave ! surface wave |
---|
45 | USE diatmb ! Top,middle,bottom output |
---|
46 | #if defined key_agrif |
---|
47 | USE agrif_oce_interp ! agrif |
---|
48 | USE agrif_oce |
---|
49 | #endif |
---|
50 | #if defined key_asminc |
---|
51 | USE asminc ! Assimilation increment |
---|
52 | #endif |
---|
53 | ! |
---|
54 | USE in_out_manager ! I/O manager |
---|
55 | USE lib_mpp ! distributed memory computing library |
---|
56 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
57 | USE prtctl ! Print control |
---|
58 | USE iom ! IOM library |
---|
59 | USE restart ! only for lrst_oce |
---|
60 | USE diatmb ! Top,middle,bottom output |
---|
61 | |
---|
62 | IMPLICIT NONE |
---|
63 | PRIVATE |
---|
64 | |
---|
65 | PUBLIC dyn_spg_ts ! called by dyn_spg |
---|
66 | PUBLIC dyn_spg_ts_init ! - - dyn_spg_init |
---|
67 | |
---|
68 | !! Time filtered arrays at baroclinic time step: |
---|
69 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: un_adv , vn_adv !: Advection vel. at "now" barocl. step |
---|
70 | ! |
---|
71 | INTEGER, SAVE :: icycle ! Number of barotropic sub-steps for each internal step nn_baro <= 2.5 nn_baro |
---|
72 | REAL(wp),SAVE :: rdtbt ! Barotropic time step |
---|
73 | ! |
---|
74 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:) :: wgtbtp1, wgtbtp2 ! 1st & 2nd weights used in time filtering of barotropic fields |
---|
75 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: zwz ! ff_f/h at F points |
---|
76 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: ftnw, ftne ! triad of coriolis parameter |
---|
77 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: ftsw, ftse ! (only used with een vorticity scheme) |
---|
78 | |
---|
79 | REAL(wp) :: r1_12 = 1._wp / 12._wp ! local ratios |
---|
80 | REAL(wp) :: r1_8 = 0.125_wp ! |
---|
81 | REAL(wp) :: r1_4 = 0.25_wp ! |
---|
82 | REAL(wp) :: r1_2 = 0.5_wp ! |
---|
83 | |
---|
84 | REAL(wp) :: r1_2dt_b, r2dt_bf ! local scalars |
---|
85 | |
---|
86 | !! * Substitutions |
---|
87 | # include "vectopt_loop_substitute.h90" |
---|
88 | !!---------------------------------------------------------------------- |
---|
89 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
90 | !! $Id$ |
---|
91 | !! Software governed by the CeCILL licence (./LICENSE) |
---|
92 | !!---------------------------------------------------------------------- |
---|
93 | CONTAINS |
---|
94 | |
---|
95 | INTEGER FUNCTION dyn_spg_ts_alloc() |
---|
96 | !!---------------------------------------------------------------------- |
---|
97 | !! *** routine dyn_spg_ts_alloc *** |
---|
98 | !!---------------------------------------------------------------------- |
---|
99 | INTEGER :: ierr(3) |
---|
100 | !!---------------------------------------------------------------------- |
---|
101 | ierr(:) = 0 |
---|
102 | ! |
---|
103 | ALLOCATE( wgtbtp1(3*nn_baro), wgtbtp2(3*nn_baro), zwz(jpi,jpj), STAT=ierr(1) ) |
---|
104 | ! |
---|
105 | IF( ln_dynvor_een .OR. ln_dynvor_eeT ) & |
---|
106 | & ALLOCATE( ftnw(jpi,jpj) , ftne(jpi,jpj) , & |
---|
107 | & ftsw(jpi,jpj) , ftse(jpi,jpj) , STAT=ierr(2) ) |
---|
108 | ! |
---|
109 | ALLOCATE( un_adv(jpi,jpj), vn_adv(jpi,jpj) , STAT=ierr(3) ) |
---|
110 | ! |
---|
111 | dyn_spg_ts_alloc = MAXVAL( ierr(:) ) |
---|
112 | ! |
---|
113 | IF( lk_mpp ) CALL mpp_sum( dyn_spg_ts_alloc ) |
---|
114 | IF( dyn_spg_ts_alloc /= 0 ) CALL ctl_warn('dyn_spg_ts_alloc: failed to allocate arrays') |
---|
115 | ! |
---|
116 | END FUNCTION dyn_spg_ts_alloc |
---|
117 | |
---|
118 | |
---|
119 | SUBROUTINE dyn_spg_ts( kt ) |
---|
120 | !!---------------------------------------------------------------------- |
---|
121 | !! |
---|
122 | !! ** Purpose : - Compute the now trend due to the explicit time stepping |
---|
123 | !! of the quasi-linear barotropic system, and add it to the |
---|
124 | !! general momentum trend. |
---|
125 | !! |
---|
126 | !! ** Method : - split-explicit schem (time splitting) : |
---|
127 | !! Barotropic variables are advanced from internal time steps |
---|
128 | !! "n" to "n+1" if ln_bt_fw=T |
---|
129 | !! or from |
---|
130 | !! "n-1" to "n+1" if ln_bt_fw=F |
---|
131 | !! thanks to a generalized forward-backward time stepping (see ref. below). |
---|
132 | !! |
---|
133 | !! ** Action : |
---|
134 | !! -Update the filtered free surface at step "n+1" : ssha |
---|
135 | !! -Update filtered barotropic velocities at step "n+1" : ua_b, va_b |
---|
136 | !! -Compute barotropic advective fluxes at step "n" : un_adv, vn_adv |
---|
137 | !! These are used to advect tracers and are compliant with discrete |
---|
138 | !! continuity equation taken at the baroclinic time steps. This |
---|
139 | !! ensures tracers conservation. |
---|
140 | !! - (ua, va) momentum trend updated with barotropic component. |
---|
141 | !! |
---|
142 | !! References : Shchepetkin and McWilliams, Ocean Modelling, 2005. |
---|
143 | !!--------------------------------------------------------------------- |
---|
144 | INTEGER, INTENT(in) :: kt ! ocean time-step index |
---|
145 | ! |
---|
146 | INTEGER :: ji, jj, jk, jn ! dummy loop indices |
---|
147 | LOGICAL :: ll_fw_start ! =T : forward integration |
---|
148 | LOGICAL :: ll_init ! =T : special startup of 2d equations |
---|
149 | LOGICAL :: ll_tmp1, ll_tmp2 ! local logical variables used in W/D |
---|
150 | INTEGER :: ikbu, iktu, noffset ! local integers |
---|
151 | INTEGER :: ikbv, iktv ! - - |
---|
152 | REAL(wp) :: zx1, zx2, zu_spg, zhura, z1_hu ! - - |
---|
153 | REAL(wp) :: zy1, zy2, zv_spg, zhvra, z1_hv ! - - |
---|
154 | REAL(wp) :: za0, za1, za2, za3 ! - - |
---|
155 | REAL(wp) :: zmdi, zztmp , z1_ht ! - - |
---|
156 | REAL(wp), DIMENSION(jpi,jpj) :: zsshp2_e, zhf |
---|
157 | REAL(wp), DIMENSION(jpi,jpj) :: zwx, zu_trd, zu_frc, zssh_frc |
---|
158 | REAL(wp), DIMENSION(jpi,jpj) :: zwy, zv_trd, zv_frc, zhdiv |
---|
159 | REAL(wp), DIMENSION(jpi,jpj) :: zsshu_a, zhup2_e, zhust_e, zhtp2_e |
---|
160 | REAL(wp), DIMENSION(jpi,jpj) :: zsshv_a, zhvp2_e, zhvst_e |
---|
161 | REAL(wp), DIMENSION(jpi,jpj) :: zCdU_u, zCdU_v ! top/bottom stress at u- & v-points |
---|
162 | ! |
---|
163 | REAL(wp) :: zwdramp ! local scalar - only used if ln_wd_dl = .True. |
---|
164 | |
---|
165 | INTEGER :: iwdg, jwdg, kwdg ! short-hand values for the indices of the output point |
---|
166 | |
---|
167 | REAL(wp) :: zepsilon, zgamma ! - - |
---|
168 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zcpx, zcpy ! Wetting/Dying gravity filter coef. |
---|
169 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: ztwdmask, zuwdmask, zvwdmask ! ROMS wetting and drying masks at t,u,v points |
---|
170 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zuwdav2, zvwdav2 ! averages over the sub-steps of zuwdmask and zvwdmask |
---|
171 | !!---------------------------------------------------------------------- |
---|
172 | ! |
---|
173 | IF( ln_wd_il ) ALLOCATE( zcpx(jpi,jpj), zcpy(jpi,jpj) ) |
---|
174 | ! !* Allocate temporary arrays |
---|
175 | IF( ln_wd_dl ) ALLOCATE( ztwdmask(jpi,jpj), zuwdmask(jpi,jpj), zvwdmask(jpi,jpj), zuwdav2(jpi,jpj), zvwdav2(jpi,jpj)) |
---|
176 | ! |
---|
177 | zmdi=1.e+20 ! missing data indicator for masking |
---|
178 | ! |
---|
179 | zwdramp = r_rn_wdmin1 ! simplest ramp |
---|
180 | ! zwdramp = 1._wp / (rn_wdmin2 - rn_wdmin1) ! more general ramp |
---|
181 | ! ! reciprocal of baroclinic time step |
---|
182 | IF( l_1st_euler ) THEN ; r2dt_bf = rdt |
---|
183 | ELSE ; r2dt_bf = 2.0_wp * rdt |
---|
184 | ENDIF |
---|
185 | r1_2dt_b = 1.0_wp / r2dt_bf |
---|
186 | ! |
---|
187 | ll_init = ln_bt_av ! if no time averaging, then no specific restart |
---|
188 | ll_fw_start = .FALSE. |
---|
189 | ! ! time offset in steps for bdy data update |
---|
190 | IF( .NOT.ln_bt_fw ) THEN ; noffset = - nn_baro |
---|
191 | ELSE ; noffset = 0 |
---|
192 | ENDIF |
---|
193 | ! |
---|
194 | IF( kt == nit000 ) THEN !* initialisation 1st time-step |
---|
195 | ! |
---|
196 | IF(lwp) WRITE(numout,*) |
---|
197 | IF(lwp) WRITE(numout,*) 'dyn_spg_ts : surface pressure gradient trend' |
---|
198 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~ free surface with time splitting' |
---|
199 | IF(lwp) WRITE(numout,*) |
---|
200 | ! |
---|
201 | IF( l_1st_euler ) ll_init = .TRUE. |
---|
202 | ! |
---|
203 | IF( ln_bt_fw .OR. l_1st_euler ) THEN |
---|
204 | ll_fw_start =.TRUE. |
---|
205 | noffset = 0 |
---|
206 | ELSE |
---|
207 | ll_fw_start =.FALSE. |
---|
208 | ENDIF |
---|
209 | ! |
---|
210 | ! Set averaging weights and cycle length: |
---|
211 | CALL ts_wgt( ln_bt_av, ll_fw_start, icycle, wgtbtp1, wgtbtp2 ) |
---|
212 | ! |
---|
213 | ELSEIF( kt == nit000 + 1 ) THEN !* initialisation 2nd time-step |
---|
214 | ! |
---|
215 | IF( .NOT.ln_bt_fw .AND. l_1st_euler ) THEN |
---|
216 | ll_fw_start = .FALSE. |
---|
217 | CALL ts_wgt( ln_bt_av, ll_fw_start, icycle, wgtbtp1, wgtbtp2 ) |
---|
218 | ENDIF |
---|
219 | ! |
---|
220 | ENDIF |
---|
221 | ! |
---|
222 | IF( ln_isfcav ) THEN ! top+bottom friction (ocean cavities) |
---|
223 | DO jj = 2, jpjm1 |
---|
224 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
225 | zCdU_u(ji,jj) = r1_2*( rCdU_bot(ji+1,jj)+rCdU_bot(ji,jj) + rCdU_top(ji+1,jj)+rCdU_top(ji,jj) ) |
---|
226 | zCdU_v(ji,jj) = r1_2*( rCdU_bot(ji,jj+1)+rCdU_bot(ji,jj) + rCdU_top(ji,jj+1)+rCdU_top(ji,jj) ) |
---|
227 | END DO |
---|
228 | END DO |
---|
229 | ELSE ! bottom friction only |
---|
230 | DO jj = 2, jpjm1 |
---|
231 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
232 | zCdU_u(ji,jj) = r1_2*( rCdU_bot(ji+1,jj)+rCdU_bot(ji,jj) ) |
---|
233 | zCdU_v(ji,jj) = r1_2*( rCdU_bot(ji,jj+1)+rCdU_bot(ji,jj) ) |
---|
234 | END DO |
---|
235 | END DO |
---|
236 | ENDIF |
---|
237 | ! |
---|
238 | ! Set arrays to remove/compute coriolis trend. |
---|
239 | ! Do it once at kt=nit000 if volume is fixed, else at each long time step. |
---|
240 | ! Note that these arrays are also used during barotropic loop. These are however frozen |
---|
241 | ! although they should be updated in the variable volume case. Not a big approximation. |
---|
242 | ! To remove this approximation, copy lines below inside barotropic loop |
---|
243 | ! and update depths at T-F points (ht and zhf resp.) at each barotropic time step |
---|
244 | ! |
---|
245 | IF( kt == nit000 .OR. .NOT.ln_linssh ) THEN |
---|
246 | ! |
---|
247 | SELECT CASE( nvor_scheme ) |
---|
248 | CASE( np_EEN ) != EEN scheme using e3f (energy & enstrophy scheme) |
---|
249 | SELECT CASE( nn_een_e3f ) !* ff_f/e3 at F-point |
---|
250 | CASE ( 0 ) ! original formulation (masked averaging of e3t divided by 4) |
---|
251 | DO jj = 1, jpjm1 |
---|
252 | DO ji = 1, jpim1 |
---|
253 | zwz(ji,jj) = ( ht_n(ji ,jj+1) + ht_n(ji+1,jj+1) + & |
---|
254 | & ht_n(ji ,jj ) + ht_n(ji+1,jj ) ) * 0.25_wp |
---|
255 | IF( zwz(ji,jj) /= 0._wp ) zwz(ji,jj) = ff_f(ji,jj) / zwz(ji,jj) |
---|
256 | END DO |
---|
257 | END DO |
---|
258 | CASE ( 1 ) ! new formulation (masked averaging of e3t divided by the sum of mask) |
---|
259 | DO jj = 1, jpjm1 |
---|
260 | DO ji = 1, jpim1 |
---|
261 | zwz(ji,jj) = ( ht_n (ji ,jj+1) + ht_n (ji+1,jj+1) & |
---|
262 | & + ht_n (ji ,jj ) + ht_n (ji+1,jj ) ) & |
---|
263 | & / ( MAX( 1._wp, ssmask(ji ,jj+1) + ssmask(ji+1,jj+1) & |
---|
264 | & + ssmask(ji ,jj ) + ssmask(ji+1,jj ) ) ) |
---|
265 | IF( zwz(ji,jj) /= 0._wp ) zwz(ji,jj) = ff_f(ji,jj) / zwz(ji,jj) |
---|
266 | END DO |
---|
267 | END DO |
---|
268 | END SELECT |
---|
269 | CALL lbc_lnk( zwz, 'F', 1._wp ) |
---|
270 | ! |
---|
271 | ftne(1,:) = 0._wp ; ftnw(1,:) = 0._wp ; ftse(1,:) = 0._wp ; ftsw(1,:) = 0._wp |
---|
272 | DO jj = 2, jpj |
---|
273 | DO ji = 2, jpi |
---|
274 | ftne(ji,jj) = zwz(ji-1,jj ) + zwz(ji ,jj ) + zwz(ji ,jj-1) |
---|
275 | ftnw(ji,jj) = zwz(ji-1,jj-1) + zwz(ji-1,jj ) + zwz(ji ,jj ) |
---|
276 | ftse(ji,jj) = zwz(ji ,jj ) + zwz(ji ,jj-1) + zwz(ji-1,jj-1) |
---|
277 | ftsw(ji,jj) = zwz(ji ,jj-1) + zwz(ji-1,jj-1) + zwz(ji-1,jj ) |
---|
278 | END DO |
---|
279 | END DO |
---|
280 | ! |
---|
281 | CASE( np_EET ) != EEN scheme using e3t (energy conserving scheme) |
---|
282 | ftne(1,:) = 0._wp ; ftnw(1,:) = 0._wp ; ftse(1,:) = 0._wp ; ftsw(1,:) = 0._wp |
---|
283 | DO jj = 2, jpj |
---|
284 | DO ji = 2, jpi |
---|
285 | z1_ht = ssmask(ji,jj) / ( ht_n(ji,jj) + 1._wp - ssmask(ji,jj) ) |
---|
286 | ftne(ji,jj) = ( ff_f(ji-1,jj ) + ff_f(ji ,jj ) + ff_f(ji ,jj-1) ) * z1_ht |
---|
287 | ftnw(ji,jj) = ( ff_f(ji-1,jj-1) + ff_f(ji-1,jj ) + ff_f(ji ,jj ) ) * z1_ht |
---|
288 | ftse(ji,jj) = ( ff_f(ji ,jj ) + ff_f(ji ,jj-1) + ff_f(ji-1,jj-1) ) * z1_ht |
---|
289 | ftsw(ji,jj) = ( ff_f(ji ,jj-1) + ff_f(ji-1,jj-1) + ff_f(ji-1,jj ) ) * z1_ht |
---|
290 | END DO |
---|
291 | END DO |
---|
292 | ! |
---|
293 | CASE( np_ENE, np_ENS , np_MIX ) != all other schemes (ENE, ENS, MIX) except ENT ! |
---|
294 | ! |
---|
295 | zwz(:,:) = 0._wp |
---|
296 | zhf(:,:) = 0._wp |
---|
297 | |
---|
298 | !!gm assume 0 in both cases (which is almost surely WRONG ! ) as hvatf has been removed |
---|
299 | !!gm A priori a better value should be something like : |
---|
300 | !!gm zhf(i,j) = masked sum of ht(i,j) , ht(i+1,j) , ht(i,j+1) , (i+1,j+1) |
---|
301 | !!gm divided by the sum of the corresponding mask |
---|
302 | !!gm |
---|
303 | !! |
---|
304 | IF( .NOT.ln_sco ) THEN |
---|
305 | |
---|
306 | !!gm agree the JC comment : this should be done in a much clear way |
---|
307 | |
---|
308 | ! JC: It not clear yet what should be the depth at f-points over land in z-coordinate case |
---|
309 | ! Set it to zero for the time being |
---|
310 | ! IF( rn_hmin < 0._wp ) THEN ; jk = - INT( rn_hmin ) ! from a nb of level |
---|
311 | ! ELSE ; jk = MINLOC( gdepw_0, mask = gdepw_0 > rn_hmin, dim = 1 ) ! from a depth |
---|
312 | ! ENDIF |
---|
313 | ! zhf(:,:) = gdepw_0(:,:,jk+1) |
---|
314 | ! |
---|
315 | ELSE |
---|
316 | ! |
---|
317 | !zhf(:,:) = hbatf(:,:) |
---|
318 | DO jj = 1, jpjm1 |
---|
319 | DO ji = 1, jpim1 |
---|
320 | zhf(ji,jj) = ( ht_0 (ji,jj ) + ht_0 (ji+1,jj ) & |
---|
321 | & + ht_0 (ji,jj+1) + ht_0 (ji+1,jj+1) ) & |
---|
322 | & / MAX( ssmask(ji,jj ) + ssmask(ji+1,jj ) & |
---|
323 | & + ssmask(ji,jj+1) + ssmask(ji+1,jj+1) , 1._wp ) |
---|
324 | END DO |
---|
325 | END DO |
---|
326 | ENDIF |
---|
327 | ! |
---|
328 | DO jj = 1, jpjm1 |
---|
329 | zhf(:,jj) = zhf(:,jj) * (1._wp- umask(:,jj,1) * umask(:,jj+1,1)) |
---|
330 | END DO |
---|
331 | ! |
---|
332 | DO jk = 1, jpkm1 |
---|
333 | DO jj = 1, jpjm1 |
---|
334 | zhf(:,jj) = zhf(:,jj) + e3f_n(:,jj,jk) * umask(:,jj,jk) * umask(:,jj+1,jk) |
---|
335 | END DO |
---|
336 | END DO |
---|
337 | CALL lbc_lnk( zhf, 'F', 1._wp ) |
---|
338 | ! JC: TBC. hf should be greater than 0 |
---|
339 | DO jj = 1, jpj |
---|
340 | DO ji = 1, jpi |
---|
341 | IF( zhf(ji,jj) /= 0._wp ) zwz(ji,jj) = 1._wp / zhf(ji,jj) ! zhf is actually hf here but it saves an array |
---|
342 | END DO |
---|
343 | END DO |
---|
344 | zwz(:,:) = ff_f(:,:) * zwz(:,:) |
---|
345 | END SELECT |
---|
346 | ENDIF |
---|
347 | ! |
---|
348 | ! ----------------------------------------------------------------------------- |
---|
349 | ! Phase 1 : Coupling between general trend and barotropic estimates (1st step) |
---|
350 | ! ----------------------------------------------------------------------------- |
---|
351 | ! |
---|
352 | ! |
---|
353 | ! !* e3*d/dt(Ua) (Vertically integrated) |
---|
354 | ! ! -------------------------------------------------- |
---|
355 | zu_frc(:,:) = 0._wp |
---|
356 | zv_frc(:,:) = 0._wp |
---|
357 | ! |
---|
358 | DO jk = 1, jpkm1 |
---|
359 | zu_frc(:,:) = zu_frc(:,:) + e3u_n(:,:,jk) * ua(:,:,jk) * umask(:,:,jk) |
---|
360 | zv_frc(:,:) = zv_frc(:,:) + e3v_n(:,:,jk) * va(:,:,jk) * vmask(:,:,jk) |
---|
361 | END DO |
---|
362 | ! |
---|
363 | zu_frc(:,:) = zu_frc(:,:) * r1_hu_n(:,:) |
---|
364 | zv_frc(:,:) = zv_frc(:,:) * r1_hv_n(:,:) |
---|
365 | ! |
---|
366 | ! |
---|
367 | ! !* baroclinic momentum trend (remove the vertical mean trend) |
---|
368 | DO jk = 1, jpkm1 ! ----------------------------------------------------------- |
---|
369 | DO jj = 2, jpjm1 |
---|
370 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
371 | ua(ji,jj,jk) = ua(ji,jj,jk) - zu_frc(ji,jj) * umask(ji,jj,jk) |
---|
372 | va(ji,jj,jk) = va(ji,jj,jk) - zv_frc(ji,jj) * vmask(ji,jj,jk) |
---|
373 | END DO |
---|
374 | END DO |
---|
375 | END DO |
---|
376 | |
---|
377 | !!gm Question here when removing the Vertically integrated trends, we remove the vertically integrated NL trends on momentum.... |
---|
378 | !!gm Is it correct to do so ? I think so... |
---|
379 | |
---|
380 | |
---|
381 | ! !* barotropic Coriolis trends (vorticity scheme dependent) |
---|
382 | ! ! -------------------------------------------------------- |
---|
383 | ! |
---|
384 | zwx(:,:) = un_b(:,:) * hu_n(:,:) * e2u(:,:) ! now fluxes |
---|
385 | zwy(:,:) = vn_b(:,:) * hv_n(:,:) * e1v(:,:) |
---|
386 | ! |
---|
387 | SELECT CASE( nvor_scheme ) |
---|
388 | CASE( np_ENT ) ! enstrophy conserving scheme (f-point) |
---|
389 | DO jj = 2, jpjm1 |
---|
390 | DO ji = 2, jpim1 ! vector opt. |
---|
391 | zu_trd(ji,jj) = + r1_4 * r1_e1e2u(ji,jj) * r1_hu_n(ji,jj) & |
---|
392 | & * ( e1e2t(ji+1,jj)*ht_n(ji+1,jj)*ff_t(ji+1,jj) * ( vn_b(ji+1,jj) + vn_b(ji+1,jj-1) ) & |
---|
393 | & + e1e2t(ji ,jj)*ht_n(ji ,jj)*ff_t(ji ,jj) * ( vn_b(ji ,jj) + vn_b(ji ,jj-1) ) ) |
---|
394 | ! |
---|
395 | zv_trd(ji,jj) = - r1_4 * r1_e1e2v(ji,jj) * r1_hv_n(ji,jj) & |
---|
396 | & * ( e1e2t(ji,jj+1)*ht_n(ji,jj+1)*ff_t(ji,jj+1) * ( un_b(ji,jj+1) + un_b(ji-1,jj+1) ) & |
---|
397 | & + e1e2t(ji,jj )*ht_n(ji,jj )*ff_t(ji,jj ) * ( un_b(ji,jj ) + un_b(ji-1,jj ) ) ) |
---|
398 | END DO |
---|
399 | END DO |
---|
400 | ! |
---|
401 | CASE( np_ENE , np_MIX ) ! energy conserving scheme (t-point) ENE or MIX |
---|
402 | DO jj = 2, jpjm1 |
---|
403 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
404 | zy1 = ( zwy(ji,jj-1) + zwy(ji+1,jj-1) ) * r1_e1u(ji,jj) |
---|
405 | zy2 = ( zwy(ji,jj ) + zwy(ji+1,jj ) ) * r1_e1u(ji,jj) |
---|
406 | zx1 = ( zwx(ji-1,jj) + zwx(ji-1,jj+1) ) * r1_e2v(ji,jj) |
---|
407 | zx2 = ( zwx(ji ,jj) + zwx(ji ,jj+1) ) * r1_e2v(ji,jj) |
---|
408 | ! energy conserving formulation for planetary vorticity term |
---|
409 | zu_trd(ji,jj) = r1_4 * ( zwz(ji ,jj-1) * zy1 + zwz(ji,jj) * zy2 ) |
---|
410 | zv_trd(ji,jj) = - r1_4 * ( zwz(ji-1,jj ) * zx1 + zwz(ji,jj) * zx2 ) |
---|
411 | END DO |
---|
412 | END DO |
---|
413 | ! |
---|
414 | CASE( np_ENS ) ! enstrophy conserving scheme (f-point) |
---|
415 | DO jj = 2, jpjm1 |
---|
416 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
417 | zy1 = r1_8 * ( zwy(ji ,jj-1) + zwy(ji+1,jj-1) & |
---|
418 | & + zwy(ji ,jj ) + zwy(ji+1,jj ) ) * r1_e1u(ji,jj) |
---|
419 | zx1 = - r1_8 * ( zwx(ji-1,jj ) + zwx(ji-1,jj+1) & |
---|
420 | & + zwx(ji ,jj ) + zwx(ji ,jj+1) ) * r1_e2v(ji,jj) |
---|
421 | zu_trd(ji,jj) = zy1 * ( zwz(ji ,jj-1) + zwz(ji,jj) ) |
---|
422 | zv_trd(ji,jj) = zx1 * ( zwz(ji-1,jj ) + zwz(ji,jj) ) |
---|
423 | END DO |
---|
424 | END DO |
---|
425 | ! |
---|
426 | CASE( np_EET , np_EEN ) ! energy & enstrophy scheme (using e3t or e3f) |
---|
427 | DO jj = 2, jpjm1 |
---|
428 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
429 | zu_trd(ji,jj) = + r1_12 * r1_e1u(ji,jj) * ( ftne(ji,jj ) * zwy(ji ,jj ) & |
---|
430 | & + ftnw(ji+1,jj) * zwy(ji+1,jj ) & |
---|
431 | & + ftse(ji,jj ) * zwy(ji ,jj-1) & |
---|
432 | & + ftsw(ji+1,jj) * zwy(ji+1,jj-1) ) |
---|
433 | zv_trd(ji,jj) = - r1_12 * r1_e2v(ji,jj) * ( ftsw(ji,jj+1) * zwx(ji-1,jj+1) & |
---|
434 | & + ftse(ji,jj+1) * zwx(ji ,jj+1) & |
---|
435 | & + ftnw(ji,jj ) * zwx(ji-1,jj ) & |
---|
436 | & + ftne(ji,jj ) * zwx(ji ,jj ) ) |
---|
437 | END DO |
---|
438 | END DO |
---|
439 | ! |
---|
440 | END SELECT |
---|
441 | ! |
---|
442 | ! !* Right-Hand-Side of the barotropic momentum equation |
---|
443 | ! ! ---------------------------------------------------- |
---|
444 | IF( .NOT.ln_linssh ) THEN ! Variable volume : remove surface pressure gradient |
---|
445 | IF( ln_wd_il ) THEN ! Calculating and applying W/D gravity filters |
---|
446 | DO jj = 2, jpjm1 |
---|
447 | DO ji = 2, jpim1 |
---|
448 | ll_tmp1 = MIN( sshn(ji,jj) , sshn(ji+1,jj) ) > & |
---|
449 | & MAX( -ht_0(ji,jj) , -ht_0(ji+1,jj) ) .AND. & |
---|
450 | & MAX( sshn(ji,jj) + ht_0(ji,jj) , sshn(ji+1,jj) + ht_0(ji+1,jj) ) & |
---|
451 | & > rn_wdmin1 + rn_wdmin2 |
---|
452 | ll_tmp2 = ( ABS( sshn(ji+1,jj) - sshn(ji ,jj)) > 1.E-12 ).AND.( & |
---|
453 | & MAX( sshn(ji,jj) , sshn(ji+1,jj) ) > & |
---|
454 | & MAX( -ht_0(ji,jj) , -ht_0(ji+1,jj) ) + rn_wdmin1 + rn_wdmin2 ) |
---|
455 | IF(ll_tmp1) THEN |
---|
456 | zcpx(ji,jj) = 1.0_wp |
---|
457 | ELSEIF(ll_tmp2) THEN |
---|
458 | ! no worries about sshn(ji+1,jj) - sshn(ji ,jj) = 0, it won't happen ! here |
---|
459 | zcpx(ji,jj) = ABS( (sshn(ji+1,jj) + ht_0(ji+1,jj) - sshn(ji,jj) - ht_0(ji,jj)) & |
---|
460 | & / (sshn(ji+1,jj) - sshn(ji ,jj)) ) |
---|
461 | zcpx(ji,jj) = max(min( zcpx(ji,jj) , 1.0_wp),0.0_wp) |
---|
462 | ELSE |
---|
463 | zcpx(ji,jj) = 0._wp |
---|
464 | ENDIF |
---|
465 | ! |
---|
466 | ll_tmp1 = MIN( sshn(ji,jj) , sshn(ji,jj+1) ) > & |
---|
467 | & MAX( -ht_0(ji,jj) , -ht_0(ji,jj+1) ) .AND. & |
---|
468 | & MAX( sshn(ji,jj) + ht_0(ji,jj) , sshn(ji,jj+1) + ht_0(ji,jj+1) ) & |
---|
469 | & > rn_wdmin1 + rn_wdmin2 |
---|
470 | ll_tmp2 = ( ABS( sshn(ji,jj) - sshn(ji,jj+1)) > 1.E-12 ).AND.( & |
---|
471 | & MAX( sshn(ji,jj) , sshn(ji,jj+1) ) > & |
---|
472 | & MAX( -ht_0(ji,jj) , -ht_0(ji,jj+1) ) + rn_wdmin1 + rn_wdmin2 ) |
---|
473 | |
---|
474 | IF(ll_tmp1) THEN |
---|
475 | zcpy(ji,jj) = 1.0_wp |
---|
476 | ELSE IF(ll_tmp2) THEN |
---|
477 | ! no worries about sshn(ji,jj+1) - sshn(ji,jj ) = 0, it won't happen ! here |
---|
478 | zcpy(ji,jj) = ABS( (sshn(ji,jj+1) + ht_0(ji,jj+1) - sshn(ji,jj) - ht_0(ji,jj)) & |
---|
479 | & / (sshn(ji,jj+1) - sshn(ji,jj )) ) |
---|
480 | zcpy(ji,jj) = MAX( 0._wp , MIN( zcpy(ji,jj) , 1.0_wp ) ) |
---|
481 | ELSE |
---|
482 | zcpy(ji,jj) = 0._wp |
---|
483 | ENDIF |
---|
484 | END DO |
---|
485 | END DO |
---|
486 | ! |
---|
487 | DO jj = 2, jpjm1 |
---|
488 | DO ji = 2, jpim1 |
---|
489 | zu_trd(ji,jj) = zu_trd(ji,jj) - grav * ( sshn(ji+1,jj ) - sshn(ji ,jj ) ) & |
---|
490 | & * r1_e1u(ji,jj) * zcpx(ji,jj) * wdrampu(ji,jj) !jth |
---|
491 | zv_trd(ji,jj) = zv_trd(ji,jj) - grav * ( sshn(ji ,jj+1) - sshn(ji ,jj ) ) & |
---|
492 | & * r1_e2v(ji,jj) * zcpy(ji,jj) * wdrampv(ji,jj) !jth |
---|
493 | END DO |
---|
494 | END DO |
---|
495 | ! |
---|
496 | ELSE |
---|
497 | ! |
---|
498 | DO jj = 2, jpjm1 |
---|
499 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
500 | zu_trd(ji,jj) = zu_trd(ji,jj) - grav * ( sshn(ji+1,jj ) - sshn(ji ,jj ) ) * r1_e1u(ji,jj) |
---|
501 | zv_trd(ji,jj) = zv_trd(ji,jj) - grav * ( sshn(ji ,jj+1) - sshn(ji ,jj ) ) * r1_e2v(ji,jj) |
---|
502 | END DO |
---|
503 | END DO |
---|
504 | ENDIF |
---|
505 | ! |
---|
506 | ENDIF |
---|
507 | ! |
---|
508 | DO jj = 2, jpjm1 ! Remove coriolis term (and possibly spg) from barotropic trend |
---|
509 | DO ji = fs_2, fs_jpim1 |
---|
510 | zu_frc(ji,jj) = zu_frc(ji,jj) - zu_trd(ji,jj) * ssumask(ji,jj) |
---|
511 | zv_frc(ji,jj) = zv_frc(ji,jj) - zv_trd(ji,jj) * ssvmask(ji,jj) |
---|
512 | END DO |
---|
513 | END DO |
---|
514 | ! |
---|
515 | ! ! Add bottom stress contribution from baroclinic velocities: |
---|
516 | IF (ln_bt_fw) THEN |
---|
517 | DO jj = 2, jpjm1 |
---|
518 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
519 | ikbu = mbku(ji,jj) |
---|
520 | ikbv = mbkv(ji,jj) |
---|
521 | zwx(ji,jj) = un(ji,jj,ikbu) - un_b(ji,jj) ! NOW bottom baroclinic velocities |
---|
522 | zwy(ji,jj) = vn(ji,jj,ikbv) - vn_b(ji,jj) |
---|
523 | END DO |
---|
524 | END DO |
---|
525 | ELSE |
---|
526 | DO jj = 2, jpjm1 |
---|
527 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
528 | ikbu = mbku(ji,jj) |
---|
529 | ikbv = mbkv(ji,jj) |
---|
530 | zwx(ji,jj) = ub(ji,jj,ikbu) - ub_b(ji,jj) ! BEFORE bottom baroclinic velocities |
---|
531 | zwy(ji,jj) = vb(ji,jj,ikbv) - vb_b(ji,jj) |
---|
532 | END DO |
---|
533 | END DO |
---|
534 | ENDIF |
---|
535 | ! |
---|
536 | ! Note that the "unclipped" bottom friction parameter is used even with explicit drag |
---|
537 | IF( ln_wd_il ) THEN |
---|
538 | zztmp = -1._wp / rdtbt |
---|
539 | DO jj = 2, jpjm1 |
---|
540 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
541 | zu_frc(ji,jj) = zu_frc(ji,jj) + & |
---|
542 | & MAX(r1_hu_n(ji,jj) * r1_2 * ( rCdU_bot(ji+1,jj)+rCdU_bot(ji,jj) ), zztmp ) * zwx(ji,jj) * wdrampu(ji,jj) |
---|
543 | zv_frc(ji,jj) = zv_frc(ji,jj) + & |
---|
544 | & MAX(r1_hv_n(ji,jj) * r1_2 * ( rCdU_bot(ji,jj+1)+rCdU_bot(ji,jj) ), zztmp ) * zwy(ji,jj) * wdrampv(ji,jj) |
---|
545 | END DO |
---|
546 | END DO |
---|
547 | ELSE |
---|
548 | DO jj = 2, jpjm1 |
---|
549 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
550 | zu_frc(ji,jj) = zu_frc(ji,jj) + r1_hu_n(ji,jj) * r1_2 * ( rCdU_bot(ji+1,jj)+rCdU_bot(ji,jj) ) * zwx(ji,jj) |
---|
551 | zv_frc(ji,jj) = zv_frc(ji,jj) + r1_hv_n(ji,jj) * r1_2 * ( rCdU_bot(ji,jj+1)+rCdU_bot(ji,jj) ) * zwy(ji,jj) |
---|
552 | END DO |
---|
553 | END DO |
---|
554 | END IF |
---|
555 | ! |
---|
556 | IF( ln_isfcav ) THEN ! Add TOP stress contribution from baroclinic velocities: |
---|
557 | IF( ln_bt_fw ) THEN |
---|
558 | DO jj = 2, jpjm1 |
---|
559 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
560 | iktu = miku(ji,jj) |
---|
561 | iktv = mikv(ji,jj) |
---|
562 | zwx(ji,jj) = un(ji,jj,iktu) - un_b(ji,jj) ! NOW top baroclinic velocities |
---|
563 | zwy(ji,jj) = vn(ji,jj,iktv) - vn_b(ji,jj) |
---|
564 | END DO |
---|
565 | END DO |
---|
566 | ELSE |
---|
567 | DO jj = 2, jpjm1 |
---|
568 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
569 | iktu = miku(ji,jj) |
---|
570 | iktv = mikv(ji,jj) |
---|
571 | zwx(ji,jj) = ub(ji,jj,iktu) - ub_b(ji,jj) ! BEFORE top baroclinic velocities |
---|
572 | zwy(ji,jj) = vb(ji,jj,iktv) - vb_b(ji,jj) |
---|
573 | END DO |
---|
574 | END DO |
---|
575 | ENDIF |
---|
576 | ! |
---|
577 | ! Note that the "unclipped" top friction parameter is used even with explicit drag |
---|
578 | DO jj = 2, jpjm1 |
---|
579 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
580 | zu_frc(ji,jj) = zu_frc(ji,jj) + r1_hu_n(ji,jj) * r1_2 * ( rCdU_top(ji+1,jj)+rCdU_top(ji,jj) ) * zwx(ji,jj) |
---|
581 | zv_frc(ji,jj) = zv_frc(ji,jj) + r1_hv_n(ji,jj) * r1_2 * ( rCdU_top(ji,jj+1)+rCdU_top(ji,jj) ) * zwy(ji,jj) |
---|
582 | END DO |
---|
583 | END DO |
---|
584 | ENDIF |
---|
585 | ! |
---|
586 | IF( ln_bt_fw ) THEN ! Add wind forcing |
---|
587 | DO jj = 2, jpjm1 |
---|
588 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
589 | zu_frc(ji,jj) = zu_frc(ji,jj) + r1_rau0 * utau(ji,jj) * r1_hu_n(ji,jj) |
---|
590 | zv_frc(ji,jj) = zv_frc(ji,jj) + r1_rau0 * vtau(ji,jj) * r1_hv_n(ji,jj) |
---|
591 | END DO |
---|
592 | END DO |
---|
593 | ELSE |
---|
594 | zztmp = r1_rau0 * r1_2 |
---|
595 | DO jj = 2, jpjm1 |
---|
596 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
597 | zu_frc(ji,jj) = zu_frc(ji,jj) + zztmp * ( utau_b(ji,jj) + utau(ji,jj) ) * r1_hu_n(ji,jj) |
---|
598 | zv_frc(ji,jj) = zv_frc(ji,jj) + zztmp * ( vtau_b(ji,jj) + vtau(ji,jj) ) * r1_hv_n(ji,jj) |
---|
599 | END DO |
---|
600 | END DO |
---|
601 | ENDIF |
---|
602 | ! |
---|
603 | IF( ln_apr_dyn ) THEN ! Add atm pressure forcing |
---|
604 | IF( ln_bt_fw ) THEN |
---|
605 | DO jj = 2, jpjm1 |
---|
606 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
607 | zu_spg = grav * ( ssh_ib (ji+1,jj ) - ssh_ib (ji,jj) ) * r1_e1u(ji,jj) |
---|
608 | zv_spg = grav * ( ssh_ib (ji ,jj+1) - ssh_ib (ji,jj) ) * r1_e2v(ji,jj) |
---|
609 | zu_frc(ji,jj) = zu_frc(ji,jj) + zu_spg |
---|
610 | zv_frc(ji,jj) = zv_frc(ji,jj) + zv_spg |
---|
611 | END DO |
---|
612 | END DO |
---|
613 | ELSE |
---|
614 | zztmp = grav * r1_2 |
---|
615 | DO jj = 2, jpjm1 |
---|
616 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
617 | zu_spg = zztmp * ( ssh_ib (ji+1,jj ) - ssh_ib (ji,jj) & |
---|
618 | & + ssh_ibb(ji+1,jj ) - ssh_ibb(ji,jj) ) * r1_e1u(ji,jj) |
---|
619 | zv_spg = zztmp * ( ssh_ib (ji ,jj+1) - ssh_ib (ji,jj) & |
---|
620 | & + ssh_ibb(ji ,jj+1) - ssh_ibb(ji,jj) ) * r1_e2v(ji,jj) |
---|
621 | zu_frc(ji,jj) = zu_frc(ji,jj) + zu_spg |
---|
622 | zv_frc(ji,jj) = zv_frc(ji,jj) + zv_spg |
---|
623 | END DO |
---|
624 | END DO |
---|
625 | ENDIF |
---|
626 | ENDIF |
---|
627 | ! !* Right-Hand-Side of the barotropic ssh equation |
---|
628 | ! ! ----------------------------------------------- |
---|
629 | ! ! Surface net water flux and rivers |
---|
630 | IF (ln_bt_fw) THEN |
---|
631 | zssh_frc(:,:) = r1_rau0 * ( emp(:,:) - rnf(:,:) + fwfisf(:,:) ) |
---|
632 | ELSE |
---|
633 | zztmp = r1_rau0 * r1_2 |
---|
634 | zssh_frc(:,:) = zztmp * ( emp(:,:) + emp_b(:,:) - rnf(:,:) - rnf_b(:,:) & |
---|
635 | & + fwfisf(:,:) + fwfisf_b(:,:) ) |
---|
636 | ENDIF |
---|
637 | ! |
---|
638 | IF( ln_sdw ) THEN ! Stokes drift divergence added if necessary |
---|
639 | zssh_frc(:,:) = zssh_frc(:,:) + div_sd(:,:) |
---|
640 | ENDIF |
---|
641 | ! |
---|
642 | #if defined key_asminc |
---|
643 | ! ! Include the IAU weighted SSH increment |
---|
644 | IF( lk_asminc .AND. ln_sshinc .AND. ln_asmiau ) THEN |
---|
645 | zssh_frc(:,:) = zssh_frc(:,:) - ssh_iau(:,:) |
---|
646 | ENDIF |
---|
647 | #endif |
---|
648 | ! !* Fill boundary data arrays for AGRIF |
---|
649 | ! ! ------------------------------------ |
---|
650 | #if defined key_agrif |
---|
651 | IF( .NOT.Agrif_Root() ) CALL agrif_dta_ts( kt ) |
---|
652 | #endif |
---|
653 | ! |
---|
654 | ! ----------------------------------------------------------------------- |
---|
655 | ! Phase 2 : Integration of the barotropic equations |
---|
656 | ! ----------------------------------------------------------------------- |
---|
657 | ! |
---|
658 | ! ! ==================== ! |
---|
659 | ! ! Initialisations ! |
---|
660 | ! ! ==================== ! |
---|
661 | ! Initialize barotropic variables: |
---|
662 | IF( ll_init )THEN |
---|
663 | sshbb_e(:,:) = 0._wp |
---|
664 | ubb_e (:,:) = 0._wp |
---|
665 | vbb_e (:,:) = 0._wp |
---|
666 | sshb_e (:,:) = 0._wp |
---|
667 | ub_e (:,:) = 0._wp |
---|
668 | vb_e (:,:) = 0._wp |
---|
669 | ENDIF |
---|
670 | |
---|
671 | ! |
---|
672 | IF (ln_bt_fw) THEN ! FORWARD integration: start from NOW fields |
---|
673 | sshn_e(:,:) = sshn(:,:) |
---|
674 | un_e (:,:) = un_b(:,:) |
---|
675 | vn_e (:,:) = vn_b(:,:) |
---|
676 | ! |
---|
677 | hu_e (:,:) = hu_n(:,:) |
---|
678 | hv_e (:,:) = hv_n(:,:) |
---|
679 | hur_e (:,:) = r1_hu_n(:,:) |
---|
680 | hvr_e (:,:) = r1_hv_n(:,:) |
---|
681 | ELSE ! CENTRED integration: start from BEFORE fields |
---|
682 | sshn_e(:,:) = sshb(:,:) |
---|
683 | un_e (:,:) = ub_b(:,:) |
---|
684 | vn_e (:,:) = vb_b(:,:) |
---|
685 | ! |
---|
686 | hu_e (:,:) = hu_b(:,:) |
---|
687 | hv_e (:,:) = hv_b(:,:) |
---|
688 | hur_e (:,:) = r1_hu_b(:,:) |
---|
689 | hvr_e (:,:) = r1_hv_b(:,:) |
---|
690 | ENDIF |
---|
691 | ! |
---|
692 | ! |
---|
693 | ! |
---|
694 | ! Initialize sums: |
---|
695 | ua_b (:,:) = 0._wp ! After barotropic velocities (or transport if flux form) |
---|
696 | va_b (:,:) = 0._wp |
---|
697 | ssha (:,:) = 0._wp ! Sum for after averaged sea level |
---|
698 | un_adv(:,:) = 0._wp ! Sum for now transport issued from ts loop |
---|
699 | vn_adv(:,:) = 0._wp |
---|
700 | ! |
---|
701 | IF( ln_wd_dl ) THEN |
---|
702 | zuwdmask(:,:) = 0._wp ! set to zero for definiteness (not sure this is necessary) |
---|
703 | zvwdmask(:,:) = 0._wp ! |
---|
704 | zuwdav2 (:,:) = 0._wp |
---|
705 | zvwdav2 (:,:) = 0._wp |
---|
706 | END IF |
---|
707 | |
---|
708 | ! ! ==================== ! |
---|
709 | DO jn = 1, icycle ! sub-time-step loop ! |
---|
710 | ! ! ==================== ! |
---|
711 | ! !* Update the forcing (BDY and tides) |
---|
712 | ! ! ------------------ |
---|
713 | ! Update only tidal forcing at open boundaries |
---|
714 | IF( ln_bdy .AND. ln_tide ) CALL bdy_dta_tides( kt, kit=jn, time_offset= noffset+1 ) |
---|
715 | IF( ln_tide_pot .AND. ln_tide ) CALL upd_tide ( kt, kit=jn, time_offset= noffset ) |
---|
716 | ! |
---|
717 | ! Set extrapolation coefficients for predictor step: |
---|
718 | IF ((jn<3).AND.ll_init) THEN ! Forward |
---|
719 | za1 = 1._wp |
---|
720 | za2 = 0._wp |
---|
721 | za3 = 0._wp |
---|
722 | ELSE ! AB3-AM4 Coefficients: bet=0.281105 |
---|
723 | za1 = 1.781105_wp ! za1 = 3/2 + bet |
---|
724 | za2 = -1.06221_wp ! za2 = -(1/2 + 2*bet) |
---|
725 | za3 = 0.281105_wp ! za3 = bet |
---|
726 | ENDIF |
---|
727 | |
---|
728 | ! Extrapolate barotropic velocities at step jit+0.5: |
---|
729 | ua_e(:,:) = za1 * un_e(:,:) + za2 * ub_e(:,:) + za3 * ubb_e(:,:) |
---|
730 | va_e(:,:) = za1 * vn_e(:,:) + za2 * vb_e(:,:) + za3 * vbb_e(:,:) |
---|
731 | |
---|
732 | IF( .NOT.ln_linssh ) THEN !* Update ocean depth (variable volume case only) |
---|
733 | ! ! ------------------ |
---|
734 | ! Extrapolate Sea Level at step jit+0.5: |
---|
735 | zsshp2_e(:,:) = za1 * sshn_e(:,:) + za2 * sshb_e(:,:) + za3 * sshbb_e(:,:) |
---|
736 | |
---|
737 | ! set wetting & drying mask at tracer points for this barotropic sub-step |
---|
738 | IF ( ln_wd_dl ) THEN |
---|
739 | ! |
---|
740 | IF ( ln_wd_dl_rmp ) THEN |
---|
741 | DO jj = 1, jpj |
---|
742 | DO ji = 1, jpi ! vector opt. |
---|
743 | IF ( zsshp2_e(ji,jj) + ht_0(ji,jj) > 2._wp * rn_wdmin1 ) THEN |
---|
744 | ! IF ( zsshp2_e(ji,jj) + ht_0(ji,jj) > rn_wdmin2 ) THEN |
---|
745 | ztwdmask(ji,jj) = 1._wp |
---|
746 | ELSE IF ( zsshp2_e(ji,jj) + ht_0(ji,jj) > rn_wdmin1 ) THEN |
---|
747 | ztwdmask(ji,jj) = (tanh(50._wp*( ( zsshp2_e(ji,jj) + ht_0(ji,jj) - rn_wdmin1 )*r_rn_wdmin1)) ) |
---|
748 | ELSE |
---|
749 | ztwdmask(ji,jj) = 0._wp |
---|
750 | END IF |
---|
751 | END DO |
---|
752 | END DO |
---|
753 | ELSE |
---|
754 | DO jj = 1, jpj |
---|
755 | DO ji = 1, jpi ! vector opt. |
---|
756 | IF ( zsshp2_e(ji,jj) + ht_0(ji,jj) > rn_wdmin1 ) THEN |
---|
757 | ztwdmask(ji,jj) = 1._wp |
---|
758 | ELSE |
---|
759 | ztwdmask(ji,jj) = 0._wp |
---|
760 | ENDIF |
---|
761 | END DO |
---|
762 | END DO |
---|
763 | ENDIF |
---|
764 | ! |
---|
765 | ENDIF |
---|
766 | ! |
---|
767 | DO jj = 2, jpjm1 ! Sea Surface Height at u- & v-points |
---|
768 | DO ji = 2, fs_jpim1 ! Vector opt. |
---|
769 | zwx(ji,jj) = r1_2 * ssumask(ji,jj) * r1_e1e2u(ji,jj) & |
---|
770 | & * ( e1e2t(ji ,jj) * zsshp2_e(ji ,jj) & |
---|
771 | & + e1e2t(ji+1,jj) * zsshp2_e(ji+1,jj) ) |
---|
772 | zwy(ji,jj) = r1_2 * ssvmask(ji,jj) * r1_e1e2v(ji,jj) & |
---|
773 | & * ( e1e2t(ji,jj ) * zsshp2_e(ji,jj ) & |
---|
774 | & + e1e2t(ji,jj+1) * zsshp2_e(ji,jj+1) ) |
---|
775 | END DO |
---|
776 | END DO |
---|
777 | CALL lbc_lnk_multi( zwx, 'U', 1._wp, zwy, 'V', 1._wp ) |
---|
778 | ! |
---|
779 | zhup2_e(:,:) = hu_0(:,:) + zwx(:,:) ! Ocean depth at U- and V-points |
---|
780 | zhvp2_e(:,:) = hv_0(:,:) + zwy(:,:) |
---|
781 | zhtp2_e(:,:) = ht_0(:,:) + zsshp2_e(:,:) |
---|
782 | ELSE |
---|
783 | zhup2_e(:,:) = hu_n(:,:) |
---|
784 | zhvp2_e(:,:) = hv_n(:,:) |
---|
785 | zhtp2_e(:,:) = ht_n(:,:) |
---|
786 | ENDIF |
---|
787 | ! !* after ssh |
---|
788 | ! ! ----------- |
---|
789 | ! One should enforce volume conservation at open boundaries here |
---|
790 | ! considering fluxes below: |
---|
791 | ! |
---|
792 | zwx(:,:) = e2u(:,:) * ua_e(:,:) * zhup2_e(:,:) ! fluxes at jn+0.5 |
---|
793 | zwy(:,:) = e1v(:,:) * va_e(:,:) * zhvp2_e(:,:) |
---|
794 | ! |
---|
795 | #if defined key_agrif |
---|
796 | ! Set fluxes during predictor step to ensure volume conservation |
---|
797 | IF( .NOT.Agrif_Root() .AND. ln_bt_fw ) THEN |
---|
798 | IF((nbondi == -1).OR.(nbondi == 2)) THEN |
---|
799 | DO jj = 1, jpj |
---|
800 | zwx(2:nbghostcells+1,jj) = ubdy_w(1:nbghostcells,jj) * e2u(2:nbghostcells+1,jj) |
---|
801 | END DO |
---|
802 | ENDIF |
---|
803 | IF((nbondi == 1).OR.(nbondi == 2)) THEN |
---|
804 | DO jj=1,jpj |
---|
805 | zwx(nlci-nbghostcells-1:nlci-2,jj) = ubdy_e(1:nbghostcells,jj) * e2u(nlci-nbghostcells-1:nlci-2,jj) |
---|
806 | END DO |
---|
807 | ENDIF |
---|
808 | IF((nbondj == -1).OR.(nbondj == 2)) THEN |
---|
809 | DO ji=1,jpi |
---|
810 | zwy(ji,2:nbghostcells+1) = vbdy_s(ji,1:nbghostcells) * e1v(ji,2:nbghostcells+1) |
---|
811 | END DO |
---|
812 | ENDIF |
---|
813 | IF((nbondj == 1).OR.(nbondj == 2)) THEN |
---|
814 | DO ji=1,jpi |
---|
815 | zwy(ji,nlcj-nbghostcells-1:nlcj-2) = vbdy_n(ji,1:nbghostcells) * e1v(ji,nlcj-nbghostcells-1:nlcj-2) |
---|
816 | END DO |
---|
817 | ENDIF |
---|
818 | ENDIF |
---|
819 | #endif |
---|
820 | IF( ln_wd_il ) CALL wad_lmt_bt(zwx, zwy, sshn_e, zssh_frc, rdtbt) |
---|
821 | |
---|
822 | IF ( ln_wd_dl ) THEN |
---|
823 | ! |
---|
824 | ! un_e and vn_e are set to zero at faces where the direction of the flow is from dry cells |
---|
825 | ! |
---|
826 | DO jj = 1, jpjm1 |
---|
827 | DO ji = 1, jpim1 |
---|
828 | IF ( zwx(ji,jj) > 0.0 ) THEN |
---|
829 | zuwdmask(ji, jj) = ztwdmask(ji ,jj) |
---|
830 | ELSE |
---|
831 | zuwdmask(ji, jj) = ztwdmask(ji+1,jj) |
---|
832 | END IF |
---|
833 | zwx(ji, jj) = zuwdmask(ji,jj)*zwx(ji, jj) |
---|
834 | un_e(ji,jj) = zuwdmask(ji,jj)*un_e(ji,jj) |
---|
835 | |
---|
836 | IF ( zwy(ji,jj) > 0.0 ) THEN |
---|
837 | zvwdmask(ji, jj) = ztwdmask(ji, jj ) |
---|
838 | ELSE |
---|
839 | zvwdmask(ji, jj) = ztwdmask(ji, jj+1) |
---|
840 | END IF |
---|
841 | zwy(ji, jj) = zvwdmask(ji,jj)*zwy(ji,jj) |
---|
842 | vn_e(ji,jj) = zvwdmask(ji,jj)*vn_e(ji,jj) |
---|
843 | END DO |
---|
844 | END DO |
---|
845 | ! |
---|
846 | ENDIF |
---|
847 | |
---|
848 | ! Sum over sub-time-steps to compute advective velocities |
---|
849 | za2 = wgtbtp2(jn) |
---|
850 | un_adv(:,:) = un_adv(:,:) + za2 * zwx(:,:) * r1_e2u(:,:) |
---|
851 | vn_adv(:,:) = vn_adv(:,:) + za2 * zwy(:,:) * r1_e1v(:,:) |
---|
852 | |
---|
853 | ! sum over sub-time-steps to decide which baroclinic velocities to set to zero (zuwdav2 is only used when ln_wd_dl_bc = True) |
---|
854 | IF ( ln_wd_dl_bc ) THEN |
---|
855 | zuwdav2(:,:) = zuwdav2(:,:) + za2 * zuwdmask(:,:) |
---|
856 | zvwdav2(:,:) = zvwdav2(:,:) + za2 * zvwdmask(:,:) |
---|
857 | END IF |
---|
858 | |
---|
859 | ! Set next sea level: |
---|
860 | DO jj = 2, jpjm1 |
---|
861 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
862 | zhdiv(ji,jj) = ( zwx(ji,jj) - zwx(ji-1,jj) & |
---|
863 | & + zwy(ji,jj) - zwy(ji,jj-1) ) * r1_e1e2t(ji,jj) |
---|
864 | END DO |
---|
865 | END DO |
---|
866 | ssha_e(:,:) = ( sshn_e(:,:) - rdtbt * ( zssh_frc(:,:) + zhdiv(:,:) ) ) * ssmask(:,:) |
---|
867 | |
---|
868 | CALL lbc_lnk( ssha_e, 'T', 1._wp ) |
---|
869 | |
---|
870 | ! Duplicate sea level across open boundaries (this is only cosmetic if linssh=T) |
---|
871 | IF( ln_bdy ) CALL bdy_ssh( ssha_e ) |
---|
872 | #if defined key_agrif |
---|
873 | IF( .NOT.Agrif_Root() ) CALL agrif_ssh_ts( jn ) |
---|
874 | #endif |
---|
875 | ! |
---|
876 | ! Sea Surface Height at u-,v-points (vvl case only) |
---|
877 | IF( .NOT.ln_linssh ) THEN |
---|
878 | DO jj = 2, jpjm1 |
---|
879 | DO ji = 2, jpim1 ! NO Vector Opt. |
---|
880 | zsshu_a(ji,jj) = r1_2 * ssumask(ji,jj) * r1_e1e2u(ji,jj) & |
---|
881 | & * ( e1e2t(ji ,jj ) * ssha_e(ji ,jj ) & |
---|
882 | & + e1e2t(ji+1,jj ) * ssha_e(ji+1,jj ) ) |
---|
883 | zsshv_a(ji,jj) = r1_2 * ssvmask(ji,jj) * r1_e1e2v(ji,jj) & |
---|
884 | & * ( e1e2t(ji ,jj ) * ssha_e(ji ,jj ) & |
---|
885 | & + e1e2t(ji ,jj+1) * ssha_e(ji ,jj+1) ) |
---|
886 | END DO |
---|
887 | END DO |
---|
888 | CALL lbc_lnk_multi( zsshu_a, 'U', 1._wp, zsshv_a, 'V', 1._wp ) |
---|
889 | ENDIF |
---|
890 | ! |
---|
891 | ! Half-step back interpolation of SSH for surface pressure computation: |
---|
892 | !---------------------------------------------------------------------- |
---|
893 | IF ((jn==1).AND.ll_init) THEN |
---|
894 | za0=1._wp ! Forward-backward |
---|
895 | za1=0._wp |
---|
896 | za2=0._wp |
---|
897 | za3=0._wp |
---|
898 | ELSEIF ((jn==2).AND.ll_init) THEN ! AB2-AM3 Coefficients; bet=0 ; gam=-1/6 ; eps=1/12 |
---|
899 | za0= 1.0833333333333_wp ! za0 = 1-gam-eps |
---|
900 | za1=-0.1666666666666_wp ! za1 = gam |
---|
901 | za2= 0.0833333333333_wp ! za2 = eps |
---|
902 | za3= 0._wp |
---|
903 | ELSE ! AB3-AM4 Coefficients; bet=0.281105 ; eps=0.013 ; gam=0.0880 |
---|
904 | IF (rn_bt_alpha==0._wp) THEN |
---|
905 | za0=0.614_wp ! za0 = 1/2 + gam + 2*eps |
---|
906 | za1=0.285_wp ! za1 = 1/2 - 2*gam - 3*eps |
---|
907 | za2=0.088_wp ! za2 = gam |
---|
908 | za3=0.013_wp ! za3 = eps |
---|
909 | ELSE |
---|
910 | zepsilon = 0.00976186_wp - 0.13451357_wp * rn_bt_alpha |
---|
911 | zgamma = 0.08344500_wp - 0.51358400_wp * rn_bt_alpha |
---|
912 | za0 = 0.5_wp + zgamma + 2._wp * rn_bt_alpha + 2._wp * zepsilon |
---|
913 | za1 = 1._wp - za0 - zgamma - zepsilon |
---|
914 | za2 = zgamma |
---|
915 | za3 = zepsilon |
---|
916 | ENDIF |
---|
917 | ENDIF |
---|
918 | ! |
---|
919 | zsshp2_e(:,:) = za0 * ssha_e(:,:) + za1 * sshn_e (:,:) & |
---|
920 | & + za2 * sshb_e(:,:) + za3 * sshbb_e(:,:) |
---|
921 | |
---|
922 | IF( ln_wd_il ) THEN ! Calculating and applying W/D gravity filters |
---|
923 | DO jj = 2, jpjm1 |
---|
924 | DO ji = 2, jpim1 |
---|
925 | ll_tmp1 = MIN( zsshp2_e(ji,jj) , zsshp2_e(ji+1,jj) ) > & |
---|
926 | & MAX( -ht_0(ji,jj) , -ht_0(ji+1,jj) ) .AND. & |
---|
927 | & MAX( zsshp2_e(ji,jj) + ht_0(ji,jj) , zsshp2_e(ji+1,jj) + ht_0(ji+1,jj) ) & |
---|
928 | & > rn_wdmin1 + rn_wdmin2 |
---|
929 | ll_tmp2 = (ABS(zsshp2_e(ji,jj) - zsshp2_e(ji+1,jj)) > 1.E-12 ).AND.( & |
---|
930 | & MAX( zsshp2_e(ji,jj) , zsshp2_e(ji+1,jj) ) > & |
---|
931 | & MAX( -ht_0(ji,jj) , -ht_0(ji+1,jj) ) + rn_wdmin1 + rn_wdmin2 ) |
---|
932 | |
---|
933 | IF(ll_tmp1) THEN |
---|
934 | zcpx(ji,jj) = 1.0_wp |
---|
935 | ELSE IF(ll_tmp2) THEN |
---|
936 | ! no worries about zsshp2_e(ji+1,jj) - zsshp2_e(ji ,jj) = 0, it won't happen ! here |
---|
937 | zcpx(ji,jj) = ABS( (zsshp2_e(ji+1,jj) + ht_0(ji+1,jj) - zsshp2_e(ji,jj) - ht_0(ji,jj)) & |
---|
938 | & / (zsshp2_e(ji+1,jj) - zsshp2_e(ji ,jj)) ) |
---|
939 | ELSE |
---|
940 | zcpx(ji,jj) = 0._wp |
---|
941 | ENDIF |
---|
942 | ! |
---|
943 | ll_tmp1 = MIN( zsshp2_e(ji,jj) , zsshp2_e(ji,jj+1) ) > & |
---|
944 | & MAX( -ht_0(ji,jj) , -ht_0(ji,jj+1) ) .AND. & |
---|
945 | & MAX( zsshp2_e(ji,jj) + ht_0(ji,jj) , zsshp2_e(ji,jj+1) + ht_0(ji,jj+1) ) & |
---|
946 | & > rn_wdmin1 + rn_wdmin2 |
---|
947 | ll_tmp2 = (ABS(zsshp2_e(ji,jj) - zsshp2_e(ji,jj+1)) > 1.E-12 ).AND.( & |
---|
948 | & MAX( zsshp2_e(ji,jj) , zsshp2_e(ji,jj+1) ) > & |
---|
949 | & MAX( -ht_0(ji,jj) , -ht_0(ji,jj+1) ) + rn_wdmin1 + rn_wdmin2 ) |
---|
950 | |
---|
951 | IF(ll_tmp1) THEN |
---|
952 | zcpy(ji,jj) = 1.0_wp |
---|
953 | ELSEIF(ll_tmp2) THEN |
---|
954 | ! no worries about zsshp2_e(ji,jj+1) - zsshp2_e(ji,jj ) = 0, it won't happen ! here |
---|
955 | zcpy(ji,jj) = ABS( (zsshp2_e(ji,jj+1) + ht_0(ji,jj+1) - zsshp2_e(ji,jj) - ht_0(ji,jj)) & |
---|
956 | & / (zsshp2_e(ji,jj+1) - zsshp2_e(ji,jj )) ) |
---|
957 | ELSE |
---|
958 | zcpy(ji,jj) = 0._wp |
---|
959 | ENDIF |
---|
960 | END DO |
---|
961 | END DO |
---|
962 | ENDIF |
---|
963 | ! |
---|
964 | ! Compute associated depths at U and V points: |
---|
965 | IF( .NOT.ln_linssh .AND. .NOT.ln_dynadv_vec ) THEN !* Vector form |
---|
966 | ! |
---|
967 | DO jj = 2, jpjm1 |
---|
968 | DO ji = 2, jpim1 |
---|
969 | zx1 = r1_2 * ssumask(ji ,jj) * r1_e1e2u(ji ,jj) & |
---|
970 | & * ( e1e2t(ji ,jj ) * zsshp2_e(ji ,jj) & |
---|
971 | & + e1e2t(ji+1,jj ) * zsshp2_e(ji+1,jj ) ) |
---|
972 | zy1 = r1_2 * ssvmask(ji ,jj) * r1_e1e2v(ji ,jj ) & |
---|
973 | & * ( e1e2t(ji ,jj ) * zsshp2_e(ji ,jj ) & |
---|
974 | & + e1e2t(ji ,jj+1) * zsshp2_e(ji ,jj+1) ) |
---|
975 | zhust_e(ji,jj) = hu_0(ji,jj) + zx1 |
---|
976 | zhvst_e(ji,jj) = hv_0(ji,jj) + zy1 |
---|
977 | END DO |
---|
978 | END DO |
---|
979 | ! |
---|
980 | ENDIF |
---|
981 | ! |
---|
982 | ! Add Coriolis trend: |
---|
983 | ! zwz array below or triads normally depend on sea level with ln_linssh=F and should be updated |
---|
984 | ! at each time step. We however keep them constant here for optimization. |
---|
985 | ! Recall that zwx and zwy arrays hold fluxes at this stage: |
---|
986 | ! zwx(:,:) = e2u(:,:) * ua_e(:,:) * zhup2_e(:,:) ! fluxes at jn+0.5 |
---|
987 | ! zwy(:,:) = e1v(:,:) * va_e(:,:) * zhvp2_e(:,:) |
---|
988 | ! |
---|
989 | SELECT CASE( nvor_scheme ) |
---|
990 | CASE( np_ENT ) ! energy conserving scheme (t-point) |
---|
991 | DO jj = 2, jpjm1 |
---|
992 | DO ji = 2, jpim1 ! vector opt. |
---|
993 | |
---|
994 | z1_hu = ssumask(ji,jj) / ( hu_0(ji,jj) + zhup2_e(ji,jj) + 1._wp - ssumask(ji,jj) ) |
---|
995 | z1_hv = ssvmask(ji,jj) / ( hv_0(ji,jj) + zhvp2_e(ji,jj) + 1._wp - ssvmask(ji,jj) ) |
---|
996 | |
---|
997 | zu_trd(ji,jj) = + r1_4 * r1_e1e2u(ji,jj) * z1_hu & |
---|
998 | & * ( e1e2t(ji+1,jj)*zhtp2_e(ji+1,jj)*ff_t(ji+1,jj) * ( va_e(ji+1,jj) + va_e(ji+1,jj-1) ) & |
---|
999 | & + e1e2t(ji ,jj)*zhtp2_e(ji ,jj)*ff_t(ji ,jj) * ( va_e(ji ,jj) + va_e(ji ,jj-1) ) ) |
---|
1000 | ! |
---|
1001 | zv_trd(ji,jj) = - r1_4 * r1_e1e2v(ji,jj) * z1_hv & |
---|
1002 | & * ( e1e2t(ji,jj+1)*zhtp2_e(ji,jj+1)*ff_t(ji,jj+1) * ( ua_e(ji,jj+1) + ua_e(ji-1,jj+1) ) & |
---|
1003 | & + e1e2t(ji,jj )*zhtp2_e(ji,jj )*ff_t(ji,jj ) * ( ua_e(ji,jj ) + ua_e(ji-1,jj ) ) ) |
---|
1004 | END DO |
---|
1005 | END DO |
---|
1006 | ! |
---|
1007 | CASE( np_ENE, np_MIX ) ! energy conserving scheme (f-point) |
---|
1008 | DO jj = 2, jpjm1 |
---|
1009 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1010 | zy1 = ( zwy(ji ,jj-1) + zwy(ji+1,jj-1) ) * r1_e1u(ji,jj) |
---|
1011 | zy2 = ( zwy(ji ,jj ) + zwy(ji+1,jj ) ) * r1_e1u(ji,jj) |
---|
1012 | zx1 = ( zwx(ji-1,jj ) + zwx(ji-1,jj+1) ) * r1_e2v(ji,jj) |
---|
1013 | zx2 = ( zwx(ji ,jj ) + zwx(ji ,jj+1) ) * r1_e2v(ji,jj) |
---|
1014 | zu_trd(ji,jj) = r1_4 * ( zwz(ji ,jj-1) * zy1 + zwz(ji,jj) * zy2 ) |
---|
1015 | zv_trd(ji,jj) =-r1_4 * ( zwz(ji-1,jj ) * zx1 + zwz(ji,jj) * zx2 ) |
---|
1016 | END DO |
---|
1017 | END DO |
---|
1018 | ! |
---|
1019 | CASE( np_ENS ) ! enstrophy conserving scheme (f-point) |
---|
1020 | DO jj = 2, jpjm1 |
---|
1021 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1022 | zy1 = r1_8 * ( zwy(ji ,jj-1) + zwy(ji+1,jj-1) & |
---|
1023 | & + zwy(ji ,jj ) + zwy(ji+1,jj ) ) * r1_e1u(ji,jj) |
---|
1024 | zx1 = - r1_8 * ( zwx(ji-1,jj ) + zwx(ji-1,jj+1) & |
---|
1025 | & + zwx(ji ,jj ) + zwx(ji ,jj+1) ) * r1_e2v(ji,jj) |
---|
1026 | zu_trd(ji,jj) = zy1 * ( zwz(ji ,jj-1) + zwz(ji,jj) ) |
---|
1027 | zv_trd(ji,jj) = zx1 * ( zwz(ji-1,jj ) + zwz(ji,jj) ) |
---|
1028 | END DO |
---|
1029 | END DO |
---|
1030 | ! |
---|
1031 | CASE( np_EET , np_EEN ) ! energy & enstrophy scheme (using e3t or e3f) |
---|
1032 | DO jj = 2, jpjm1 |
---|
1033 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1034 | zu_trd(ji,jj) = + r1_12 * r1_e1u(ji,jj) * ( ftne(ji,jj ) * zwy(ji ,jj ) & |
---|
1035 | & + ftnw(ji+1,jj) * zwy(ji+1,jj ) & |
---|
1036 | & + ftse(ji,jj ) * zwy(ji ,jj-1) & |
---|
1037 | & + ftsw(ji+1,jj) * zwy(ji+1,jj-1) ) |
---|
1038 | zv_trd(ji,jj) = - r1_12 * r1_e2v(ji,jj) * ( ftsw(ji,jj+1) * zwx(ji-1,jj+1) & |
---|
1039 | & + ftse(ji,jj+1) * zwx(ji ,jj+1) & |
---|
1040 | & + ftnw(ji,jj ) * zwx(ji-1,jj ) & |
---|
1041 | & + ftne(ji,jj ) * zwx(ji ,jj ) ) |
---|
1042 | END DO |
---|
1043 | END DO |
---|
1044 | ! |
---|
1045 | END SELECT |
---|
1046 | ! |
---|
1047 | ! Add tidal astronomical forcing if defined |
---|
1048 | IF ( ln_tide .AND. ln_tide_pot ) THEN |
---|
1049 | DO jj = 2, jpjm1 |
---|
1050 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1051 | zu_spg = grav * ( pot_astro(ji+1,jj) - pot_astro(ji,jj) ) * r1_e1u(ji,jj) |
---|
1052 | zv_spg = grav * ( pot_astro(ji,jj+1) - pot_astro(ji,jj) ) * r1_e2v(ji,jj) |
---|
1053 | zu_trd(ji,jj) = zu_trd(ji,jj) + zu_spg |
---|
1054 | zv_trd(ji,jj) = zv_trd(ji,jj) + zv_spg |
---|
1055 | END DO |
---|
1056 | END DO |
---|
1057 | ENDIF |
---|
1058 | ! |
---|
1059 | ! Add bottom stresses: |
---|
1060 | !jth do implicitly instead |
---|
1061 | IF ( .NOT. ll_wd ) THEN ! Revert to explicit for bit comparison tests in non wad runs |
---|
1062 | DO jj = 2, jpjm1 |
---|
1063 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1064 | zu_trd(ji,jj) = zu_trd(ji,jj) + zCdU_u(ji,jj) * un_e(ji,jj) * hur_e(ji,jj) |
---|
1065 | zv_trd(ji,jj) = zv_trd(ji,jj) + zCdU_v(ji,jj) * vn_e(ji,jj) * hvr_e(ji,jj) |
---|
1066 | END DO |
---|
1067 | END DO |
---|
1068 | ENDIF |
---|
1069 | ! |
---|
1070 | ! Surface pressure trend: |
---|
1071 | IF( ln_wd_il ) THEN |
---|
1072 | DO jj = 2, jpjm1 |
---|
1073 | DO ji = 2, jpim1 |
---|
1074 | ! Add surface pressure gradient |
---|
1075 | zu_spg = - grav * ( zsshp2_e(ji+1,jj) - zsshp2_e(ji,jj) ) * r1_e1u(ji,jj) |
---|
1076 | zv_spg = - grav * ( zsshp2_e(ji,jj+1) - zsshp2_e(ji,jj) ) * r1_e2v(ji,jj) |
---|
1077 | zwx(ji,jj) = (1._wp - rn_scal_load) * zu_spg * zcpx(ji,jj) |
---|
1078 | zwy(ji,jj) = (1._wp - rn_scal_load) * zv_spg * zcpy(ji,jj) |
---|
1079 | END DO |
---|
1080 | END DO |
---|
1081 | ELSE |
---|
1082 | DO jj = 2, jpjm1 |
---|
1083 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1084 | ! Add surface pressure gradient |
---|
1085 | zu_spg = - grav * ( zsshp2_e(ji+1,jj) - zsshp2_e(ji,jj) ) * r1_e1u(ji,jj) |
---|
1086 | zv_spg = - grav * ( zsshp2_e(ji,jj+1) - zsshp2_e(ji,jj) ) * r1_e2v(ji,jj) |
---|
1087 | zwx(ji,jj) = (1._wp - rn_scal_load) * zu_spg |
---|
1088 | zwy(ji,jj) = (1._wp - rn_scal_load) * zv_spg |
---|
1089 | END DO |
---|
1090 | END DO |
---|
1091 | END IF |
---|
1092 | |
---|
1093 | ! |
---|
1094 | ! Set next velocities: |
---|
1095 | IF( ln_dynadv_vec .OR. ln_linssh ) THEN !* Vector form |
---|
1096 | DO jj = 2, jpjm1 |
---|
1097 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1098 | ua_e(ji,jj) = ( un_e(ji,jj) & |
---|
1099 | & + rdtbt * ( zwx(ji,jj) & |
---|
1100 | & + zu_trd(ji,jj) & |
---|
1101 | & + zu_frc(ji,jj) ) & |
---|
1102 | & ) * ssumask(ji,jj) |
---|
1103 | |
---|
1104 | va_e(ji,jj) = ( vn_e(ji,jj) & |
---|
1105 | & + rdtbt * ( zwy(ji,jj) & |
---|
1106 | & + zv_trd(ji,jj) & |
---|
1107 | & + zv_frc(ji,jj) ) & |
---|
1108 | & ) * ssvmask(ji,jj) |
---|
1109 | |
---|
1110 | !jth implicit bottom friction: |
---|
1111 | IF ( ll_wd ) THEN ! revert to explicit for bit comparison tests in non wad runs |
---|
1112 | ua_e(ji,jj) = ua_e(ji,jj) /(1.0 - rdtbt * zCdU_u(ji,jj) * hur_e(ji,jj)) |
---|
1113 | va_e(ji,jj) = va_e(ji,jj) /(1.0 - rdtbt * zCdU_v(ji,jj) * hvr_e(ji,jj)) |
---|
1114 | ENDIF |
---|
1115 | |
---|
1116 | END DO |
---|
1117 | END DO |
---|
1118 | ! |
---|
1119 | ELSE !* Flux form |
---|
1120 | DO jj = 2, jpjm1 |
---|
1121 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1122 | |
---|
1123 | zhura = hu_0(ji,jj) + zsshu_a(ji,jj) |
---|
1124 | zhvra = hv_0(ji,jj) + zsshv_a(ji,jj) |
---|
1125 | |
---|
1126 | zhura = ssumask(ji,jj)/(zhura + 1._wp - ssumask(ji,jj)) |
---|
1127 | zhvra = ssvmask(ji,jj)/(zhvra + 1._wp - ssvmask(ji,jj)) |
---|
1128 | |
---|
1129 | ua_e(ji,jj) = ( hu_e(ji,jj) * un_e(ji,jj) & |
---|
1130 | & + rdtbt * ( zhust_e(ji,jj) * zwx(ji,jj) & |
---|
1131 | & + zhup2_e(ji,jj) * zu_trd(ji,jj) & |
---|
1132 | & + hu_n(ji,jj) * zu_frc(ji,jj) ) & |
---|
1133 | & ) * zhura |
---|
1134 | |
---|
1135 | va_e(ji,jj) = ( hv_e(ji,jj) * vn_e(ji,jj) & |
---|
1136 | & + rdtbt * ( zhvst_e(ji,jj) * zwy(ji,jj) & |
---|
1137 | & + zhvp2_e(ji,jj) * zv_trd(ji,jj) & |
---|
1138 | & + hv_n(ji,jj) * zv_frc(ji,jj) ) & |
---|
1139 | & ) * zhvra |
---|
1140 | END DO |
---|
1141 | END DO |
---|
1142 | ENDIF |
---|
1143 | |
---|
1144 | |
---|
1145 | IF( .NOT.ln_linssh ) THEN !* Update ocean depth (variable volume case only) |
---|
1146 | hu_e (:,:) = hu_0(:,:) + zsshu_a(:,:) |
---|
1147 | hv_e (:,:) = hv_0(:,:) + zsshv_a(:,:) |
---|
1148 | hur_e(:,:) = ssumask(:,:) / ( hu_e(:,:) + 1._wp - ssumask(:,:) ) |
---|
1149 | hvr_e(:,:) = ssvmask(:,:) / ( hv_e(:,:) + 1._wp - ssvmask(:,:) ) |
---|
1150 | ! |
---|
1151 | ENDIF |
---|
1152 | ! !* domain lateral boundary |
---|
1153 | CALL lbc_lnk_multi( ua_e, 'U', -1._wp, va_e , 'V', -1._wp ) |
---|
1154 | ! |
---|
1155 | ! ! open boundaries |
---|
1156 | IF( ln_bdy ) CALL bdy_dyn2d( jn, ua_e, va_e, un_e, vn_e, hur_e, hvr_e, ssha_e ) |
---|
1157 | #if defined key_agrif |
---|
1158 | IF( .NOT.Agrif_Root() ) CALL agrif_dyn_ts( jn ) ! Agrif |
---|
1159 | #endif |
---|
1160 | ! !* Swap |
---|
1161 | ! ! ---- |
---|
1162 | ubb_e (:,:) = ub_e (:,:) |
---|
1163 | ub_e (:,:) = un_e (:,:) |
---|
1164 | un_e (:,:) = ua_e (:,:) |
---|
1165 | ! |
---|
1166 | vbb_e (:,:) = vb_e (:,:) |
---|
1167 | vb_e (:,:) = vn_e (:,:) |
---|
1168 | vn_e (:,:) = va_e (:,:) |
---|
1169 | ! |
---|
1170 | sshbb_e(:,:) = sshb_e(:,:) |
---|
1171 | sshb_e (:,:) = sshn_e(:,:) |
---|
1172 | sshn_e (:,:) = ssha_e(:,:) |
---|
1173 | |
---|
1174 | ! !* Sum over whole bt loop |
---|
1175 | ! ! ---------------------- |
---|
1176 | za1 = wgtbtp1(jn) |
---|
1177 | IF( ln_dynadv_vec .OR. ln_linssh ) THEN ! Sum velocities |
---|
1178 | ua_b (:,:) = ua_b (:,:) + za1 * ua_e (:,:) |
---|
1179 | va_b (:,:) = va_b (:,:) + za1 * va_e (:,:) |
---|
1180 | ELSE ! Sum transports |
---|
1181 | IF ( .NOT.ln_wd_dl ) THEN |
---|
1182 | ua_b (:,:) = ua_b (:,:) + za1 * ua_e (:,:) * hu_e (:,:) |
---|
1183 | va_b (:,:) = va_b (:,:) + za1 * va_e (:,:) * hv_e (:,:) |
---|
1184 | ELSE |
---|
1185 | ua_b (:,:) = ua_b (:,:) + za1 * ua_e (:,:) * hu_e (:,:) * zuwdmask(:,:) |
---|
1186 | va_b (:,:) = va_b (:,:) + za1 * va_e (:,:) * hv_e (:,:) * zvwdmask(:,:) |
---|
1187 | END IF |
---|
1188 | ENDIF |
---|
1189 | ! ! Sum sea level |
---|
1190 | ssha(:,:) = ssha(:,:) + za1 * ssha_e(:,:) |
---|
1191 | |
---|
1192 | ! ! ==================== ! |
---|
1193 | END DO ! end loop ! |
---|
1194 | ! ! ==================== ! |
---|
1195 | ! ----------------------------------------------------------------------------- |
---|
1196 | ! Phase 3. update the general trend with the barotropic trend |
---|
1197 | ! ----------------------------------------------------------------------------- |
---|
1198 | ! |
---|
1199 | ! Set advection velocity correction: |
---|
1200 | IF (ln_bt_fw) THEN |
---|
1201 | zwx(:,:) = un_adv(:,:) |
---|
1202 | zwy(:,:) = vn_adv(:,:) |
---|
1203 | IF( .NOT.l_1st_euler ) THEN |
---|
1204 | un_adv(:,:) = r1_2 * ( ub2_b(:,:) + zwx(:,:) - atfp * un_bf(:,:) ) |
---|
1205 | vn_adv(:,:) = r1_2 * ( vb2_b(:,:) + zwy(:,:) - atfp * vn_bf(:,:) ) |
---|
1206 | ! |
---|
1207 | ! Update corrective fluxes for next time step: |
---|
1208 | un_bf(:,:) = atfp * un_bf(:,:) + (zwx(:,:) - ub2_b(:,:)) |
---|
1209 | vn_bf(:,:) = atfp * vn_bf(:,:) + (zwy(:,:) - vb2_b(:,:)) |
---|
1210 | ELSE |
---|
1211 | un_bf(:,:) = 0._wp |
---|
1212 | vn_bf(:,:) = 0._wp |
---|
1213 | END IF |
---|
1214 | ! Save integrated transport for next computation |
---|
1215 | ub2_b(:,:) = zwx(:,:) |
---|
1216 | vb2_b(:,:) = zwy(:,:) |
---|
1217 | ENDIF |
---|
1218 | |
---|
1219 | |
---|
1220 | ! |
---|
1221 | ! Update barotropic trend: |
---|
1222 | IF( ln_dynadv_vec .OR. ln_linssh ) THEN |
---|
1223 | DO jk=1,jpkm1 |
---|
1224 | ua(:,:,jk) = ua(:,:,jk) + ( ua_b(:,:) - ub_b(:,:) ) * r1_2dt_b |
---|
1225 | va(:,:,jk) = va(:,:,jk) + ( va_b(:,:) - vb_b(:,:) ) * r1_2dt_b |
---|
1226 | END DO |
---|
1227 | ELSE |
---|
1228 | ! At this stage, ssha has been corrected: compute new depths at velocity points |
---|
1229 | DO jj = 1, jpjm1 |
---|
1230 | DO ji = 1, jpim1 ! NO Vector Opt. |
---|
1231 | zsshu_a(ji,jj) = r1_2 * ssumask(ji,jj) * r1_e1e2u(ji,jj) & |
---|
1232 | & * ( e1e2t(ji ,jj) * ssha(ji ,jj) & |
---|
1233 | & + e1e2t(ji+1,jj) * ssha(ji+1,jj) ) |
---|
1234 | zsshv_a(ji,jj) = r1_2 * ssvmask(ji,jj) * r1_e1e2v(ji,jj) & |
---|
1235 | & * ( e1e2t(ji,jj ) * ssha(ji,jj ) & |
---|
1236 | & + e1e2t(ji,jj+1) * ssha(ji,jj+1) ) |
---|
1237 | END DO |
---|
1238 | END DO |
---|
1239 | CALL lbc_lnk_multi( zsshu_a, 'U', 1._wp, zsshv_a, 'V', 1._wp ) ! Boundary conditions |
---|
1240 | ! |
---|
1241 | DO jk=1,jpkm1 |
---|
1242 | ua(:,:,jk) = ua(:,:,jk) + r1_hu_n(:,:) * ( ua_b(:,:) - ub_b(:,:) * hu_b(:,:) ) * r1_2dt_b |
---|
1243 | va(:,:,jk) = va(:,:,jk) + r1_hv_n(:,:) * ( va_b(:,:) - vb_b(:,:) * hv_b(:,:) ) * r1_2dt_b |
---|
1244 | END DO |
---|
1245 | ! Save barotropic velocities not transport: |
---|
1246 | ua_b(:,:) = ua_b(:,:) / ( hu_0(:,:) + zsshu_a(:,:) + 1._wp - ssumask(:,:) ) |
---|
1247 | va_b(:,:) = va_b(:,:) / ( hv_0(:,:) + zsshv_a(:,:) + 1._wp - ssvmask(:,:) ) |
---|
1248 | ENDIF |
---|
1249 | |
---|
1250 | |
---|
1251 | ! Correct velocities so that the barotropic velocity equals (un_adv, vn_adv) (in all cases) |
---|
1252 | DO jk = 1, jpkm1 |
---|
1253 | un(:,:,jk) = ( un(:,:,jk) + un_adv(:,:)*r1_hu_n(:,:) - un_b(:,:) ) * umask(:,:,jk) |
---|
1254 | vn(:,:,jk) = ( vn(:,:,jk) + vn_adv(:,:)*r1_hv_n(:,:) - vn_b(:,:) ) * vmask(:,:,jk) |
---|
1255 | END DO |
---|
1256 | |
---|
1257 | IF ( ln_wd_dl .and. ln_wd_dl_bc) THEN |
---|
1258 | DO jk = 1, jpkm1 |
---|
1259 | un(:,:,jk) = ( un_adv(:,:)*r1_hu_n(:,:) & |
---|
1260 | & + zuwdav2(:,:)*(un(:,:,jk) - un_adv(:,:)*r1_hu_n(:,:)) ) * umask(:,:,jk) |
---|
1261 | vn(:,:,jk) = ( vn_adv(:,:)*r1_hv_n(:,:) & |
---|
1262 | & + zvwdav2(:,:)*(vn(:,:,jk) - vn_adv(:,:)*r1_hv_n(:,:)) ) * vmask(:,:,jk) |
---|
1263 | END DO |
---|
1264 | END IF |
---|
1265 | |
---|
1266 | |
---|
1267 | CALL iom_put( "ubar", un_adv(:,:)*r1_hu_n(:,:) ) ! barotropic i-current |
---|
1268 | CALL iom_put( "vbar", vn_adv(:,:)*r1_hv_n(:,:) ) ! barotropic i-current |
---|
1269 | ! |
---|
1270 | #if defined key_agrif |
---|
1271 | ! Save time integrated fluxes during child grid integration |
---|
1272 | ! (used to update coarse grid transports at next time step) |
---|
1273 | ! |
---|
1274 | IF( .NOT.Agrif_Root() .AND. ln_bt_fw ) THEN |
---|
1275 | IF( Agrif_NbStepint() == 0 ) THEN |
---|
1276 | ub2_i_b(:,:) = 0._wp |
---|
1277 | vb2_i_b(:,:) = 0._wp |
---|
1278 | END IF |
---|
1279 | ! |
---|
1280 | za1 = 1._wp / REAL(Agrif_rhot(), wp) |
---|
1281 | ub2_i_b(:,:) = ub2_i_b(:,:) + za1 * ub2_b(:,:) |
---|
1282 | vb2_i_b(:,:) = vb2_i_b(:,:) + za1 * vb2_b(:,:) |
---|
1283 | ENDIF |
---|
1284 | #endif |
---|
1285 | ! !* write time-spliting arrays in the restart |
---|
1286 | IF( lrst_oce .AND.ln_bt_fw ) CALL ts_rst( kt, 'WRITE' ) |
---|
1287 | ! |
---|
1288 | IF( ln_wd_il ) DEALLOCATE( zcpx, zcpy ) |
---|
1289 | IF( ln_wd_dl ) DEALLOCATE( ztwdmask, zuwdmask, zvwdmask, zuwdav2, zvwdav2 ) |
---|
1290 | ! |
---|
1291 | IF( ln_diatmb ) THEN |
---|
1292 | CALL iom_put( "baro_u" , un_b*ssumask(:,:)+zmdi*(1.-ssumask(:,:) ) ) ! Barotropic U Velocity |
---|
1293 | CALL iom_put( "baro_v" , vn_b*ssvmask(:,:)+zmdi*(1.-ssvmask(:,:) ) ) ! Barotropic V Velocity |
---|
1294 | ENDIF |
---|
1295 | ! |
---|
1296 | END SUBROUTINE dyn_spg_ts |
---|
1297 | |
---|
1298 | |
---|
1299 | SUBROUTINE ts_wgt( ll_av, ll_fw, jpit, zwgt1, zwgt2) |
---|
1300 | !!--------------------------------------------------------------------- |
---|
1301 | !! *** ROUTINE ts_wgt *** |
---|
1302 | !! |
---|
1303 | !! ** Purpose : Set time-splitting weights for temporal averaging (or not) |
---|
1304 | !!---------------------------------------------------------------------- |
---|
1305 | LOGICAL , INTENT(in ) :: ll_av ! temporal averaging=.true. |
---|
1306 | LOGICAL , INTENT(in ) :: ll_fw ! forward time splitting =.true. |
---|
1307 | INTEGER , INTENT(inout) :: jpit ! cycle length |
---|
1308 | REAL(wp), DIMENSION(3*nn_baro), INTENT(inout) :: zwgt1, zwgt2 ! Primary & Secondary weights |
---|
1309 | ! |
---|
1310 | INTEGER :: jic, jn, ji ! temporary integers |
---|
1311 | REAL(wp) :: za1, za2 |
---|
1312 | !!---------------------------------------------------------------------- |
---|
1313 | ! |
---|
1314 | zwgt1(:) = 0._wp |
---|
1315 | zwgt2(:) = 0._wp |
---|
1316 | ! |
---|
1317 | ! Set time index when averaged value is requested |
---|
1318 | IF ( ll_fw ) THEN ; jic = nn_baro |
---|
1319 | ELSE ; jic = 2 * nn_baro |
---|
1320 | ENDIF |
---|
1321 | |
---|
1322 | ! !== Set primary weights ==! |
---|
1323 | ! |
---|
1324 | IF (ll_av) THEN !* Define simple boxcar window for primary weights |
---|
1325 | ! ! (width = nn_baro, centered around jic) |
---|
1326 | SELECT CASE ( nn_bt_flt ) |
---|
1327 | CASE( 0 ) ! No averaging |
---|
1328 | zwgt1(jic) = 1._wp |
---|
1329 | jpit = jic |
---|
1330 | ! |
---|
1331 | CASE( 1 ) ! Boxcar, width = nn_baro |
---|
1332 | DO jn = 1, 3*nn_baro |
---|
1333 | za1 = ABS(float(jn-jic))/float(nn_baro) |
---|
1334 | IF ( za1 < 0.5_wp ) THEN |
---|
1335 | zwgt1(jn) = 1._wp |
---|
1336 | jpit = jn |
---|
1337 | ENDIF |
---|
1338 | END DO |
---|
1339 | ! |
---|
1340 | CASE( 2 ) ! Boxcar, width = 2 * nn_baro |
---|
1341 | DO jn = 1, 3*nn_baro |
---|
1342 | za1 = ABS(float(jn-jic))/float(nn_baro) |
---|
1343 | IF ( za1 < 1._wp ) THEN |
---|
1344 | zwgt1(jn) = 1._wp |
---|
1345 | jpit = jn |
---|
1346 | ENDIF |
---|
1347 | END DO |
---|
1348 | CASE DEFAULT ; CALL ctl_stop( 'unrecognised value for nn_bt_flt' ) |
---|
1349 | END SELECT |
---|
1350 | ! |
---|
1351 | ELSE !* No time averaging |
---|
1352 | zwgt1(jic) = 1._wp |
---|
1353 | jpit = jic |
---|
1354 | ENDIF |
---|
1355 | |
---|
1356 | ! !== Set secondary weights ==! |
---|
1357 | ! |
---|
1358 | DO jn = 1, jpit |
---|
1359 | DO ji = jn, jpit |
---|
1360 | zwgt2(jn) = zwgt2(jn) + zwgt1(ji) |
---|
1361 | END DO |
---|
1362 | END DO |
---|
1363 | |
---|
1364 | ! !== Normalize weights ==! |
---|
1365 | ! |
---|
1366 | za1 = 1._wp / SUM( zwgt1(1:jpit) ) |
---|
1367 | za2 = 1._wp / SUM( zwgt2(1:jpit) ) |
---|
1368 | DO jn = 1, jpit |
---|
1369 | zwgt1(jn) = zwgt1(jn) * za1 |
---|
1370 | zwgt2(jn) = zwgt2(jn) * za2 |
---|
1371 | END DO |
---|
1372 | ! |
---|
1373 | END SUBROUTINE ts_wgt |
---|
1374 | |
---|
1375 | |
---|
1376 | SUBROUTINE ts_rst( kt, cdrw ) |
---|
1377 | !!--------------------------------------------------------------------- |
---|
1378 | !! *** ROUTINE ts_rst *** |
---|
1379 | !! |
---|
1380 | !! ** Purpose : Read or write time-splitting arrays in restart file |
---|
1381 | !!---------------------------------------------------------------------- |
---|
1382 | INTEGER , INTENT(in) :: kt ! ocean time-step |
---|
1383 | CHARACTER(len=*), INTENT(in) :: cdrw ! "READ"/"WRITE" flag |
---|
1384 | !!---------------------------------------------------------------------- |
---|
1385 | ! |
---|
1386 | IF( TRIM(cdrw) == 'READ' ) THEN ! Read/initialise |
---|
1387 | ! ! --------------- |
---|
1388 | IF( ln_rstart .AND. ln_bt_fw ) THEN !* Read the restart file |
---|
1389 | CALL iom_get( numror, jpdom_autoglo, 'ub2_b' , ub2_b (:,:), ldxios = lrxios ) |
---|
1390 | CALL iom_get( numror, jpdom_autoglo, 'vb2_b' , vb2_b (:,:), ldxios = lrxios ) |
---|
1391 | CALL iom_get( numror, jpdom_autoglo, 'un_bf' , un_bf (:,:), ldxios = lrxios ) |
---|
1392 | CALL iom_get( numror, jpdom_autoglo, 'vn_bf' , vn_bf (:,:), ldxios = lrxios ) |
---|
1393 | IF( .NOT.ln_bt_av ) THEN |
---|
1394 | CALL iom_get( numror, jpdom_autoglo, 'sshbb_e' , sshbb_e(:,:), ldxios = lrxios ) |
---|
1395 | CALL iom_get( numror, jpdom_autoglo, 'ubb_e' , ubb_e(:,:), ldxios = lrxios ) |
---|
1396 | CALL iom_get( numror, jpdom_autoglo, 'vbb_e' , vbb_e(:,:), ldxios = lrxios ) |
---|
1397 | CALL iom_get( numror, jpdom_autoglo, 'sshb_e' , sshb_e(:,:), ldxios = lrxios ) |
---|
1398 | CALL iom_get( numror, jpdom_autoglo, 'ub_e' , ub_e(:,:), ldxios = lrxios ) |
---|
1399 | CALL iom_get( numror, jpdom_autoglo, 'vb_e' , vb_e(:,:), ldxios = lrxios ) |
---|
1400 | ENDIF |
---|
1401 | #if defined key_agrif |
---|
1402 | ! Read time integrated fluxes |
---|
1403 | IF ( .NOT.Agrif_Root() ) THEN |
---|
1404 | CALL iom_get( numror, jpdom_autoglo, 'ub2_i_b' , ub2_i_b(:,:), ldxios = lrxios ) |
---|
1405 | CALL iom_get( numror, jpdom_autoglo, 'vb2_i_b' , vb2_i_b(:,:), ldxios = lrxios ) |
---|
1406 | ENDIF |
---|
1407 | #endif |
---|
1408 | ELSE !* Start from rest |
---|
1409 | IF(lwp) WRITE(numout,*) |
---|
1410 | IF(lwp) WRITE(numout,*) ' ==>>> start from rest: set barotropic values to 0' |
---|
1411 | ub2_b (:,:) = 0._wp ; vb2_b (:,:) = 0._wp ! used in the 1st interpol of agrif |
---|
1412 | un_adv(:,:) = 0._wp ; vn_adv(:,:) = 0._wp ! used in the 1st interpol of agrif |
---|
1413 | un_bf (:,:) = 0._wp ; vn_bf (:,:) = 0._wp ! used in the 1st update of agrif |
---|
1414 | #if defined key_agrif |
---|
1415 | IF ( .NOT.Agrif_Root() ) THEN |
---|
1416 | ub2_i_b(:,:) = 0._wp ; vb2_i_b(:,:) = 0._wp ! used in the 1st update of agrif |
---|
1417 | ENDIF |
---|
1418 | #endif |
---|
1419 | ENDIF |
---|
1420 | ! |
---|
1421 | ELSEIF( TRIM(cdrw) == 'WRITE' ) THEN ! Create restart file |
---|
1422 | ! ! ------------------- |
---|
1423 | IF(lwp) WRITE(numout,*) '---- ts_rst ----' |
---|
1424 | IF( lwxios ) CALL iom_swap( cwxios_context ) |
---|
1425 | CALL iom_rstput( kt, nitrst, numrow, 'ub2_b' , ub2_b (:,:), ldxios = lwxios ) |
---|
1426 | CALL iom_rstput( kt, nitrst, numrow, 'vb2_b' , vb2_b (:,:), ldxios = lwxios ) |
---|
1427 | CALL iom_rstput( kt, nitrst, numrow, 'un_bf' , un_bf (:,:), ldxios = lwxios ) |
---|
1428 | CALL iom_rstput( kt, nitrst, numrow, 'vn_bf' , vn_bf (:,:), ldxios = lwxios ) |
---|
1429 | ! |
---|
1430 | IF (.NOT.ln_bt_av) THEN |
---|
1431 | CALL iom_rstput( kt, nitrst, numrow, 'sshbb_e' , sshbb_e(:,:), ldxios = lwxios ) |
---|
1432 | CALL iom_rstput( kt, nitrst, numrow, 'ubb_e' , ubb_e(:,:), ldxios = lwxios ) |
---|
1433 | CALL iom_rstput( kt, nitrst, numrow, 'vbb_e' , vbb_e(:,:), ldxios = lwxios ) |
---|
1434 | CALL iom_rstput( kt, nitrst, numrow, 'sshb_e' , sshb_e(:,:), ldxios = lwxios ) |
---|
1435 | CALL iom_rstput( kt, nitrst, numrow, 'ub_e' , ub_e(:,:), ldxios = lwxios ) |
---|
1436 | CALL iom_rstput( kt, nitrst, numrow, 'vb_e' , vb_e(:,:), ldxios = lwxios ) |
---|
1437 | ENDIF |
---|
1438 | #if defined key_agrif |
---|
1439 | ! Save time integrated fluxes |
---|
1440 | IF ( .NOT.Agrif_Root() ) THEN |
---|
1441 | CALL iom_rstput( kt, nitrst, numrow, 'ub2_i_b' , ub2_i_b(:,:), ldxios = lwxios ) |
---|
1442 | CALL iom_rstput( kt, nitrst, numrow, 'vb2_i_b' , vb2_i_b(:,:), ldxios = lwxios ) |
---|
1443 | ENDIF |
---|
1444 | #endif |
---|
1445 | IF( lwxios ) CALL iom_swap( cxios_context ) |
---|
1446 | ENDIF |
---|
1447 | ! |
---|
1448 | END SUBROUTINE ts_rst |
---|
1449 | |
---|
1450 | |
---|
1451 | SUBROUTINE dyn_spg_ts_init |
---|
1452 | !!--------------------------------------------------------------------- |
---|
1453 | !! *** ROUTINE dyn_spg_ts_init *** |
---|
1454 | !! |
---|
1455 | !! ** Purpose : Set time splitting options |
---|
1456 | !!---------------------------------------------------------------------- |
---|
1457 | INTEGER :: ji ,jj ! dummy loop indices |
---|
1458 | REAL(wp) :: zxr2, zyr2, zcmax ! local scalar |
---|
1459 | REAL(wp), DIMENSION(jpi,jpj) :: zcu |
---|
1460 | !!---------------------------------------------------------------------- |
---|
1461 | ! |
---|
1462 | ! Max courant number for ext. grav. waves |
---|
1463 | ! |
---|
1464 | DO jj = 1, jpj |
---|
1465 | DO ji =1, jpi |
---|
1466 | zxr2 = r1_e1t(ji,jj) * r1_e1t(ji,jj) |
---|
1467 | zyr2 = r1_e2t(ji,jj) * r1_e2t(ji,jj) |
---|
1468 | zcu(ji,jj) = SQRT( grav * MAX(ht_0(ji,jj),0._wp) * (zxr2 + zyr2) ) |
---|
1469 | END DO |
---|
1470 | END DO |
---|
1471 | ! |
---|
1472 | zcmax = MAXVAL( zcu(:,:) ) |
---|
1473 | IF( lk_mpp ) CALL mpp_max( zcmax ) |
---|
1474 | |
---|
1475 | ! Estimate number of iterations to satisfy a max courant number= rn_bt_cmax |
---|
1476 | IF( ln_bt_auto ) nn_baro = CEILING( rdt / rn_bt_cmax * zcmax) |
---|
1477 | |
---|
1478 | rdtbt = rdt / REAL( nn_baro , wp ) |
---|
1479 | zcmax = zcmax * rdtbt |
---|
1480 | ! Print results |
---|
1481 | IF(lwp) WRITE(numout,*) |
---|
1482 | IF(lwp) WRITE(numout,*) 'dyn_spg_ts_init : split-explicit free surface' |
---|
1483 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~~~' |
---|
1484 | IF( ln_bt_auto ) THEN |
---|
1485 | IF(lwp) WRITE(numout,*) ' ln_ts_auto =.true. Automatically set nn_baro ' |
---|
1486 | IF(lwp) WRITE(numout,*) ' Max. courant number allowed: ', rn_bt_cmax |
---|
1487 | ELSE |
---|
1488 | IF(lwp) WRITE(numout,*) ' ln_ts_auto=.false.: Use nn_baro in namelist nn_baro = ', nn_baro |
---|
1489 | ENDIF |
---|
1490 | |
---|
1491 | IF(ln_bt_av) THEN |
---|
1492 | IF(lwp) WRITE(numout,*) ' ln_bt_av =.true. ==> Time averaging over nn_baro time steps is on ' |
---|
1493 | ELSE |
---|
1494 | IF(lwp) WRITE(numout,*) ' ln_bt_av =.false. => No time averaging of barotropic variables ' |
---|
1495 | ENDIF |
---|
1496 | ! |
---|
1497 | ! |
---|
1498 | IF(ln_bt_fw) THEN |
---|
1499 | IF(lwp) WRITE(numout,*) ' ln_bt_fw=.true. => Forward integration of barotropic variables ' |
---|
1500 | ELSE |
---|
1501 | IF(lwp) WRITE(numout,*) ' ln_bt_fw =.false.=> Centred integration of barotropic variables ' |
---|
1502 | ENDIF |
---|
1503 | ! |
---|
1504 | #if defined key_agrif |
---|
1505 | ! Restrict the use of Agrif to the forward case only |
---|
1506 | !!! IF( .NOT.ln_bt_fw .AND. .NOT.Agrif_Root() ) CALL ctl_stop( 'AGRIF not implemented if ln_bt_fw=.FALSE.' ) |
---|
1507 | #endif |
---|
1508 | ! |
---|
1509 | IF(lwp) WRITE(numout,*) ' Time filter choice, nn_bt_flt: ', nn_bt_flt |
---|
1510 | SELECT CASE ( nn_bt_flt ) |
---|
1511 | CASE( 0 ) ; IF(lwp) WRITE(numout,*) ' Dirac' |
---|
1512 | CASE( 1 ) ; IF(lwp) WRITE(numout,*) ' Boxcar: width = nn_baro' |
---|
1513 | CASE( 2 ) ; IF(lwp) WRITE(numout,*) ' Boxcar: width = 2*nn_baro' |
---|
1514 | CASE DEFAULT ; CALL ctl_stop( 'unrecognised value for nn_bt_flt: should 0,1, or 2' ) |
---|
1515 | END SELECT |
---|
1516 | ! |
---|
1517 | IF(lwp) WRITE(numout,*) ' ' |
---|
1518 | IF(lwp) WRITE(numout,*) ' nn_baro = ', nn_baro |
---|
1519 | IF(lwp) WRITE(numout,*) ' Barotropic time step [s] is :', rdtbt |
---|
1520 | IF(lwp) WRITE(numout,*) ' Maximum Courant number is :', zcmax |
---|
1521 | ! |
---|
1522 | IF(lwp) WRITE(numout,*) ' Time diffusion parameter rn_bt_alpha: ', rn_bt_alpha |
---|
1523 | IF ((ln_bt_av.AND.nn_bt_flt/=0).AND.(rn_bt_alpha>0._wp)) THEN |
---|
1524 | CALL ctl_stop( 'dynspg_ts ERROR: if rn_bt_alpha > 0, remove temporal averaging' ) |
---|
1525 | ENDIF |
---|
1526 | ! |
---|
1527 | IF( .NOT.ln_bt_av .AND. .NOT.ln_bt_fw ) THEN |
---|
1528 | CALL ctl_stop( 'dynspg_ts ERROR: No time averaging => only forward integration is possible' ) |
---|
1529 | ENDIF |
---|
1530 | IF( zcmax>0.9_wp ) THEN |
---|
1531 | CALL ctl_stop( 'dynspg_ts ERROR: Maximum Courant number is greater than 0.9: Inc. nn_baro !' ) |
---|
1532 | ENDIF |
---|
1533 | ! |
---|
1534 | ! ! Allocate time-splitting arrays |
---|
1535 | IF( dyn_spg_ts_alloc() /= 0 ) CALL ctl_stop('STOP', 'dyn_spg_init: failed to allocate dynspg_ts arrays' ) |
---|
1536 | ! |
---|
1537 | ! ! read restart when needed |
---|
1538 | !!gm what's happen when starting with an euler time-step BUT not from rest ? |
---|
1539 | !! this case correspond to a restart with only now time-step available... |
---|
1540 | CALL ts_rst( nit000, 'READ' ) |
---|
1541 | ! |
---|
1542 | IF( lwxios ) THEN |
---|
1543 | ! define variables in restart file when writing with XIOS |
---|
1544 | CALL iom_set_rstw_var_active('ub2_b') |
---|
1545 | CALL iom_set_rstw_var_active('vb2_b') |
---|
1546 | CALL iom_set_rstw_var_active('un_bf') |
---|
1547 | CALL iom_set_rstw_var_active('vn_bf') |
---|
1548 | ! |
---|
1549 | IF ( .NOT.ln_bt_av ) THEN |
---|
1550 | CALL iom_set_rstw_var_active('sshbb_e') |
---|
1551 | CALL iom_set_rstw_var_active('ubb_e') |
---|
1552 | CALL iom_set_rstw_var_active('vbb_e') |
---|
1553 | CALL iom_set_rstw_var_active('sshb_e') |
---|
1554 | CALL iom_set_rstw_var_active('ub_e') |
---|
1555 | CALL iom_set_rstw_var_active('vb_e') |
---|
1556 | ENDIF |
---|
1557 | #if defined key_agrif |
---|
1558 | ! Save time integrated fluxes |
---|
1559 | IF ( .NOT.Agrif_Root() ) THEN |
---|
1560 | CALL iom_set_rstw_var_active('ub2_i_b') |
---|
1561 | CALL iom_set_rstw_var_active('vb2_i_b') |
---|
1562 | ENDIF |
---|
1563 | #endif |
---|
1564 | ENDIF |
---|
1565 | ! |
---|
1566 | END SUBROUTINE dyn_spg_ts_init |
---|
1567 | |
---|
1568 | !!====================================================================== |
---|
1569 | END MODULE dynspg_ts |
---|