1 | MODULE agrif_oce_interp |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE agrif_oce_interp *** |
---|
4 | !! AGRIF: interpolation package for the ocean dynamics (OPA) |
---|
5 | !!====================================================================== |
---|
6 | !! History : 2.0 ! 2002-06 (L. Debreu) Original cade |
---|
7 | !! 3.2 ! 2009-04 (R. Benshila) |
---|
8 | !! 3.6 ! 2014-09 (R. Benshila) |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | #if defined key_agrif |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | !! 'key_agrif' AGRIF zoom |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | !! Agrif_tra : |
---|
15 | !! Agrif_dyn : |
---|
16 | !! Agrif_ssh : |
---|
17 | !! Agrif_dyn_ts : |
---|
18 | !! Agrif_dta_ts : |
---|
19 | !! Agrif_ssh_ts : |
---|
20 | !! Agrif_avm : |
---|
21 | !! interpu : |
---|
22 | !! interpv : |
---|
23 | !!---------------------------------------------------------------------- |
---|
24 | USE par_oce |
---|
25 | USE oce |
---|
26 | USE dom_oce |
---|
27 | USE zdf_oce |
---|
28 | USE agrif_oce |
---|
29 | USE phycst |
---|
30 | USE dynspg_ts, ONLY: un_adv, vn_adv |
---|
31 | ! |
---|
32 | USE in_out_manager |
---|
33 | USE agrif_oce_sponge |
---|
34 | USE lib_mpp |
---|
35 | |
---|
36 | IMPLICIT NONE |
---|
37 | PRIVATE |
---|
38 | |
---|
39 | PUBLIC Agrif_dyn, Agrif_ssh, Agrif_dyn_ts, Agrif_ssh_ts, Agrif_dta_ts |
---|
40 | PUBLIC Agrif_tra, Agrif_avm |
---|
41 | PUBLIC interpun , interpvn |
---|
42 | PUBLIC interptsn, interpsshn, interpavm |
---|
43 | PUBLIC interpunb, interpvnb , interpub2b, interpvb2b |
---|
44 | PUBLIC interpe3t, interpumsk, interpvmsk |
---|
45 | |
---|
46 | INTEGER :: bdy_tinterp = 0 |
---|
47 | |
---|
48 | # include "vectopt_loop_substitute.h90" |
---|
49 | !!---------------------------------------------------------------------- |
---|
50 | !! NEMO/NST 4.0 , NEMO Consortium (2018) |
---|
51 | !! $Id$ |
---|
52 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
53 | !!---------------------------------------------------------------------- |
---|
54 | CONTAINS |
---|
55 | |
---|
56 | SUBROUTINE Agrif_tra |
---|
57 | !!---------------------------------------------------------------------- |
---|
58 | !! *** ROUTINE Agrif_tra *** |
---|
59 | !!---------------------------------------------------------------------- |
---|
60 | ! |
---|
61 | IF( Agrif_Root() ) RETURN |
---|
62 | ! |
---|
63 | Agrif_SpecialValue = 0._wp |
---|
64 | Agrif_UseSpecialValue = .TRUE. |
---|
65 | ! |
---|
66 | CALL Agrif_Bc_variable( tsn_id, procname=interptsn ) |
---|
67 | ! |
---|
68 | Agrif_UseSpecialValue = .FALSE. |
---|
69 | ! |
---|
70 | END SUBROUTINE Agrif_tra |
---|
71 | |
---|
72 | |
---|
73 | SUBROUTINE Agrif_dyn( kt ) |
---|
74 | !!---------------------------------------------------------------------- |
---|
75 | !! *** ROUTINE Agrif_DYN *** |
---|
76 | !!---------------------------------------------------------------------- |
---|
77 | INTEGER, INTENT(in) :: kt |
---|
78 | ! |
---|
79 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
80 | INTEGER :: j1, j2, i1, i2 |
---|
81 | INTEGER :: ibdy1, jbdy1, ibdy2, jbdy2 |
---|
82 | REAL(wp), DIMENSION(jpi,jpj) :: zub, zvb |
---|
83 | !!---------------------------------------------------------------------- |
---|
84 | ! |
---|
85 | IF( Agrif_Root() ) RETURN |
---|
86 | ! |
---|
87 | Agrif_SpecialValue = 0._wp |
---|
88 | Agrif_UseSpecialValue = ln_spc_dyn |
---|
89 | ! |
---|
90 | CALL Agrif_Bc_variable( un_interp_id, procname=interpun ) |
---|
91 | CALL Agrif_Bc_variable( vn_interp_id, procname=interpvn ) |
---|
92 | ! |
---|
93 | Agrif_UseSpecialValue = .FALSE. |
---|
94 | ! |
---|
95 | ! prevent smoothing in ghost cells |
---|
96 | i1 = 1 ; i2 = nlci |
---|
97 | j1 = 1 ; j2 = nlcj |
---|
98 | IF( nbondj == -1 .OR. nbondj == 2 ) j1 = 2 + nbghostcells |
---|
99 | IF( nbondj == +1 .OR. nbondj == 2 ) j2 = nlcj - nbghostcells - 1 |
---|
100 | IF( nbondi == -1 .OR. nbondi == 2 ) i1 = 2 + nbghostcells |
---|
101 | IF( nbondi == +1 .OR. nbondi == 2 ) i2 = nlci - nbghostcells - 1 |
---|
102 | |
---|
103 | ! --- West --- ! |
---|
104 | IF( nbondi == -1 .OR. nbondi == 2 ) THEN |
---|
105 | ibdy1 = 2 |
---|
106 | ibdy2 = 1+nbghostcells |
---|
107 | ! |
---|
108 | IF( .NOT.ln_dynspg_ts ) THEN ! Store transport |
---|
109 | uu_b(ibdy1:ibdy2,:,Krhs_a) = 0._wp |
---|
110 | DO jk = 1, jpkm1 |
---|
111 | DO jj = 1, jpj |
---|
112 | uu_b(ibdy1:ibdy2,jj,Krhs_a) = uu_b(ibdy1:ibdy2,jj, Krhs_a) & |
---|
113 | & + e3u(ibdy1:ibdy2,jj,jk,Krhs_a) & |
---|
114 | & * uu(ibdy1:ibdy2,jj,jk,Krhs_a) * umask(ibdy1:ibdy2,jj,jk) |
---|
115 | END DO |
---|
116 | END DO |
---|
117 | DO jj = 1, jpj |
---|
118 | uu_b(ibdy1:ibdy2,jj,Krhs_a) = uu_b(ibdy1:ibdy2,jj,Krhs_a) * r1_hu_a(ibdy1:ibdy2,jj) |
---|
119 | END DO |
---|
120 | ENDIF |
---|
121 | ! |
---|
122 | IF( .NOT.lk_agrif_clp ) THEN |
---|
123 | DO jk=1,jpkm1 ! Smooth |
---|
124 | DO jj=j1,j2 |
---|
125 | uu(ibdy2,jj,jk,Krhs_a) = 0.25_wp*( uu(ibdy2-1,jj,jk,Krhs_a)+2._wp*uu(ibdy2,jj,jk,Krhs_a) & |
---|
126 | & + uu(ibdy2+1,jj,jk,Krhs_a) ) |
---|
127 | END DO |
---|
128 | END DO |
---|
129 | ENDIF |
---|
130 | ! |
---|
131 | zub(ibdy1:ibdy2,:) = 0._wp ! Correct transport |
---|
132 | DO jk = 1, jpkm1 |
---|
133 | DO jj = 1, jpj |
---|
134 | zub(ibdy1:ibdy2,jj) = zub(ibdy1:ibdy2,jj) + e3u(ibdy1:ibdy2,jj,jk,Krhs_a) & |
---|
135 | & * uu(ibdy1:ibdy2,jj,jk,Krhs_a) * umask(ibdy1:ibdy2,jj,jk) |
---|
136 | END DO |
---|
137 | END DO |
---|
138 | DO jj=1,jpj |
---|
139 | zub(ibdy1:ibdy2,jj) = zub(ibdy1:ibdy2,jj) * r1_hu_a(ibdy1:ibdy2,jj) |
---|
140 | END DO |
---|
141 | |
---|
142 | DO jk = 1, jpkm1 |
---|
143 | DO jj = 1, jpj |
---|
144 | uu(ibdy1:ibdy2,jj,jk,Krhs_a) = ( uu(ibdy1:ibdy2,jj,jk,Krhs_a) & |
---|
145 | & + uu_b(ibdy1:ibdy2,jj, Krhs_a) & |
---|
146 | & - zub(ibdy1:ibdy2,jj) ) & |
---|
147 | & * umask(ibdy1:ibdy2,jj,jk) |
---|
148 | END DO |
---|
149 | END DO |
---|
150 | |
---|
151 | IF( ln_dynspg_ts ) THEN ! Set tangential velocities to time splitting estimate |
---|
152 | zvb(ibdy1:ibdy2,:) = 0._wp |
---|
153 | DO jk = 1, jpkm1 |
---|
154 | DO jj = 1, jpj |
---|
155 | zvb(ibdy1:ibdy2,jj) = zvb(ibdy1:ibdy2,jj) + e3v(ibdy1:ibdy2,jj,jk,Krhs_a) & |
---|
156 | & * vv(ibdy1:ibdy2,jj,jk,Krhs_a) * vmask(ibdy1:ibdy2,jj,jk) |
---|
157 | END DO |
---|
158 | END DO |
---|
159 | DO jj = 1, jpj |
---|
160 | zvb(ibdy1:ibdy2,jj) = zvb(ibdy1:ibdy2,jj) * r1_hv_a(ibdy1:ibdy2,jj) |
---|
161 | END DO |
---|
162 | DO jk = 1, jpkm1 |
---|
163 | DO jj = 1, jpj |
---|
164 | vv(ibdy1:ibdy2,jj,jk,Krhs_a) = ( vv(ibdy1:ibdy2,jj,jk,Krhs_a) & |
---|
165 | & + vv_b(ibdy1:ibdy2,jj, Krhs_a) & |
---|
166 | & - zvb(ibdy1:ibdy2,jj) ) & |
---|
167 | & * vmask(ibdy1:ibdy2,jj,jk) |
---|
168 | END DO |
---|
169 | END DO |
---|
170 | ENDIF |
---|
171 | ! |
---|
172 | DO jk = 1, jpkm1 ! Mask domain edges |
---|
173 | DO jj = 1, jpj |
---|
174 | uu(1,jj,jk,Krhs_a) = 0._wp |
---|
175 | vv(1,jj,jk,Krhs_a) = 0._wp |
---|
176 | END DO |
---|
177 | END DO |
---|
178 | ENDIF |
---|
179 | |
---|
180 | ! --- East --- ! |
---|
181 | IF( nbondi == 1 .OR. nbondi == 2 ) THEN |
---|
182 | ibdy1 = nlci-1-nbghostcells |
---|
183 | ibdy2 = nlci-2 |
---|
184 | ! |
---|
185 | IF( .NOT.ln_dynspg_ts ) THEN ! Store transport |
---|
186 | uu_b(ibdy1:ibdy2,:,Krhs_a) = 0._wp |
---|
187 | DO jk = 1, jpkm1 |
---|
188 | DO jj = 1, jpj |
---|
189 | uu_b(ibdy1:ibdy2,jj,Krhs_a) = uu_b(ibdy1:ibdy2,jj, Krhs_a) & |
---|
190 | & + e3u(ibdy1:ibdy2,jj,jk,Krhs_a) & |
---|
191 | & * uu(ibdy1:ibdy2,jj,jk,Krhs_a) & |
---|
192 | & * umask(ibdy1:ibdy2,jj,jk) |
---|
193 | END DO |
---|
194 | END DO |
---|
195 | DO jj = 1, jpj |
---|
196 | uu_b(ibdy1:ibdy2,jj,Krhs_a) = uu_b(ibdy1:ibdy2,jj,Krhs_a) * r1_hu_a(ibdy1:ibdy2,jj) |
---|
197 | END DO |
---|
198 | ENDIF |
---|
199 | ! |
---|
200 | IF( .NOT.lk_agrif_clp ) THEN |
---|
201 | DO jk=1,jpkm1 ! Smooth |
---|
202 | DO jj=j1,j2 |
---|
203 | uu(ibdy1,jj,jk,Krhs_a) = 0.25_wp*( uu(ibdy1-1,jj,jk,Krhs_a) & |
---|
204 | & + 2._wp*uu(ibdy1 ,jj,jk,Krhs_a) & |
---|
205 | & + uu(ibdy1+1,jj,jk,Krhs_a) ) |
---|
206 | END DO |
---|
207 | END DO |
---|
208 | ENDIF |
---|
209 | ! |
---|
210 | zub(ibdy1:ibdy2,:) = 0._wp ! Correct transport |
---|
211 | DO jk = 1, jpkm1 |
---|
212 | DO jj = 1, jpj |
---|
213 | zub(ibdy1:ibdy2,jj) = zub(ibdy1:ibdy2,jj) & |
---|
214 | & + e3u(ibdy1:ibdy2,jj,jk,Krhs_a) & |
---|
215 | & * uu(ibdy1:ibdy2,jj,jk,Krhs_a) * umask(ibdy1:ibdy2,jj,jk) |
---|
216 | END DO |
---|
217 | END DO |
---|
218 | DO jj=1,jpj |
---|
219 | zub(ibdy1:ibdy2,jj) = zub(ibdy1:ibdy2,jj) * r1_hu_a(ibdy1:ibdy2,jj) |
---|
220 | END DO |
---|
221 | |
---|
222 | DO jk = 1, jpkm1 |
---|
223 | DO jj = 1, jpj |
---|
224 | uu(ibdy1:ibdy2,jj,jk,Krhs_a) = ( uu(ibdy1:ibdy2,jj,jk,Krhs_a) & |
---|
225 | & + uu_b(ibdy1:ibdy2,jj, Krhs_a) & |
---|
226 | & - zub(ibdy1:ibdy2,jj) & |
---|
227 | & ) * umask(ibdy1:ibdy2,jj,jk) |
---|
228 | END DO |
---|
229 | END DO |
---|
230 | |
---|
231 | IF( ln_dynspg_ts ) THEN ! Set tangential velocities to time splitting estimate |
---|
232 | ibdy1 = ibdy1 + 1 |
---|
233 | ibdy2 = ibdy2 + 1 |
---|
234 | zvb(ibdy1:ibdy2,:) = 0._wp |
---|
235 | DO jk = 1, jpkm1 |
---|
236 | DO jj = 1, jpj |
---|
237 | zvb(ibdy1:ibdy2,jj) = zvb(ibdy1:ibdy2,jj) & |
---|
238 | & + e3v(ibdy1:ibdy2,jj,jk,Krhs_a) & |
---|
239 | & * vv(ibdy1:ibdy2,jj,jk,Krhs_a) & |
---|
240 | & * vmask(ibdy1:ibdy2,jj,jk) |
---|
241 | END DO |
---|
242 | END DO |
---|
243 | DO jj = 1, jpj |
---|
244 | zvb(ibdy1:ibdy2,jj) = zvb(ibdy1:ibdy2,jj) * r1_hv_a(ibdy1:ibdy2,jj) |
---|
245 | END DO |
---|
246 | DO jk = 1, jpkm1 |
---|
247 | DO jj = 1, jpj |
---|
248 | vv(ibdy1:ibdy2,jj,jk,Krhs_a) = ( vv(ibdy1:ibdy2,jj,jk,Krhs_a) & |
---|
249 | & + vv_b(ibdy1:ibdy2,jj, Krhs_a) & |
---|
250 | & - zvb(ibdy1:ibdy2,jj) & |
---|
251 | & ) * vmask(ibdy1:ibdy2,jj,jk) |
---|
252 | END DO |
---|
253 | END DO |
---|
254 | ENDIF |
---|
255 | ! |
---|
256 | DO jk = 1, jpkm1 ! Mask domain edges |
---|
257 | DO jj = 1, jpj |
---|
258 | uu(nlci-1,jj,jk,Krhs_a) = 0._wp |
---|
259 | vv(nlci ,jj,jk,Krhs_a) = 0._wp |
---|
260 | END DO |
---|
261 | END DO |
---|
262 | ENDIF |
---|
263 | |
---|
264 | ! --- South --- ! |
---|
265 | IF( nbondj == -1 .OR. nbondj == 2 ) THEN |
---|
266 | jbdy1 = 2 |
---|
267 | jbdy2 = 1+nbghostcells |
---|
268 | ! |
---|
269 | IF( .NOT.ln_dynspg_ts ) THEN ! Store transport |
---|
270 | vv_b(:,jbdy1:jbdy2,Krhs_a) = 0._wp |
---|
271 | DO jk = 1, jpkm1 |
---|
272 | DO ji = 1, jpi |
---|
273 | vv_b(ji,jbdy1:jbdy2,Krhs_a) = vv_b(ji,jbdy1:jbdy2, Krhs_a) & |
---|
274 | & + e3v(ji,jbdy1:jbdy2,jk,Krhs_a) & |
---|
275 | & * vv(ji,jbdy1:jbdy2,jk,Krhs_a) & |
---|
276 | & * vmask(ji,jbdy1:jbdy2,jk) |
---|
277 | END DO |
---|
278 | END DO |
---|
279 | DO ji=1,jpi |
---|
280 | vv_b(ji,jbdy1:jbdy2,Krhs_a) = vv_b(ji,jbdy1:jbdy2,Krhs_a) * r1_hv_a(ji,jbdy1:jbdy2) |
---|
281 | END DO |
---|
282 | ENDIF |
---|
283 | ! |
---|
284 | IF ( .NOT.lk_agrif_clp ) THEN |
---|
285 | DO jk = 1, jpkm1 ! Smooth |
---|
286 | DO ji = i1, i2 |
---|
287 | vv(ji,jbdy2,jk,Krhs_a) = 0.25_wp*( vv(ji,jbdy2-1,jk,Krhs_a) & |
---|
288 | & + 2._wp*vv(ji,jbdy2 ,jk,Krhs_a) & |
---|
289 | & + vv(ji,jbdy2+1,jk,Krhs_a) ) |
---|
290 | END DO |
---|
291 | END DO |
---|
292 | ENDIF |
---|
293 | ! |
---|
294 | zvb(:,jbdy1:jbdy2) = 0._wp ! Correct transport |
---|
295 | DO jk=1,jpkm1 |
---|
296 | DO ji=1,jpi |
---|
297 | zvb(ji,jbdy1:jbdy2) = zvb(ji,jbdy1:jbdy2) & |
---|
298 | & + e3v(ji,jbdy1:jbdy2,jk,Krhs_a) & |
---|
299 | & * vv(ji,jbdy1:jbdy2,jk,Krhs_a) & |
---|
300 | & * vmask(ji,jbdy1:jbdy2,jk) |
---|
301 | END DO |
---|
302 | END DO |
---|
303 | DO ji = 1, jpi |
---|
304 | zvb(ji,jbdy1:jbdy2) = zvb(ji,jbdy1:jbdy2) * r1_hv_a(ji,jbdy1:jbdy2) |
---|
305 | END DO |
---|
306 | |
---|
307 | DO jk = 1, jpkm1 |
---|
308 | DO ji = 1, jpi |
---|
309 | vv(ji,jbdy1:jbdy2,jk,Krhs_a) = ( vv(ji,jbdy1:jbdy2,jk,Krhs_a) & |
---|
310 | & + vv_b(ji,jbdy1:jbdy2, Krhs_a) & |
---|
311 | & - zvb(ji,jbdy1:jbdy2) & |
---|
312 | & ) * vmask(ji,jbdy1:jbdy2,jk) |
---|
313 | END DO |
---|
314 | END DO |
---|
315 | |
---|
316 | IF( ln_dynspg_ts ) THEN ! Set tangential velocities to time splitting estimate |
---|
317 | zub(:,jbdy1:jbdy2) = 0._wp |
---|
318 | DO jk = 1, jpkm1 |
---|
319 | DO ji = 1, jpi |
---|
320 | zub(ji,jbdy1:jbdy2) = zub(ji,jbdy1:jbdy2) & |
---|
321 | & + e3u(ji,jbdy1:jbdy2,jk,Krhs_a) & |
---|
322 | & * uu(ji,jbdy1:jbdy2,jk,Krhs_a) & |
---|
323 | & * umask(ji,jbdy1:jbdy2,jk) |
---|
324 | END DO |
---|
325 | END DO |
---|
326 | DO ji = 1, jpi |
---|
327 | zub(ji,jbdy1:jbdy2) = zub(ji,jbdy1:jbdy2) * r1_hu_a(ji,jbdy1:jbdy2) |
---|
328 | END DO |
---|
329 | |
---|
330 | DO jk = 1, jpkm1 |
---|
331 | DO ji = 1, jpi |
---|
332 | uu(ji,jbdy1:jbdy2,jk,Krhs_a) = ( uu(ji,jbdy1:jbdy2,jk,Krhs_a) & |
---|
333 | & + uu_b(ji,jbdy1:jbdy2, Krhs_a) & |
---|
334 | & - zub(ji,jbdy1:jbdy2) & |
---|
335 | & ) * umask(ji,jbdy1:jbdy2,jk) |
---|
336 | END DO |
---|
337 | END DO |
---|
338 | ENDIF |
---|
339 | ! |
---|
340 | DO jk = 1, jpkm1 ! Mask domain edges |
---|
341 | DO ji = 1, jpi |
---|
342 | uu(ji,1,jk,Krhs_a) = 0._wp |
---|
343 | vv(ji,1,jk,Krhs_a) = 0._wp |
---|
344 | END DO |
---|
345 | END DO |
---|
346 | ENDIF |
---|
347 | |
---|
348 | ! --- North --- ! |
---|
349 | IF( nbondj == 1 .OR. nbondj == 2 ) THEN |
---|
350 | jbdy1 = nlcj-1-nbghostcells |
---|
351 | jbdy2 = nlcj-2 |
---|
352 | ! |
---|
353 | IF( .NOT.ln_dynspg_ts ) THEN ! Store transport |
---|
354 | vv_b(:,jbdy1:jbdy2,Krhs_a) = 0._wp |
---|
355 | DO jk = 1, jpkm1 |
---|
356 | DO ji = 1, jpi |
---|
357 | vv_b(ji,jbdy1:jbdy2,Krhs_a) = vv_b(ji,jbdy1:jbdy2, Krhs_a) & |
---|
358 | & + e3v(ji,jbdy1:jbdy2,jk,Krhs_a) & |
---|
359 | & * vv(ji,jbdy1:jbdy2,jk,Krhs_a) & |
---|
360 | & * vmask(ji,jbdy1:jbdy2,jk) |
---|
361 | END DO |
---|
362 | END DO |
---|
363 | DO ji=1,jpi |
---|
364 | vv_b(ji,jbdy1:jbdy2,Krhs_a) = vv_b(ji,jbdy1:jbdy2,Krhs_a) * r1_hv_a(ji,jbdy1:jbdy2) |
---|
365 | END DO |
---|
366 | ENDIF |
---|
367 | ! |
---|
368 | IF ( .NOT.lk_agrif_clp ) THEN |
---|
369 | DO jk = 1, jpkm1 ! Smooth |
---|
370 | DO ji = i1, i2 |
---|
371 | vv(ji,jbdy1,jk,Krhs_a) = 0.25_wp*( vv(ji,jbdy1-1,jk,Krhs_a) & |
---|
372 | & + 2._wp*vv(ji,jbdy1 ,jk,Krhs_a) & |
---|
373 | & + vv(ji,jbdy1+1,jk,Krhs_a) ) |
---|
374 | END DO |
---|
375 | END DO |
---|
376 | ENDIF |
---|
377 | ! |
---|
378 | zvb(:,jbdy1:jbdy2) = 0._wp ! Correct transport |
---|
379 | DO jk=1,jpkm1 |
---|
380 | DO ji=1,jpi |
---|
381 | zvb(ji,jbdy1:jbdy2) = zvb(ji,jbdy1:jbdy2) & |
---|
382 | & + e3v(ji,jbdy1:jbdy2,jk,Krhs_a) & |
---|
383 | & * vv(ji,jbdy1:jbdy2,jk,Krhs_a) & |
---|
384 | & * vmask(ji,jbdy1:jbdy2,jk) |
---|
385 | END DO |
---|
386 | END DO |
---|
387 | DO ji = 1, jpi |
---|
388 | zvb(ji,jbdy1:jbdy2) = zvb(ji,jbdy1:jbdy2) * r1_hv_a(ji,jbdy1:jbdy2) |
---|
389 | END DO |
---|
390 | |
---|
391 | DO jk = 1, jpkm1 |
---|
392 | DO ji = 1, jpi |
---|
393 | vv(ji,jbdy1:jbdy2,jk,Krhs_a) = ( vv(ji,jbdy1:jbdy2,jk,Krhs_a) & |
---|
394 | & + vv_b(ji,jbdy1:jbdy2, Krhs_a) & |
---|
395 | & - zvb(ji,jbdy1:jbdy2) & |
---|
396 | & ) * vmask(ji,jbdy1:jbdy2,jk) |
---|
397 | END DO |
---|
398 | END DO |
---|
399 | |
---|
400 | IF( ln_dynspg_ts ) THEN ! Set tangential velocities to time splitting estimate |
---|
401 | jbdy1 = jbdy1 + 1 |
---|
402 | jbdy2 = jbdy2 + 1 |
---|
403 | zub(:,jbdy1:jbdy2) = 0._wp |
---|
404 | DO jk = 1, jpkm1 |
---|
405 | DO ji = 1, jpi |
---|
406 | zub(ji,jbdy1:jbdy2) = zub(ji,jbdy1:jbdy2) & |
---|
407 | & + e3u(ji,jbdy1:jbdy2,jk,Krhs_a) & |
---|
408 | & * uu(ji,jbdy1:jbdy2,jk,Krhs_a) & |
---|
409 | & * umask(ji,jbdy1:jbdy2,jk) |
---|
410 | END DO |
---|
411 | END DO |
---|
412 | DO ji = 1, jpi |
---|
413 | zub(ji,jbdy1:jbdy2) = zub(ji,jbdy1:jbdy2) * r1_hu_a(ji,jbdy1:jbdy2) |
---|
414 | END DO |
---|
415 | |
---|
416 | DO jk = 1, jpkm1 |
---|
417 | DO ji = 1, jpi |
---|
418 | uu(ji,jbdy1:jbdy2,jk,Krhs_a) = ( uu(ji,jbdy1:jbdy2,jk,Krhs_a) & |
---|
419 | & + uu_b(ji,jbdy1:jbdy2, Krhs_a) & |
---|
420 | & - zub(ji,jbdy1:jbdy2) & |
---|
421 | & ) * umask(ji,jbdy1:jbdy2,jk) |
---|
422 | END DO |
---|
423 | END DO |
---|
424 | ENDIF |
---|
425 | ! |
---|
426 | DO jk = 1, jpkm1 ! Mask domain edges |
---|
427 | DO ji = 1, jpi |
---|
428 | uu(ji,nlcj ,jk,Krhs_a) = 0._wp |
---|
429 | vv(ji,nlcj-1,jk,Krhs_a) = 0._wp |
---|
430 | END DO |
---|
431 | END DO |
---|
432 | ENDIF |
---|
433 | ! |
---|
434 | END SUBROUTINE Agrif_dyn |
---|
435 | |
---|
436 | |
---|
437 | SUBROUTINE Agrif_dyn_ts( jn ) |
---|
438 | !!---------------------------------------------------------------------- |
---|
439 | !! *** ROUTINE Agrif_dyn_ts *** |
---|
440 | !!---------------------------------------------------------------------- |
---|
441 | INTEGER, INTENT(in) :: jn |
---|
442 | !! |
---|
443 | INTEGER :: ji, jj |
---|
444 | !!---------------------------------------------------------------------- |
---|
445 | ! |
---|
446 | IF( Agrif_Root() ) RETURN |
---|
447 | ! |
---|
448 | IF((nbondi == -1).OR.(nbondi == 2)) THEN |
---|
449 | DO jj=1,jpj |
---|
450 | va_e(2:nbghostcells+1,jj) = vbdy_w(1:nbghostcells,jj) * hvr_e(2:nbghostcells+1,jj) |
---|
451 | ! Specified fluxes: |
---|
452 | ua_e(2:nbghostcells+1,jj) = ubdy_w(1:nbghostcells,jj) * hur_e(2:nbghostcells+1,jj) |
---|
453 | ! Characteristics method (only if ghostcells=1): |
---|
454 | !alt ua_e(2,jj) = 0.5_wp * ( ubdy_w(jj) * hur_e(2,jj) + ua_e(3,jj) & |
---|
455 | !alt & - sqrt(grav * hur_e(2,jj)) * (sshn_e(3,jj) - hbdy_w(jj)) ) |
---|
456 | END DO |
---|
457 | ENDIF |
---|
458 | ! |
---|
459 | IF((nbondi == 1).OR.(nbondi == 2)) THEN |
---|
460 | DO jj=1,jpj |
---|
461 | va_e(nlci-nbghostcells:nlci-1,jj) = vbdy_e(1:nbghostcells,jj) * hvr_e(nlci-nbghostcells:nlci-1,jj) |
---|
462 | ! Specified fluxes: |
---|
463 | ua_e(nlci-nbghostcells-1:nlci-2,jj) = ubdy_e(1:nbghostcells,jj) * hur_e(nlci-nbghostcells-1:nlci-2,jj) |
---|
464 | ! Characteristics method (only if ghostcells=1): |
---|
465 | !alt ua_e(nlci-2,jj) = 0.5_wp * ( ubdy_e(jj) * hur_e(nlci-2,jj) + ua_e(nlci-3,jj) & |
---|
466 | !alt & + sqrt(grav * hur_e(nlci-2,jj)) * (sshn_e(nlci-2,jj) - hbdy_e(jj)) ) |
---|
467 | END DO |
---|
468 | ENDIF |
---|
469 | ! |
---|
470 | IF((nbondj == -1).OR.(nbondj == 2)) THEN |
---|
471 | DO ji=1,jpi |
---|
472 | ua_e(ji,2:nbghostcells+1) = ubdy_s(ji,1:nbghostcells) * hur_e(ji,2:nbghostcells+1) |
---|
473 | ! Specified fluxes: |
---|
474 | va_e(ji,2:nbghostcells+1) = vbdy_s(ji,1:nbghostcells) * hvr_e(ji,2:nbghostcells+1) |
---|
475 | ! Characteristics method (only if ghostcells=1): |
---|
476 | !alt va_e(ji,2) = 0.5_wp * ( vbdy_s(ji) * hvr_e(ji,2) + va_e(ji,3) & |
---|
477 | !alt & - sqrt(grav * hvr_e(ji,2)) * (sshn_e(ji,3) - hbdy_s(ji)) ) |
---|
478 | END DO |
---|
479 | ENDIF |
---|
480 | ! |
---|
481 | IF((nbondj == 1).OR.(nbondj == 2)) THEN |
---|
482 | DO ji=1,jpi |
---|
483 | ua_e(ji,nlcj-nbghostcells:nlcj-1) = ubdy_n(ji,1:nbghostcells) * hur_e(ji,nlcj-nbghostcells:nlcj-1) |
---|
484 | ! Specified fluxes: |
---|
485 | va_e(ji,nlcj-nbghostcells-1:nlcj-2) = vbdy_n(ji,1:nbghostcells) * hvr_e(ji,nlcj-nbghostcells-1:nlcj-2) |
---|
486 | ! Characteristics method (only if ghostcells=1): |
---|
487 | !alt va_e(ji,nlcj-2) = 0.5_wp * ( vbdy_n(ji) * hvr_e(ji,nlcj-2) + va_e(ji,nlcj-3) & |
---|
488 | !alt & + sqrt(grav * hvr_e(ji,nlcj-2)) * (sshn_e(ji,nlcj-2) - hbdy_n(ji)) ) |
---|
489 | END DO |
---|
490 | ENDIF |
---|
491 | ! |
---|
492 | END SUBROUTINE Agrif_dyn_ts |
---|
493 | |
---|
494 | |
---|
495 | SUBROUTINE Agrif_dta_ts( kt ) |
---|
496 | !!---------------------------------------------------------------------- |
---|
497 | !! *** ROUTINE Agrif_dta_ts *** |
---|
498 | !!---------------------------------------------------------------------- |
---|
499 | INTEGER, INTENT(in) :: kt |
---|
500 | !! |
---|
501 | INTEGER :: ji, jj |
---|
502 | LOGICAL :: ll_int_cons |
---|
503 | !!---------------------------------------------------------------------- |
---|
504 | ! |
---|
505 | IF( Agrif_Root() ) RETURN |
---|
506 | ! |
---|
507 | ll_int_cons = ln_bt_fw ! Assume conservative temporal integration in the forward case only |
---|
508 | ! |
---|
509 | ! Enforce volume conservation if no time refinement: |
---|
510 | IF ( Agrif_rhot()==1 ) ll_int_cons=.TRUE. |
---|
511 | ! |
---|
512 | ! Interpolate barotropic fluxes |
---|
513 | Agrif_SpecialValue=0._wp |
---|
514 | Agrif_UseSpecialValue = ln_spc_dyn |
---|
515 | ! |
---|
516 | IF( ll_int_cons ) THEN ! Conservative interpolation |
---|
517 | ! order matters here !!!!!! |
---|
518 | CALL Agrif_Bc_variable( ub2b_interp_id, calledweight=1._wp, procname=interpub2b ) ! Time integrated |
---|
519 | CALL Agrif_Bc_variable( vb2b_interp_id, calledweight=1._wp, procname=interpvb2b ) |
---|
520 | bdy_tinterp = 1 |
---|
521 | CALL Agrif_Bc_variable( unb_id , calledweight=1._wp, procname=interpunb ) ! After |
---|
522 | CALL Agrif_Bc_variable( vnb_id , calledweight=1._wp, procname=interpvnb ) |
---|
523 | bdy_tinterp = 2 |
---|
524 | CALL Agrif_Bc_variable( unb_id , calledweight=0._wp, procname=interpunb ) ! Before |
---|
525 | CALL Agrif_Bc_variable( vnb_id , calledweight=0._wp, procname=interpvnb ) |
---|
526 | ELSE ! Linear interpolation |
---|
527 | bdy_tinterp = 0 |
---|
528 | ubdy_w(:,:) = 0._wp ; vbdy_w(:,:) = 0._wp |
---|
529 | ubdy_e(:,:) = 0._wp ; vbdy_e(:,:) = 0._wp |
---|
530 | ubdy_n(:,:) = 0._wp ; vbdy_n(:,:) = 0._wp |
---|
531 | ubdy_s(:,:) = 0._wp ; vbdy_s(:,:) = 0._wp |
---|
532 | CALL Agrif_Bc_variable( unb_id, procname=interpunb ) |
---|
533 | CALL Agrif_Bc_variable( vnb_id, procname=interpvnb ) |
---|
534 | ENDIF |
---|
535 | Agrif_UseSpecialValue = .FALSE. |
---|
536 | ! |
---|
537 | END SUBROUTINE Agrif_dta_ts |
---|
538 | |
---|
539 | |
---|
540 | SUBROUTINE Agrif_ssh( kt ) |
---|
541 | !!---------------------------------------------------------------------- |
---|
542 | !! *** ROUTINE Agrif_ssh *** |
---|
543 | !!---------------------------------------------------------------------- |
---|
544 | INTEGER, INTENT(in) :: kt |
---|
545 | ! |
---|
546 | INTEGER :: ji, jj, indx, indy |
---|
547 | !!---------------------------------------------------------------------- |
---|
548 | ! |
---|
549 | IF( Agrif_Root() ) RETURN |
---|
550 | ! |
---|
551 | ! Linear time interpolation of sea level |
---|
552 | ! |
---|
553 | Agrif_SpecialValue = 0._wp |
---|
554 | Agrif_UseSpecialValue = .TRUE. |
---|
555 | CALL Agrif_Bc_variable(sshn_id, procname=interpsshn ) |
---|
556 | Agrif_UseSpecialValue = .FALSE. |
---|
557 | ! |
---|
558 | ! --- West --- ! |
---|
559 | IF((nbondi == -1).OR.(nbondi == 2)) THEN |
---|
560 | indx = 1+nbghostcells |
---|
561 | DO jj = 1, jpj |
---|
562 | DO ji = 2, indx |
---|
563 | ssh(ji,jj,Krhs_a) = hbdy_w(ji-1,jj) |
---|
564 | ENDDO |
---|
565 | ENDDO |
---|
566 | ENDIF |
---|
567 | ! |
---|
568 | ! --- East --- ! |
---|
569 | IF((nbondi == 1).OR.(nbondi == 2)) THEN |
---|
570 | indx = nlci-nbghostcells |
---|
571 | DO jj = 1, jpj |
---|
572 | DO ji = indx, nlci-1 |
---|
573 | ssh(ji,jj,Krhs_a) = hbdy_e(ji-indx+1,jj) |
---|
574 | ENDDO |
---|
575 | ENDDO |
---|
576 | ENDIF |
---|
577 | ! |
---|
578 | ! --- South --- ! |
---|
579 | IF((nbondj == -1).OR.(nbondj == 2)) THEN |
---|
580 | indy = 1+nbghostcells |
---|
581 | DO jj = 2, indy |
---|
582 | DO ji = 1, jpi |
---|
583 | ssh(ji,jj,Krhs_a) = hbdy_s(ji,jj-1) |
---|
584 | ENDDO |
---|
585 | ENDDO |
---|
586 | ENDIF |
---|
587 | ! |
---|
588 | ! --- North --- ! |
---|
589 | IF((nbondj == 1).OR.(nbondj == 2)) THEN |
---|
590 | indy = nlcj-nbghostcells |
---|
591 | DO jj = indy, nlcj-1 |
---|
592 | DO ji = 1, jpi |
---|
593 | ssh(ji,jj,Krhs_a) = hbdy_n(ji,jj-indy+1) |
---|
594 | ENDDO |
---|
595 | ENDDO |
---|
596 | ENDIF |
---|
597 | ! |
---|
598 | END SUBROUTINE Agrif_ssh |
---|
599 | |
---|
600 | |
---|
601 | SUBROUTINE Agrif_ssh_ts( jn ) |
---|
602 | !!---------------------------------------------------------------------- |
---|
603 | !! *** ROUTINE Agrif_ssh_ts *** |
---|
604 | !!---------------------------------------------------------------------- |
---|
605 | INTEGER, INTENT(in) :: jn |
---|
606 | !! |
---|
607 | INTEGER :: ji, jj, indx, indy |
---|
608 | !!---------------------------------------------------------------------- |
---|
609 | !! clem ghost (starting at i,j=1 is important I think otherwise you introduce a grad(ssh)/=0 at point 2) |
---|
610 | ! |
---|
611 | IF( Agrif_Root() ) RETURN |
---|
612 | ! |
---|
613 | ! --- West --- ! |
---|
614 | IF((nbondi == -1).OR.(nbondi == 2)) THEN |
---|
615 | indx = 1+nbghostcells |
---|
616 | DO jj = 1, jpj |
---|
617 | DO ji = 2, indx |
---|
618 | ssha_e(ji,jj) = hbdy_w(ji-1,jj) |
---|
619 | ENDDO |
---|
620 | ENDDO |
---|
621 | ENDIF |
---|
622 | ! |
---|
623 | ! --- East --- ! |
---|
624 | IF((nbondi == 1).OR.(nbondi == 2)) THEN |
---|
625 | indx = nlci-nbghostcells |
---|
626 | DO jj = 1, jpj |
---|
627 | DO ji = indx, nlci-1 |
---|
628 | ssha_e(ji,jj) = hbdy_e(ji-indx+1,jj) |
---|
629 | ENDDO |
---|
630 | ENDDO |
---|
631 | ENDIF |
---|
632 | ! |
---|
633 | ! --- South --- ! |
---|
634 | IF((nbondj == -1).OR.(nbondj == 2)) THEN |
---|
635 | indy = 1+nbghostcells |
---|
636 | DO jj = 2, indy |
---|
637 | DO ji = 1, jpi |
---|
638 | ssha_e(ji,jj) = hbdy_s(ji,jj-1) |
---|
639 | ENDDO |
---|
640 | ENDDO |
---|
641 | ENDIF |
---|
642 | ! |
---|
643 | ! --- North --- ! |
---|
644 | IF((nbondj == 1).OR.(nbondj == 2)) THEN |
---|
645 | indy = nlcj-nbghostcells |
---|
646 | DO jj = indy, nlcj-1 |
---|
647 | DO ji = 1, jpi |
---|
648 | ssha_e(ji,jj) = hbdy_n(ji,jj-indy+1) |
---|
649 | ENDDO |
---|
650 | ENDDO |
---|
651 | ENDIF |
---|
652 | ! |
---|
653 | END SUBROUTINE Agrif_ssh_ts |
---|
654 | |
---|
655 | SUBROUTINE Agrif_avm |
---|
656 | !!---------------------------------------------------------------------- |
---|
657 | !! *** ROUTINE Agrif_avm *** |
---|
658 | !!---------------------------------------------------------------------- |
---|
659 | REAL(wp) :: zalpha |
---|
660 | !!---------------------------------------------------------------------- |
---|
661 | ! |
---|
662 | IF( Agrif_Root() ) RETURN |
---|
663 | ! |
---|
664 | zalpha = 1._wp ! JC: proper time interpolation impossible |
---|
665 | ! => use last available value from parent |
---|
666 | ! |
---|
667 | Agrif_SpecialValue = 0.e0 |
---|
668 | Agrif_UseSpecialValue = .TRUE. |
---|
669 | ! |
---|
670 | CALL Agrif_Bc_variable( avm_id, calledweight=zalpha, procname=interpavm ) |
---|
671 | ! |
---|
672 | Agrif_UseSpecialValue = .FALSE. |
---|
673 | ! |
---|
674 | END SUBROUTINE Agrif_avm |
---|
675 | |
---|
676 | |
---|
677 | SUBROUTINE interptsn( ptab, i1, i2, j1, j2, k1, k2, n1, n2, before, nb, ndir ) |
---|
678 | !!---------------------------------------------------------------------- |
---|
679 | !! *** ROUTINE interptsn *** |
---|
680 | !!---------------------------------------------------------------------- |
---|
681 | REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2,n1:n2), INTENT(inout) :: ptab |
---|
682 | INTEGER , INTENT(in ) :: i1, i2, j1, j2, k1, k2, n1, n2 |
---|
683 | LOGICAL , INTENT(in ) :: before |
---|
684 | INTEGER , INTENT(in ) :: nb , ndir |
---|
685 | ! |
---|
686 | INTEGER :: ji, jj, jk, jn, iref, jref, ibdy, jbdy ! dummy loop indices |
---|
687 | INTEGER :: imin, imax, jmin, jmax, N_in, N_out |
---|
688 | REAL(wp) :: zrho, z1, z2, z3, z4, z5, z6, z7 |
---|
689 | LOGICAL :: western_side, eastern_side,northern_side,southern_side |
---|
690 | ! vertical interpolation: |
---|
691 | REAL(wp), DIMENSION(i1:i2,j1:j2,1:jpk,n1:n2) :: ptab_child |
---|
692 | REAL(wp), DIMENSION(k1:k2,n1:n2-1) :: tabin |
---|
693 | REAL(wp), DIMENSION(k1:k2) :: h_in |
---|
694 | REAL(wp), DIMENSION(1:jpk) :: h_out |
---|
695 | REAL(wp) :: h_diff |
---|
696 | |
---|
697 | IF( before ) THEN |
---|
698 | DO jn = 1,jpts |
---|
699 | DO jk=k1,k2 |
---|
700 | DO jj=j1,j2 |
---|
701 | DO ji=i1,i2 |
---|
702 | ptab(ji,jj,jk,jn) = ts(ji,jj,jk,jn,Kmm_a) |
---|
703 | END DO |
---|
704 | END DO |
---|
705 | END DO |
---|
706 | END DO |
---|
707 | |
---|
708 | # if defined key_vertical |
---|
709 | DO jk=k1,k2 |
---|
710 | DO jj=j1,j2 |
---|
711 | DO ji=i1,i2 |
---|
712 | ptab(ji,jj,jk,jpts+1) = tmask(ji,jj,jk) * e3t(ji,jj,jk,Kmm_a) |
---|
713 | END DO |
---|
714 | END DO |
---|
715 | END DO |
---|
716 | # endif |
---|
717 | ELSE |
---|
718 | |
---|
719 | western_side = (nb == 1).AND.(ndir == 1) ; eastern_side = (nb == 1).AND.(ndir == 2) |
---|
720 | southern_side = (nb == 2).AND.(ndir == 1) ; northern_side = (nb == 2).AND.(ndir == 2) |
---|
721 | |
---|
722 | # if defined key_vertical |
---|
723 | DO jj=j1,j2 |
---|
724 | DO ji=i1,i2 |
---|
725 | iref = ji |
---|
726 | jref = jj |
---|
727 | if(western_side) iref=MAX(2 ,ji) |
---|
728 | if(eastern_side) iref=MIN(nlci-1,ji) |
---|
729 | if(southern_side) jref=MAX(2 ,jj) |
---|
730 | if(northern_side) jref=MIN(nlcj-1,jj) |
---|
731 | N_in = 0 |
---|
732 | DO jk=k1,k2 !k2 = jpk of parent grid |
---|
733 | IF (ptab(ji,jj,jk,n2) == 0) EXIT |
---|
734 | N_in = N_in + 1 |
---|
735 | tabin(jk,:) = ptab(ji,jj,jk,n1:n2-1) |
---|
736 | h_in(N_in) = ptab(ji,jj,jk,n2) |
---|
737 | END DO |
---|
738 | N_out = 0 |
---|
739 | DO jk=1,jpk ! jpk of child grid |
---|
740 | IF (tmask(iref,jref,jk) == 0) EXIT |
---|
741 | N_out = N_out + 1 |
---|
742 | h_out(jk) = e3t(iref,jref,jk,Kmm_a) |
---|
743 | ENDDO |
---|
744 | IF (N_in > 0) THEN |
---|
745 | DO jn=1,jpts |
---|
746 | call reconstructandremap(tabin(1:N_in,jn),h_in,ptab_child(ji,jj,1:N_out,jn),h_out,N_in,N_out) |
---|
747 | ENDDO |
---|
748 | ENDIF |
---|
749 | ENDDO |
---|
750 | ENDDO |
---|
751 | # else |
---|
752 | ptab_child(i1:i2,j1:j2,1:jpk,1:jpts) = ptab(i1:i2,j1:j2,1:jpk,1:jpts) |
---|
753 | # endif |
---|
754 | ! |
---|
755 | DO jn=1, jpts |
---|
756 | ts(i1:i2,j1:j2,1:jpk,jn,Krhs_a)=ptab_child(i1:i2,j1:j2,1:jpk,jn)*tmask(i1:i2,j1:j2,1:jpk) |
---|
757 | END DO |
---|
758 | |
---|
759 | IF ( .NOT.lk_agrif_clp ) THEN |
---|
760 | ! |
---|
761 | imin = i1 ; imax = i2 |
---|
762 | jmin = j1 ; jmax = j2 |
---|
763 | ! |
---|
764 | ! Remove CORNERS |
---|
765 | IF((nbondj == -1).OR.(nbondj == 2)) jmin = 2 + nbghostcells |
---|
766 | IF((nbondj == +1).OR.(nbondj == 2)) jmax = nlcj - nbghostcells - 1 |
---|
767 | IF((nbondi == -1).OR.(nbondi == 2)) imin = 2 + nbghostcells |
---|
768 | IF((nbondi == +1).OR.(nbondi == 2)) imax = nlci - nbghostcells - 1 |
---|
769 | ! |
---|
770 | IF( eastern_side ) THEN |
---|
771 | zrho = Agrif_Rhox() |
---|
772 | z1 = ( zrho - 1._wp ) * 0.5_wp |
---|
773 | z3 = ( zrho - 1._wp ) / ( zrho + 1._wp ) |
---|
774 | z6 = 2._wp * ( zrho - 1._wp ) / ( zrho + 1._wp ) |
---|
775 | z7 = - ( zrho - 1._wp ) / ( zrho + 3._wp ) |
---|
776 | z2 = 1._wp - z1 ; z4 = 1._wp - z3 ; z5 = 1._wp - z6 - z7 |
---|
777 | ! |
---|
778 | ibdy = nlci-nbghostcells |
---|
779 | DO jn = 1, jpts |
---|
780 | ts(ibdy+1,jmin:jmax,1:jpkm1,jn,Krhs_a) = z1 * ptab_child(ibdy+1,jmin:jmax,1:jpkm1,jn) & |
---|
781 | & + z2 * ptab_child(ibdy ,jmin:jmax,1:jpkm1,jn) |
---|
782 | DO jk = 1, jpkm1 |
---|
783 | DO jj = jmin,jmax |
---|
784 | IF( umask(ibdy-1,jj,jk) == 0._wp ) THEN |
---|
785 | ts(ibdy,jj,jk,jn,Krhs_a) = ts(ibdy+1,jj,jk,jn,Krhs_a) * tmask(ibdy,jj,jk) |
---|
786 | ELSE |
---|
787 | ts(ibdy,jj,jk,jn,Krhs_a) = ( z4 * ts(ibdy+1,jj,jk,jn,Krhs_a) & |
---|
788 | & + z3 * ts(ibdy-1,jj,jk,jn,Krhs_a) & |
---|
789 | & ) * tmask(ibdy ,jj,jk) |
---|
790 | IF( uu(ibdy-1,jj,jk,Kmm_a) > 0._wp ) THEN |
---|
791 | ts(ibdy,jj,jk,jn,Krhs_a) = ( z6 * ts(ibdy-1,jj,jk,jn,Krhs_a) & |
---|
792 | & + z5 * ts(ibdy+1,jj,jk,jn,Krhs_a) & |
---|
793 | & + z7 * ts(ibdy-2,jj,jk,jn,Krhs_a) & |
---|
794 | & ) * tmask(ibdy ,jj,jk) |
---|
795 | ENDIF |
---|
796 | ENDIF |
---|
797 | END DO |
---|
798 | END DO |
---|
799 | ! Restore ghost points: |
---|
800 | ts(ibdy+1,jmin:jmax,1:jpkm1,jn,Krhs_a) = ptab_child(ibdy+1,jmin:jmax,1:jpkm1,jn) & |
---|
801 | & * tmask(ibdy+1,jmin:jmax,1:jpkm1) |
---|
802 | END DO |
---|
803 | ENDIF |
---|
804 | ! |
---|
805 | IF( northern_side ) THEN |
---|
806 | zrho = Agrif_Rhoy() |
---|
807 | z1 = ( zrho - 1._wp ) * 0.5_wp |
---|
808 | z3 = ( zrho - 1._wp ) / ( zrho + 1._wp ) |
---|
809 | z6 = 2._wp * ( zrho - 1._wp ) / ( zrho + 1._wp ) |
---|
810 | z7 = - ( zrho - 1._wp ) / ( zrho + 3._wp ) |
---|
811 | z2 = 1._wp - z1 ; z4 = 1._wp - z3 ; z5 = 1._wp - z6 - z7 |
---|
812 | ! |
---|
813 | jbdy = nlcj-nbghostcells |
---|
814 | DO jn = 1, jpts |
---|
815 | ts(imin:imax,jbdy+1,1:jpkm1,jn,Krhs_a) = z1 * ptab_child(imin:imax,jbdy+1,1:jpkm1,jn) & |
---|
816 | & + z2 * ptab_child(imin:imax,jbdy ,1:jpkm1,jn) |
---|
817 | DO jk = 1, jpkm1 |
---|
818 | DO ji = imin,imax |
---|
819 | IF( vmask(ji,jbdy-1,jk) == 0._wp ) THEN |
---|
820 | ts(ji,jbdy,jk,jn,Krhs_a) = ts(ji,jbdy+1,jk,jn,Krhs_a) * tmask(ji,jbdy,jk) |
---|
821 | ELSE |
---|
822 | ts(ji,jbdy,jk,jn,Krhs_a)=( z4 * ts(ji,jbdy+1,jk,jn,Krhs_a) & |
---|
823 | & + z3 * ts(ji,jbdy-1,jk,jn,Krhs_a) & |
---|
824 | & ) * tmask(ji,jbdy ,jk) |
---|
825 | IF (vv(ji,jbdy-1,jk,Kmm_a) > 0._wp ) THEN |
---|
826 | ts(ji,jbdy,jk,jn,Krhs_a)=( z6 * ts(ji,jbdy-1,jk,jn,Krhs_a) & |
---|
827 | & + z5 * ts(ji,jbdy+1,jk,jn,Krhs_a) & |
---|
828 | & + z7 * ts(ji,jbdy-2,jk,jn,Krhs_a) & |
---|
829 | & ) * tmask(ji,jbdy ,jk) |
---|
830 | ENDIF |
---|
831 | ENDIF |
---|
832 | END DO |
---|
833 | END DO |
---|
834 | ! Restore ghost points: |
---|
835 | ts(imin:imax,jbdy+1,1:jpkm1,jn,Krhs_a) = ptab_child(imin:imax,jbdy+1,1:jpkm1,jn) & |
---|
836 | & * tmask(imin:imax,jbdy+1,1:jpkm1) |
---|
837 | END DO |
---|
838 | ENDIF |
---|
839 | ! |
---|
840 | IF( western_side ) THEN |
---|
841 | zrho = Agrif_Rhox() |
---|
842 | z1 = ( zrho - 1._wp ) * 0.5_wp |
---|
843 | z3 = ( zrho - 1._wp ) / ( zrho + 1._wp ) |
---|
844 | z6 = 2._wp * ( zrho - 1._wp ) / ( zrho + 1._wp ) |
---|
845 | z7 = - ( zrho - 1._wp ) / ( zrho + 3._wp ) |
---|
846 | z2 = 1._wp - z1 ; z4 = 1._wp - z3 ; z5 = 1._wp - z6 - z7 |
---|
847 | ! |
---|
848 | ibdy = 1+nbghostcells |
---|
849 | DO jn = 1, jpts |
---|
850 | ts(ibdy-1,jmin:jmax,1:jpkm1,jn,Krhs_a) = z1 * ptab_child(ibdy-1,jmin:jmax,1:jpkm1,jn) & |
---|
851 | & + z2 * ptab_child(ibdy ,jmin:jmax,1:jpkm1,jn) |
---|
852 | DO jk = 1, jpkm1 |
---|
853 | DO jj = jmin,jmax |
---|
854 | IF( umask(ibdy,jj,jk) == 0._wp ) THEN |
---|
855 | ts(ibdy,jj,jk,jn,Krhs_a) = ts(ibdy-1,jj,jk,jn,Krhs_a) * tmask(ibdy,jj,jk) |
---|
856 | ELSE |
---|
857 | ts(ibdy,jj,jk,jn,Krhs_a) = ( z4 * ts(ibdy-1,jj,jk,jn,Krhs_a) & |
---|
858 | & + z3 * ts(ibdy+1,jj,jk,jn,Krhs_a) & |
---|
859 | & ) * tmask(ibdy ,jj,jk) |
---|
860 | IF( uu(ibdy,jj,jk,Kmm_a) < 0._wp ) THEN |
---|
861 | ts(ibdy,jj,jk,jn,Krhs_a) = ( z6 * ts(ibdy+1,jj,jk,jn,Krhs_a) & |
---|
862 | & + z5 * ts(ibdy-1,jj,jk,jn,Krhs_a) & |
---|
863 | & + z7 * ts(ibdy+2,jj,jk,jn,Krhs_a) & |
---|
864 | & ) * tmask(ibdy,jj,jk) |
---|
865 | ENDIF |
---|
866 | ENDIF |
---|
867 | END DO |
---|
868 | END DO |
---|
869 | ! Restore ghost points: |
---|
870 | ts(ibdy-1,jmin:jmax,1:jpkm1,jn,Krhs_a) = ptab_child(ibdy-1,jmin:jmax,1:jpkm1,jn) & |
---|
871 | & * tmask(ibdy-1,jmin:jmax,1:jpkm1) |
---|
872 | END DO |
---|
873 | ENDIF |
---|
874 | ! |
---|
875 | IF( southern_side ) THEN |
---|
876 | zrho = Agrif_Rhoy() |
---|
877 | z1 = ( zrho - 1._wp ) * 0.5_wp |
---|
878 | z3 = ( zrho - 1._wp ) / ( zrho + 1._wp ) |
---|
879 | z6 = 2._wp * ( zrho - 1._wp ) / ( zrho + 1._wp ) |
---|
880 | z7 = - ( zrho - 1._wp ) / ( zrho + 3._wp ) |
---|
881 | z2 = 1._wp - z1 ; z4 = 1._wp - z3 ; z5 = 1._wp - z6 - z7 |
---|
882 | ! |
---|
883 | jbdy=1+nbghostcells |
---|
884 | DO jn = 1, jpts |
---|
885 | ts(imin:imax,jbdy-1,1:jpkm1,jn,Krhs_a) = z1 * ptab_child(imin:imax,jbdy-1,1:jpkm1,jn) & |
---|
886 | & + z2 * ptab_child(imin:imax,jbdy ,1:jpkm1,jn) |
---|
887 | DO jk = 1, jpkm1 |
---|
888 | DO ji = imin,imax |
---|
889 | IF( vmask(ji,jbdy,jk) == 0._wp ) THEN |
---|
890 | ts(ji,jbdy,jk,jn,Krhs_a) = ts(ji,jbdy-1,jk,jn,Krhs_a) * tmask(ji,jbdy,jk) |
---|
891 | ELSE |
---|
892 | ts(ji,jbdy,jk,jn,Krhs_a) = ( z4 * ts(ji,jbdy-1,jk,jn,Krhs_a) & |
---|
893 | & + z3 * ts(ji,jbdy+1,jk,jn,Krhs_a) & |
---|
894 | & ) * tmask(ji,jbdy ,jk) |
---|
895 | IF( vv(ji,jbdy,jk,Kmm_a) < 0._wp ) THEN |
---|
896 | ts(ji,jbdy,jk,jn,Krhs_a) = ( z6 * ts(ji,jbdy+1,jk,jn,Krhs_a) & |
---|
897 | & + z5 * ts(ji,jbdy-1,jk,jn,Krhs_a) & |
---|
898 | & + z7 * ts(ji,jbdy+2,jk,jn,Krhs_a) & |
---|
899 | & ) * tmask(ji,jbdy ,jk) |
---|
900 | ENDIF |
---|
901 | ENDIF |
---|
902 | END DO |
---|
903 | END DO |
---|
904 | ! Restore ghost points: |
---|
905 | ts(imin:imax,jbdy-1,1:jpkm1,jn,Krhs_a) = ptab_child(imin:imax,jbdy-1,1:jpkm1,jn) & |
---|
906 | & * tmask(imin:imax,jbdy-1,1:jpkm1) |
---|
907 | END DO |
---|
908 | ENDIF |
---|
909 | ! |
---|
910 | ENDIF |
---|
911 | ENDIF |
---|
912 | ! |
---|
913 | END SUBROUTINE interptsn |
---|
914 | |
---|
915 | SUBROUTINE interpsshn( ptab, i1, i2, j1, j2, before, nb, ndir ) |
---|
916 | !!---------------------------------------------------------------------- |
---|
917 | !! *** ROUTINE interpsshn *** |
---|
918 | !!---------------------------------------------------------------------- |
---|
919 | INTEGER , INTENT(in ) :: i1, i2, j1, j2 |
---|
920 | REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab |
---|
921 | LOGICAL , INTENT(in ) :: before |
---|
922 | INTEGER , INTENT(in ) :: nb , ndir |
---|
923 | ! |
---|
924 | LOGICAL :: western_side, eastern_side,northern_side,southern_side |
---|
925 | !!---------------------------------------------------------------------- |
---|
926 | ! |
---|
927 | IF( before) THEN |
---|
928 | ptab(i1:i2,j1:j2) = ssh(i1:i2,j1:j2,Kmm_a) |
---|
929 | ELSE |
---|
930 | western_side = (nb == 1).AND.(ndir == 1) |
---|
931 | eastern_side = (nb == 1).AND.(ndir == 2) |
---|
932 | southern_side = (nb == 2).AND.(ndir == 1) |
---|
933 | northern_side = (nb == 2).AND.(ndir == 2) |
---|
934 | !! clem ghost |
---|
935 | IF(western_side) hbdy_w(1:nbghostcells,j1:j2) = ptab(i1:i2,j1:j2) * tmask(i1:i2,j1:j2,1) |
---|
936 | IF(eastern_side) hbdy_e(1:nbghostcells,j1:j2) = ptab(i1:i2,j1:j2) * tmask(i1:i2,j1:j2,1) |
---|
937 | IF(southern_side) hbdy_s(i1:i2,1:nbghostcells) = ptab(i1:i2,j1:j2) * tmask(i1:i2,j1:j2,1) |
---|
938 | IF(northern_side) hbdy_n(i1:i2,1:nbghostcells) = ptab(i1:i2,j1:j2) * tmask(i1:i2,j1:j2,1) |
---|
939 | ENDIF |
---|
940 | ! |
---|
941 | END SUBROUTINE interpsshn |
---|
942 | |
---|
943 | SUBROUTINE interpun( ptab, i1, i2, j1, j2, k1, k2, m1, m2, before, nb, ndir ) |
---|
944 | !!---------------------------------------------------------------------- |
---|
945 | !! *** ROUTINE interpun *** |
---|
946 | !!--------------------------------------------- |
---|
947 | !! |
---|
948 | INTEGER, INTENT(in) :: i1,i2,j1,j2,k1,k2,m1,m2 |
---|
949 | REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2,m1:m2), INTENT(inout) :: ptab |
---|
950 | LOGICAL, INTENT(in) :: before |
---|
951 | INTEGER, INTENT(in) :: nb , ndir |
---|
952 | !! |
---|
953 | INTEGER :: ji,jj,jk |
---|
954 | REAL(wp) :: zrhoy |
---|
955 | ! vertical interpolation: |
---|
956 | REAL(wp), DIMENSION(k1:k2) :: tabin, h_in |
---|
957 | REAL(wp), DIMENSION(1:jpk) :: h_out |
---|
958 | INTEGER :: N_in, N_out, iref |
---|
959 | REAL(wp) :: h_diff |
---|
960 | LOGICAL :: western_side, eastern_side |
---|
961 | !!--------------------------------------------- |
---|
962 | ! |
---|
963 | IF (before) THEN |
---|
964 | DO jk=1,jpk |
---|
965 | DO jj=j1,j2 |
---|
966 | DO ji=i1,i2 |
---|
967 | ptab(ji,jj,jk,1) = ( e2u(ji,jj) * e3u(ji,jj,jk,Kmm_a) & |
---|
968 | & * uu(ji,jj,jk,Kmm_a) * umask(ji,jj,jk) ) |
---|
969 | # if defined key_vertical |
---|
970 | ptab(ji,jj,jk,2) = (umask(ji,jj,jk) * e2u(ji,jj) * e3u(ji,jj,jk,Kmm_a)) |
---|
971 | # endif |
---|
972 | END DO |
---|
973 | END DO |
---|
974 | END DO |
---|
975 | ELSE |
---|
976 | zrhoy = Agrif_rhoy() |
---|
977 | # if defined key_vertical |
---|
978 | ! VERTICAL REFINEMENT BEGIN |
---|
979 | western_side = (nb == 1).AND.(ndir == 1) |
---|
980 | eastern_side = (nb == 1).AND.(ndir == 2) |
---|
981 | |
---|
982 | DO ji=i1,i2 |
---|
983 | iref = ji |
---|
984 | IF (western_side) iref = MAX(2,ji) |
---|
985 | IF (eastern_side) iref = MIN(nlci-2,ji) |
---|
986 | DO jj=j1,j2 |
---|
987 | N_in = 0 |
---|
988 | DO jk=k1,k2 |
---|
989 | IF (ptab(ji,jj,jk,2) == 0) EXIT |
---|
990 | N_in = N_in + 1 |
---|
991 | tabin(jk) = ptab(ji,jj,jk,1)/ptab(ji,jj,jk,2) |
---|
992 | h_in(N_in) = ptab(ji,jj,jk,2)/(e2u(ji,jj)*zrhoy) |
---|
993 | ENDDO |
---|
994 | |
---|
995 | IF (N_in == 0) THEN |
---|
996 | uu(ji,jj,:,Krhs_a) = 0._wp |
---|
997 | CYCLE |
---|
998 | ENDIF |
---|
999 | |
---|
1000 | N_out = 0 |
---|
1001 | DO jk=1,jpk |
---|
1002 | if (umask(iref,jj,jk) == 0) EXIT |
---|
1003 | N_out = N_out + 1 |
---|
1004 | h_out(N_out) = e3u(iref,jj,jk,Krhs_a) |
---|
1005 | ENDDO |
---|
1006 | |
---|
1007 | IF (N_out == 0) THEN |
---|
1008 | uu(ji,jj,:,Krhs_a) = 0._wp |
---|
1009 | CYCLE |
---|
1010 | ENDIF |
---|
1011 | |
---|
1012 | IF (N_in * N_out > 0) THEN |
---|
1013 | h_diff = SUM( h_out(1:N_out) ) - SUM( h_in(1:N_in) ) |
---|
1014 | ! Should be able to remove the next IF/ELSEIF statement once scale factors are dealt with properly |
---|
1015 | if (h_diff < -1.e4) then |
---|
1016 | print *,'CHECK YOUR BATHY ...', h_diff, SUM( h_out(1:N_out) ), SUM( h_in(1:N_in) ) |
---|
1017 | ! stop |
---|
1018 | endif |
---|
1019 | ENDIF |
---|
1020 | call reconstructandremap( tabin(1:N_in) , h_in(1:N_in), uu(ji,jj,1:N_out,Krhs_a), & |
---|
1021 | & h_out(1:N_out), N_in , N_out ) |
---|
1022 | ENDDO |
---|
1023 | ENDDO |
---|
1024 | |
---|
1025 | # else |
---|
1026 | DO jk = 1, jpkm1 |
---|
1027 | DO jj=j1,j2 |
---|
1028 | uu(i1:i2,jj,jk,Krhs_a) = ptab(i1:i2,jj,jk,1) / ( zrhoy * e2u(i1:i2,jj) * e3u(i1:i2,jj,jk,Krhs_a) ) |
---|
1029 | END DO |
---|
1030 | END DO |
---|
1031 | # endif |
---|
1032 | |
---|
1033 | ENDIF |
---|
1034 | ! |
---|
1035 | END SUBROUTINE interpun |
---|
1036 | |
---|
1037 | SUBROUTINE interpvn( ptab, i1, i2, j1, j2, k1, k2, m1, m2, before, nb, ndir ) |
---|
1038 | !!---------------------------------------------------------------------- |
---|
1039 | !! *** ROUTINE interpvn *** |
---|
1040 | !!---------------------------------------------------------------------- |
---|
1041 | ! |
---|
1042 | INTEGER, INTENT(in) :: i1,i2,j1,j2,k1,k2,m1,m2 |
---|
1043 | REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2,m1:m2), INTENT(inout) :: ptab |
---|
1044 | LOGICAL, INTENT(in) :: before |
---|
1045 | INTEGER, INTENT(in) :: nb , ndir |
---|
1046 | ! |
---|
1047 | INTEGER :: ji,jj,jk |
---|
1048 | REAL(wp) :: zrhox |
---|
1049 | ! vertical interpolation: |
---|
1050 | REAL(wp), DIMENSION(k1:k2) :: tabin, h_in |
---|
1051 | REAL(wp), DIMENSION(1:jpk) :: h_out |
---|
1052 | INTEGER :: N_in, N_out, jref |
---|
1053 | REAL(wp) :: h_diff |
---|
1054 | LOGICAL :: northern_side,southern_side |
---|
1055 | !!--------------------------------------------- |
---|
1056 | ! |
---|
1057 | IF (before) THEN |
---|
1058 | DO jk=k1,k2 |
---|
1059 | DO jj=j1,j2 |
---|
1060 | DO ji=i1,i2 |
---|
1061 | ptab(ji,jj,jk,1) = ( e1v(ji,jj) * e3v(ji,jj,jk,Kmm_a) & |
---|
1062 | & * vv(ji,jj,jk,Kmm_a) * vmask(ji,jj,jk) ) |
---|
1063 | # if defined key_vertical |
---|
1064 | ptab(ji,jj,jk,2) = vmask(ji,jj,jk) * e1v(ji,jj) * e3v(ji,jj,jk,Kmm_a) |
---|
1065 | # endif |
---|
1066 | END DO |
---|
1067 | END DO |
---|
1068 | END DO |
---|
1069 | ELSE |
---|
1070 | zrhox = Agrif_rhox() |
---|
1071 | # if defined key_vertical |
---|
1072 | |
---|
1073 | southern_side = (nb == 2).AND.(ndir == 1) |
---|
1074 | northern_side = (nb == 2).AND.(ndir == 2) |
---|
1075 | |
---|
1076 | DO jj=j1,j2 |
---|
1077 | jref = jj |
---|
1078 | IF (southern_side) jref = MAX(2,jj) |
---|
1079 | IF (northern_side) jref = MIN(nlcj-2,jj) |
---|
1080 | DO ji=i1,i2 |
---|
1081 | N_in = 0 |
---|
1082 | DO jk=k1,k2 |
---|
1083 | if (ptab(ji,jj,jk,2) == 0) EXIT |
---|
1084 | N_in = N_in + 1 |
---|
1085 | tabin(jk) = ptab(ji,jj,jk,1)/ptab(ji,jj,jk,2) |
---|
1086 | h_in(N_in) = ptab(ji,jj,jk,2)/(e1v(ji,jj)*zrhox) |
---|
1087 | END DO |
---|
1088 | IF (N_in == 0) THEN |
---|
1089 | vv(ji,jj,:,Krhs_a) = 0._wp |
---|
1090 | CYCLE |
---|
1091 | ENDIF |
---|
1092 | |
---|
1093 | N_out = 0 |
---|
1094 | DO jk=1,jpk |
---|
1095 | if (vmask(ji,jref,jk) == 0) EXIT |
---|
1096 | N_out = N_out + 1 |
---|
1097 | h_out(N_out) = e3v(ji,jref,jk,Krhs_a) |
---|
1098 | END DO |
---|
1099 | IF (N_out == 0) THEN |
---|
1100 | vv(ji,jj,:,Krhs_a) = 0._wp |
---|
1101 | CYCLE |
---|
1102 | ENDIF |
---|
1103 | call reconstructandremap( tabin(1:N_in) , h_in(1:N_in), vv(ji,jj,1:N_out,Krhs_a), & |
---|
1104 | & h_out(1:N_out), N_in , N_out ) |
---|
1105 | END DO |
---|
1106 | END DO |
---|
1107 | # else |
---|
1108 | DO jk = 1, jpkm1 |
---|
1109 | vv(i1:i2,j1:j2,jk,Krhs_a) = ptab(i1:i2,j1:j2,jk,1) / ( zrhox * e1v(i1:i2,j1:j2) * e3v(i1:i2,j1:j2,jk,Krhs_a) ) |
---|
1110 | END DO |
---|
1111 | # endif |
---|
1112 | ENDIF |
---|
1113 | ! |
---|
1114 | END SUBROUTINE interpvn |
---|
1115 | |
---|
1116 | SUBROUTINE interpunb( ptab, i1, i2, j1, j2, before, nb, ndir ) |
---|
1117 | !!---------------------------------------------------------------------- |
---|
1118 | !! *** ROUTINE interpunb *** |
---|
1119 | !!---------------------------------------------------------------------- |
---|
1120 | INTEGER , INTENT(in ) :: i1, i2, j1, j2 |
---|
1121 | REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab |
---|
1122 | LOGICAL , INTENT(in ) :: before |
---|
1123 | INTEGER , INTENT(in ) :: nb , ndir |
---|
1124 | ! |
---|
1125 | INTEGER :: ji, jj |
---|
1126 | REAL(wp) :: zrhoy, zrhot, zt0, zt1, ztcoeff |
---|
1127 | LOGICAL :: western_side, eastern_side,northern_side,southern_side |
---|
1128 | !!---------------------------------------------------------------------- |
---|
1129 | ! |
---|
1130 | IF( before ) THEN |
---|
1131 | ptab(i1:i2,j1:j2) = e2u(i1:i2,j1:j2) * hu_n(i1:i2,j1:j2) * uu_b(i1:i2,j1:j2,Kmm_a) |
---|
1132 | ELSE |
---|
1133 | western_side = (nb == 1).AND.(ndir == 1) |
---|
1134 | eastern_side = (nb == 1).AND.(ndir == 2) |
---|
1135 | southern_side = (nb == 2).AND.(ndir == 1) |
---|
1136 | northern_side = (nb == 2).AND.(ndir == 2) |
---|
1137 | zrhoy = Agrif_Rhoy() |
---|
1138 | zrhot = Agrif_rhot() |
---|
1139 | ! Time indexes bounds for integration |
---|
1140 | zt0 = REAL(Agrif_NbStepint() , wp) / zrhot |
---|
1141 | zt1 = REAL(Agrif_NbStepint()+1, wp) / zrhot |
---|
1142 | ! Polynomial interpolation coefficients: |
---|
1143 | IF( bdy_tinterp == 1 ) THEN |
---|
1144 | ztcoeff = zrhot * ( zt1**2._wp * ( zt1 - 1._wp) & |
---|
1145 | & - zt0**2._wp * ( zt0 - 1._wp) ) |
---|
1146 | ELSEIF( bdy_tinterp == 2 ) THEN |
---|
1147 | ztcoeff = zrhot * ( zt1 * ( zt1 - 1._wp)**2._wp & |
---|
1148 | & - zt0 * ( zt0 - 1._wp)**2._wp ) |
---|
1149 | ELSE |
---|
1150 | ztcoeff = 1 |
---|
1151 | ENDIF |
---|
1152 | ! |
---|
1153 | IF(western_side) ubdy_w(1:nbghostcells,j1:j2) = ubdy_w(1:nbghostcells,j1:j2) + ztcoeff * ptab(i1:i2,j1:j2) |
---|
1154 | IF(eastern_side) ubdy_e(1:nbghostcells,j1:j2) = ubdy_e(1:nbghostcells,j1:j2) + ztcoeff * ptab(i1:i2,j1:j2) |
---|
1155 | IF(southern_side) ubdy_s(i1:i2,1:nbghostcells) = ubdy_s(i1:i2,1:nbghostcells) + ztcoeff * ptab(i1:i2,j1:j2) |
---|
1156 | IF(northern_side) ubdy_n(i1:i2,1:nbghostcells) = ubdy_n(i1:i2,1:nbghostcells) + ztcoeff * ptab(i1:i2,j1:j2) |
---|
1157 | ! |
---|
1158 | IF( bdy_tinterp == 0 .OR. bdy_tinterp == 2) THEN |
---|
1159 | IF(western_side) ubdy_w(1:nbghostcells,j1:j2) = ubdy_w(1:nbghostcells,j1:j2) / (zrhoy*e2u(i1:i2,j1:j2)) * umask(i1:i2,j1:j2,1) |
---|
1160 | IF(eastern_side) ubdy_e(1:nbghostcells,j1:j2) = ubdy_e(1:nbghostcells,j1:j2) / (zrhoy*e2u(i1:i2,j1:j2)) * umask(i1:i2,j1:j2,1) |
---|
1161 | IF(southern_side) ubdy_s(i1:i2,1:nbghostcells) = ubdy_s(i1:i2,1:nbghostcells) / (zrhoy*e2u(i1:i2,j1:j2)) * umask(i1:i2,j1:j2,1) |
---|
1162 | IF(northern_side) ubdy_n(i1:i2,1:nbghostcells) = ubdy_n(i1:i2,1:nbghostcells) / (zrhoy*e2u(i1:i2,j1:j2)) * umask(i1:i2,j1:j2,1) |
---|
1163 | ENDIF |
---|
1164 | ENDIF |
---|
1165 | ! |
---|
1166 | END SUBROUTINE interpunb |
---|
1167 | |
---|
1168 | |
---|
1169 | SUBROUTINE interpvnb( ptab, i1, i2, j1, j2, before, nb, ndir ) |
---|
1170 | !!---------------------------------------------------------------------- |
---|
1171 | !! *** ROUTINE interpvnb *** |
---|
1172 | !!---------------------------------------------------------------------- |
---|
1173 | INTEGER , INTENT(in ) :: i1, i2, j1, j2 |
---|
1174 | REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab |
---|
1175 | LOGICAL , INTENT(in ) :: before |
---|
1176 | INTEGER , INTENT(in ) :: nb , ndir |
---|
1177 | ! |
---|
1178 | INTEGER :: ji,jj |
---|
1179 | REAL(wp) :: zrhox, zrhot, zt0, zt1, ztcoeff |
---|
1180 | LOGICAL :: western_side, eastern_side,northern_side,southern_side |
---|
1181 | !!---------------------------------------------------------------------- |
---|
1182 | ! |
---|
1183 | IF( before ) THEN |
---|
1184 | ptab(i1:i2,j1:j2) = e1v(i1:i2,j1:j2) * hv_n(i1:i2,j1:j2) * vv_b(i1:i2,j1:j2,Kmm_a) |
---|
1185 | ELSE |
---|
1186 | western_side = (nb == 1).AND.(ndir == 1) |
---|
1187 | eastern_side = (nb == 1).AND.(ndir == 2) |
---|
1188 | southern_side = (nb == 2).AND.(ndir == 1) |
---|
1189 | northern_side = (nb == 2).AND.(ndir == 2) |
---|
1190 | zrhox = Agrif_Rhox() |
---|
1191 | zrhot = Agrif_rhot() |
---|
1192 | ! Time indexes bounds for integration |
---|
1193 | zt0 = REAL(Agrif_NbStepint() , wp) / zrhot |
---|
1194 | zt1 = REAL(Agrif_NbStepint()+1, wp) / zrhot |
---|
1195 | IF( bdy_tinterp == 1 ) THEN |
---|
1196 | ztcoeff = zrhot * ( zt1**2._wp * ( zt1 - 1._wp) & |
---|
1197 | & - zt0**2._wp * ( zt0 - 1._wp) ) |
---|
1198 | ELSEIF( bdy_tinterp == 2 ) THEN |
---|
1199 | ztcoeff = zrhot * ( zt1 * ( zt1 - 1._wp)**2._wp & |
---|
1200 | & - zt0 * ( zt0 - 1._wp)**2._wp ) |
---|
1201 | ELSE |
---|
1202 | ztcoeff = 1 |
---|
1203 | ENDIF |
---|
1204 | !! clem ghost |
---|
1205 | IF(western_side) vbdy_w(1:nbghostcells,j1:j2) = vbdy_w(1:nbghostcells,j1:j2) + ztcoeff * ptab(i1:i2,j1:j2) |
---|
1206 | IF(eastern_side) vbdy_e(1:nbghostcells,j1:j2) = vbdy_e(1:nbghostcells,j1:j2) + ztcoeff * ptab(i1:i2,j1:j2) |
---|
1207 | IF(southern_side) vbdy_s(i1:i2,1:nbghostcells) = vbdy_s(i1:i2,1:nbghostcells) + ztcoeff * ptab(i1:i2,j1:j2) |
---|
1208 | IF(northern_side) vbdy_n(i1:i2,1:nbghostcells) = vbdy_n(i1:i2,1:nbghostcells) + ztcoeff * ptab(i1:i2,j1:j2) |
---|
1209 | ! |
---|
1210 | IF( bdy_tinterp == 0 .OR. bdy_tinterp == 2) THEN |
---|
1211 | IF(western_side) vbdy_w(1:nbghostcells,j1:j2) = vbdy_w(1:nbghostcells,j1:j2) / (zrhox*e1v(i1:i2,j1:j2)) * vmask(i1:i2,j1:j2,1) |
---|
1212 | IF(eastern_side) vbdy_e(1:nbghostcells,j1:j2) = vbdy_e(1:nbghostcells,j1:j2) / (zrhox*e1v(i1:i2,j1:j2)) * vmask(i1:i2,j1:j2,1) |
---|
1213 | IF(southern_side) vbdy_s(i1:i2,1:nbghostcells) = vbdy_s(i1:i2,1:nbghostcells) / (zrhox*e1v(i1:i2,j1:j2)) * vmask(i1:i2,j1:j2,1) |
---|
1214 | IF(northern_side) vbdy_n(i1:i2,1:nbghostcells) = vbdy_n(i1:i2,1:nbghostcells) / (zrhox*e1v(i1:i2,j1:j2)) * vmask(i1:i2,j1:j2,1) |
---|
1215 | ENDIF |
---|
1216 | ENDIF |
---|
1217 | ! |
---|
1218 | END SUBROUTINE interpvnb |
---|
1219 | |
---|
1220 | |
---|
1221 | SUBROUTINE interpub2b( ptab, i1, i2, j1, j2, before, nb, ndir ) |
---|
1222 | !!---------------------------------------------------------------------- |
---|
1223 | !! *** ROUTINE interpub2b *** |
---|
1224 | !!---------------------------------------------------------------------- |
---|
1225 | INTEGER , INTENT(in ) :: i1, i2, j1, j2 |
---|
1226 | REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab |
---|
1227 | LOGICAL , INTENT(in ) :: before |
---|
1228 | INTEGER , INTENT(in ) :: nb , ndir |
---|
1229 | ! |
---|
1230 | INTEGER :: ji,jj |
---|
1231 | REAL(wp) :: zrhot, zt0, zt1,zat |
---|
1232 | LOGICAL :: western_side, eastern_side,northern_side,southern_side |
---|
1233 | !!---------------------------------------------------------------------- |
---|
1234 | IF( before ) THEN |
---|
1235 | IF ( ln_bt_fw ) THEN |
---|
1236 | ptab(i1:i2,j1:j2) = e2u(i1:i2,j1:j2) * ub2_b(i1:i2,j1:j2) |
---|
1237 | ELSE |
---|
1238 | ptab(i1:i2,j1:j2) = e2u(i1:i2,j1:j2) * un_adv(i1:i2,j1:j2) |
---|
1239 | ENDIF |
---|
1240 | ELSE |
---|
1241 | western_side = (nb == 1).AND.(ndir == 1) |
---|
1242 | eastern_side = (nb == 1).AND.(ndir == 2) |
---|
1243 | southern_side = (nb == 2).AND.(ndir == 1) |
---|
1244 | northern_side = (nb == 2).AND.(ndir == 2) |
---|
1245 | zrhot = Agrif_rhot() |
---|
1246 | ! Time indexes bounds for integration |
---|
1247 | zt0 = REAL(Agrif_NbStepint() , wp) / zrhot |
---|
1248 | zt1 = REAL(Agrif_NbStepint()+1, wp) / zrhot |
---|
1249 | ! Polynomial interpolation coefficients: |
---|
1250 | zat = zrhot * ( zt1**2._wp * (-2._wp*zt1 + 3._wp) & |
---|
1251 | & - zt0**2._wp * (-2._wp*zt0 + 3._wp) ) |
---|
1252 | !! clem ghost |
---|
1253 | IF(western_side ) ubdy_w(1:nbghostcells,j1:j2) = zat * ptab(i1:i2,j1:j2) |
---|
1254 | IF(eastern_side ) ubdy_e(1:nbghostcells,j1:j2) = zat * ptab(i1:i2,j1:j2) |
---|
1255 | IF(southern_side) ubdy_s(i1:i2,1:nbghostcells) = zat * ptab(i1:i2,j1:j2) |
---|
1256 | IF(northern_side) ubdy_n(i1:i2,1:nbghostcells) = zat * ptab(i1:i2,j1:j2) |
---|
1257 | ENDIF |
---|
1258 | ! |
---|
1259 | END SUBROUTINE interpub2b |
---|
1260 | |
---|
1261 | |
---|
1262 | SUBROUTINE interpvb2b( ptab, i1, i2, j1, j2, before, nb, ndir ) |
---|
1263 | !!---------------------------------------------------------------------- |
---|
1264 | !! *** ROUTINE interpvb2b *** |
---|
1265 | !!---------------------------------------------------------------------- |
---|
1266 | INTEGER , INTENT(in ) :: i1, i2, j1, j2 |
---|
1267 | REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab |
---|
1268 | LOGICAL , INTENT(in ) :: before |
---|
1269 | INTEGER , INTENT(in ) :: nb , ndir |
---|
1270 | ! |
---|
1271 | INTEGER :: ji,jj |
---|
1272 | REAL(wp) :: zrhot, zt0, zt1,zat |
---|
1273 | LOGICAL :: western_side, eastern_side,northern_side,southern_side |
---|
1274 | !!---------------------------------------------------------------------- |
---|
1275 | ! |
---|
1276 | IF( before ) THEN |
---|
1277 | IF ( ln_bt_fw ) THEN |
---|
1278 | ptab(i1:i2,j1:j2) = e1v(i1:i2,j1:j2) * vb2_b(i1:i2,j1:j2) |
---|
1279 | ELSE |
---|
1280 | ptab(i1:i2,j1:j2) = e1v(i1:i2,j1:j2) * vn_adv(i1:i2,j1:j2) |
---|
1281 | ENDIF |
---|
1282 | ELSE |
---|
1283 | western_side = (nb == 1).AND.(ndir == 1) |
---|
1284 | eastern_side = (nb == 1).AND.(ndir == 2) |
---|
1285 | southern_side = (nb == 2).AND.(ndir == 1) |
---|
1286 | northern_side = (nb == 2).AND.(ndir == 2) |
---|
1287 | zrhot = Agrif_rhot() |
---|
1288 | ! Time indexes bounds for integration |
---|
1289 | zt0 = REAL(Agrif_NbStepint() , wp) / zrhot |
---|
1290 | zt1 = REAL(Agrif_NbStepint()+1, wp) / zrhot |
---|
1291 | ! Polynomial interpolation coefficients: |
---|
1292 | zat = zrhot * ( zt1**2._wp * (-2._wp*zt1 + 3._wp) & |
---|
1293 | & - zt0**2._wp * (-2._wp*zt0 + 3._wp) ) |
---|
1294 | ! |
---|
1295 | IF(western_side ) vbdy_w(1:nbghostcells,j1:j2) = zat * ptab(i1:i2,j1:j2) |
---|
1296 | IF(eastern_side ) vbdy_e(1:nbghostcells,j1:j2) = zat * ptab(i1:i2,j1:j2) |
---|
1297 | IF(southern_side) vbdy_s(i1:i2,1:nbghostcells) = zat * ptab(i1:i2,j1:j2) |
---|
1298 | IF(northern_side) vbdy_n(i1:i2,1:nbghostcells) = zat * ptab(i1:i2,j1:j2) |
---|
1299 | ENDIF |
---|
1300 | ! |
---|
1301 | END SUBROUTINE interpvb2b |
---|
1302 | |
---|
1303 | |
---|
1304 | SUBROUTINE interpe3t( ptab, i1, i2, j1, j2, k1, k2, before, nb, ndir ) |
---|
1305 | !!---------------------------------------------------------------------- |
---|
1306 | !! *** ROUTINE interpe3t *** |
---|
1307 | !!---------------------------------------------------------------------- |
---|
1308 | INTEGER , INTENT(in ) :: i1, i2, j1, j2, k1, k2 |
---|
1309 | REAL(wp),DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: ptab |
---|
1310 | LOGICAL , INTENT(in ) :: before |
---|
1311 | INTEGER , INTENT(in ) :: nb , ndir |
---|
1312 | ! |
---|
1313 | INTEGER :: ji, jj, jk |
---|
1314 | LOGICAL :: western_side, eastern_side, northern_side, southern_side |
---|
1315 | !!---------------------------------------------------------------------- |
---|
1316 | ! |
---|
1317 | IF( before ) THEN |
---|
1318 | ptab(i1:i2,j1:j2,k1:k2) = tmask(i1:i2,j1:j2,k1:k2) * e3t_0(i1:i2,j1:j2,k1:k2) |
---|
1319 | ELSE |
---|
1320 | western_side = (nb == 1).AND.(ndir == 1) |
---|
1321 | eastern_side = (nb == 1).AND.(ndir == 2) |
---|
1322 | southern_side = (nb == 2).AND.(ndir == 1) |
---|
1323 | northern_side = (nb == 2).AND.(ndir == 2) |
---|
1324 | ! |
---|
1325 | DO jk = k1, k2 |
---|
1326 | DO jj = j1, j2 |
---|
1327 | DO ji = i1, i2 |
---|
1328 | ! |
---|
1329 | IF( ABS( ptab(ji,jj,jk) - tmask(ji,jj,jk) * e3t_0(ji,jj,jk) ) > 1.D-2) THEN |
---|
1330 | IF (western_side.AND.(ptab(i1+nbghostcells-1,jj,jk)>0._wp)) THEN |
---|
1331 | WRITE(numout,*) 'ERROR bathymetry merge at the western border ji,jj,jk ', ji+nimpp-1,jj+njmpp-1,jk |
---|
1332 | WRITE(numout,*) ptab(ji,jj,jk), e3t_0(ji,jj,jk) |
---|
1333 | kindic_agr = kindic_agr + 1 |
---|
1334 | ELSEIF (eastern_side.AND.(ptab(i2-nbghostcells+1,jj,jk)>0._wp)) THEN |
---|
1335 | WRITE(numout,*) 'ERROR bathymetry merge at the eastern border ji,jj,jk ', ji+nimpp-1,jj+njmpp-1,jk |
---|
1336 | WRITE(numout,*) ptab(ji,jj,jk), e3t_0(ji,jj,jk) |
---|
1337 | kindic_agr = kindic_agr + 1 |
---|
1338 | ELSEIF (southern_side.AND.(ptab(ji,j1+nbghostcells-1,jk)>0._wp)) THEN |
---|
1339 | WRITE(numout,*) 'ERROR bathymetry merge at the southern border ji,jj,jk', ji+nimpp-1,jj+njmpp-1,jk |
---|
1340 | WRITE(numout,*) ptab(ji,jj,jk), e3t_0(ji,jj,jk) |
---|
1341 | kindic_agr = kindic_agr + 1 |
---|
1342 | ELSEIF (northern_side.AND.(ptab(ji,j2-nbghostcells+1,jk)>0._wp)) THEN |
---|
1343 | WRITE(numout,*) 'ERROR bathymetry merge at the northen border ji,jj,jk', ji+nimpp-1,jj+njmpp-1,jk |
---|
1344 | WRITE(numout,*) ptab(ji,jj,jk), e3t_0(ji,jj,jk) |
---|
1345 | kindic_agr = kindic_agr + 1 |
---|
1346 | ENDIF |
---|
1347 | ENDIF |
---|
1348 | END DO |
---|
1349 | END DO |
---|
1350 | END DO |
---|
1351 | ! |
---|
1352 | ENDIF |
---|
1353 | ! |
---|
1354 | END SUBROUTINE interpe3t |
---|
1355 | |
---|
1356 | |
---|
1357 | SUBROUTINE interpumsk( ptab, i1, i2, j1, j2, k1, k2, before, nb, ndir ) |
---|
1358 | !!---------------------------------------------------------------------- |
---|
1359 | !! *** ROUTINE interpumsk *** |
---|
1360 | !!---------------------------------------------------------------------- |
---|
1361 | INTEGER , INTENT(in ) :: i1, i2, j1, j2, k1, k2 |
---|
1362 | REAL(wp),DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: ptab |
---|
1363 | LOGICAL , INTENT(in ) :: before |
---|
1364 | INTEGER , INTENT(in ) :: nb , ndir |
---|
1365 | ! |
---|
1366 | INTEGER :: ji, jj, jk |
---|
1367 | LOGICAL :: western_side, eastern_side |
---|
1368 | !!---------------------------------------------------------------------- |
---|
1369 | ! |
---|
1370 | IF( before ) THEN |
---|
1371 | ptab(i1:i2,j1:j2,k1:k2) = umask(i1:i2,j1:j2,k1:k2) |
---|
1372 | ELSE |
---|
1373 | western_side = (nb == 1).AND.(ndir == 1) |
---|
1374 | eastern_side = (nb == 1).AND.(ndir == 2) |
---|
1375 | DO jk = k1, k2 |
---|
1376 | DO jj = j1, j2 |
---|
1377 | DO ji = i1, i2 |
---|
1378 | ! Velocity mask at boundary edge points: |
---|
1379 | IF (ABS(ptab(ji,jj,jk) - umask(ji,jj,jk)) > 1.D-2) THEN |
---|
1380 | IF (western_side) THEN |
---|
1381 | WRITE(numout,*) 'ERROR with umask at the western border ji,jj,jk ', ji+nimpp-1,jj+njmpp-1,jk |
---|
1382 | WRITE(numout,*) ' masks: parent, child ', ptab(ji,jj,jk), umask(ji,jj,jk) |
---|
1383 | kindic_agr = kindic_agr + 1 |
---|
1384 | ELSEIF (eastern_side) THEN |
---|
1385 | WRITE(numout,*) 'ERROR with umask at the eastern border ji,jj,jk ', ji+nimpp-1,jj+njmpp-1,jk |
---|
1386 | WRITE(numout,*) ' masks: parent, child ', ptab(ji,jj,jk), umask(ji,jj,jk) |
---|
1387 | kindic_agr = kindic_agr + 1 |
---|
1388 | ENDIF |
---|
1389 | ENDIF |
---|
1390 | END DO |
---|
1391 | END DO |
---|
1392 | END DO |
---|
1393 | ! |
---|
1394 | ENDIF |
---|
1395 | ! |
---|
1396 | END SUBROUTINE interpumsk |
---|
1397 | |
---|
1398 | |
---|
1399 | SUBROUTINE interpvmsk( ptab, i1, i2, j1, j2, k1, k2, before, nb, ndir ) |
---|
1400 | !!---------------------------------------------------------------------- |
---|
1401 | !! *** ROUTINE interpvmsk *** |
---|
1402 | !!---------------------------------------------------------------------- |
---|
1403 | INTEGER , INTENT(in ) :: i1,i2,j1,j2,k1,k2 |
---|
1404 | REAL(wp),DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: ptab |
---|
1405 | LOGICAL , INTENT(in ) :: before |
---|
1406 | INTEGER , INTENT(in ) :: nb , ndir |
---|
1407 | ! |
---|
1408 | INTEGER :: ji, jj, jk |
---|
1409 | LOGICAL :: northern_side, southern_side |
---|
1410 | !!---------------------------------------------------------------------- |
---|
1411 | ! |
---|
1412 | IF( before ) THEN |
---|
1413 | ptab(i1:i2,j1:j2,k1:k2) = vmask(i1:i2,j1:j2,k1:k2) |
---|
1414 | ELSE |
---|
1415 | southern_side = (nb == 2).AND.(ndir == 1) |
---|
1416 | northern_side = (nb == 2).AND.(ndir == 2) |
---|
1417 | DO jk = k1, k2 |
---|
1418 | DO jj = j1, j2 |
---|
1419 | DO ji = i1, i2 |
---|
1420 | ! Velocity mask at boundary edge points: |
---|
1421 | IF (ABS(ptab(ji,jj,jk) - vmask(ji,jj,jk)) > 1.D-2) THEN |
---|
1422 | IF (southern_side) THEN |
---|
1423 | WRITE(numout,*) 'ERROR with vmask at the southern border ji,jj,jk ', ji+nimpp-1,jj+njmpp-1,jk |
---|
1424 | WRITE(numout,*) ' masks: parent, child ', ptab(ji,jj,jk), vmask(ji,jj,jk) |
---|
1425 | kindic_agr = kindic_agr + 1 |
---|
1426 | ELSEIF (northern_side) THEN |
---|
1427 | WRITE(numout,*) 'ERROR with vmask at the northern border ji,jj,jk ', ji+nimpp-1,jj+njmpp-1,jk |
---|
1428 | WRITE(numout,*) ' masks: parent, child ', ptab(ji,jj,jk), vmask(ji,jj,jk) |
---|
1429 | kindic_agr = kindic_agr + 1 |
---|
1430 | ENDIF |
---|
1431 | ENDIF |
---|
1432 | END DO |
---|
1433 | END DO |
---|
1434 | END DO |
---|
1435 | ! |
---|
1436 | ENDIF |
---|
1437 | ! |
---|
1438 | END SUBROUTINE interpvmsk |
---|
1439 | |
---|
1440 | |
---|
1441 | SUBROUTINE interpavm( ptab, i1, i2, j1, j2, k1, k2, m1, m2, before ) |
---|
1442 | !!---------------------------------------------------------------------- |
---|
1443 | !! *** ROUTINE interavm *** |
---|
1444 | !!---------------------------------------------------------------------- |
---|
1445 | INTEGER , INTENT(in ) :: i1, i2, j1, j2, k1, k2, m1, m2 |
---|
1446 | REAL(wp),DIMENSION(i1:i2,j1:j2,k1:k2,m1:m2), INTENT(inout) :: ptab |
---|
1447 | LOGICAL , INTENT(in ) :: before |
---|
1448 | REAL(wp), DIMENSION(k1:k2) :: tabin, h_in |
---|
1449 | REAL(wp), DIMENSION(1:jpk) :: h_out |
---|
1450 | INTEGER :: N_in, N_out, ji, jj, jk |
---|
1451 | !!---------------------------------------------------------------------- |
---|
1452 | ! |
---|
1453 | IF (before) THEN |
---|
1454 | DO jk=k1,k2 |
---|
1455 | DO jj=j1,j2 |
---|
1456 | DO ji=i1,i2 |
---|
1457 | ptab(ji,jj,jk,1) = avm_k(ji,jj,jk) |
---|
1458 | END DO |
---|
1459 | END DO |
---|
1460 | END DO |
---|
1461 | #ifdef key_vertical |
---|
1462 | DO jk=k1,k2 |
---|
1463 | DO jj=j1,j2 |
---|
1464 | DO ji=i1,i2 |
---|
1465 | ptab(ji,jj,jk,2) = wmask(ji,jj,jk) * e3w(ji,jj,jk,Kmm_a) |
---|
1466 | END DO |
---|
1467 | END DO |
---|
1468 | END DO |
---|
1469 | #endif |
---|
1470 | ELSE |
---|
1471 | #ifdef key_vertical |
---|
1472 | avm_k(i1:i2,j1:j2,1:jpk) = 0. |
---|
1473 | DO jj=j1,j2 |
---|
1474 | DO ji=i1,i2 |
---|
1475 | N_in = 0 |
---|
1476 | DO jk=k1,k2 !k2 = jpk of parent grid |
---|
1477 | IF (ptab(ji,jj,jk,2) == 0) EXIT |
---|
1478 | N_in = N_in + 1 |
---|
1479 | tabin(jk) = ptab(ji,jj,jk,1) |
---|
1480 | h_in(N_in) = ptab(ji,jj,jk,2) |
---|
1481 | END DO |
---|
1482 | N_out = 0 |
---|
1483 | DO jk=1,jpk ! jpk of child grid |
---|
1484 | IF (wmask(ji,jj,jk) == 0) EXIT |
---|
1485 | N_out = N_out + 1 |
---|
1486 | h_out(jk) = e3t(ji,jj,jk,Kmm_a) |
---|
1487 | ENDDO |
---|
1488 | IF (N_in > 0) THEN |
---|
1489 | CALL reconstructandremap(tabin(1:N_in),h_in,avm_k(ji,jj,1:N_out),h_out,N_in,N_out) |
---|
1490 | ENDIF |
---|
1491 | ENDDO |
---|
1492 | ENDDO |
---|
1493 | #else |
---|
1494 | avm_k(i1:i2,j1:j2,k1:k2) = ptab (i1:i2,j1:j2,k1:k2,1) |
---|
1495 | #endif |
---|
1496 | ENDIF |
---|
1497 | ! |
---|
1498 | END SUBROUTINE interpavm |
---|
1499 | |
---|
1500 | #else |
---|
1501 | !!---------------------------------------------------------------------- |
---|
1502 | !! Empty module no AGRIF zoom |
---|
1503 | !!---------------------------------------------------------------------- |
---|
1504 | CONTAINS |
---|
1505 | SUBROUTINE Agrif_OCE_Interp_empty |
---|
1506 | WRITE(*,*) 'agrif_oce_interp : You should not have seen this print! error?' |
---|
1507 | END SUBROUTINE Agrif_OCE_Interp_empty |
---|
1508 | #endif |
---|
1509 | |
---|
1510 | !!====================================================================== |
---|
1511 | END MODULE agrif_oce_interp |
---|