1 | \documentclass[../main/NEMO_manual]{subfiles} |
---|
2 | |
---|
3 | \begin{document} |
---|
4 | % ================================================================ |
---|
5 | % Chapter Appendix B : Diffusive Operators |
---|
6 | % ================================================================ |
---|
7 | \chapter{Appendix B : Diffusive Operators} |
---|
8 | \label{apdx:B} |
---|
9 | |
---|
10 | \minitoc |
---|
11 | |
---|
12 | \newpage |
---|
13 | |
---|
14 | % ================================================================ |
---|
15 | % Horizontal/Vertical 2nd Order Tracer Diffusive Operators |
---|
16 | % ================================================================ |
---|
17 | \section{Horizontal/Vertical $2^{nd}$ order tracer diffusive operators} |
---|
18 | \label{sec:B_1} |
---|
19 | |
---|
20 | \subsubsection*{In z-coordinates} |
---|
21 | |
---|
22 | In $z$-coordinates, the horizontal/vertical second order tracer diffusion operator is given by: |
---|
23 | \begin{align} |
---|
24 | \label{apdx:B1} |
---|
25 | &D^T = \frac{1}{e_1 \, e_2} \left[ |
---|
26 | \left. \frac{\partial}{\partial i} \left( \frac{e_2}{e_1}A^{lT} \;\left. \frac{\partial T}{\partial i} \right|_z \right) \right|_z \right. |
---|
27 | \left. |
---|
28 | + \left. \frac{\partial}{\partial j} \left( \frac{e_1}{e_2}A^{lT} \;\left. \frac{\partial T}{\partial j} \right|_z \right) \right|_z \right] |
---|
29 | + \frac{\partial }{\partial z}\left( {A^{vT} \;\frac{\partial T}{\partial z}} \right) |
---|
30 | \end{align} |
---|
31 | |
---|
32 | \subsubsection*{In generalized vertical coordinates} |
---|
33 | |
---|
34 | In $s$-coordinates, we defined the slopes of $s$-surfaces, $\sigma_1$ and $\sigma_2$ by \autoref{apdx:A_s_slope} and |
---|
35 | the vertical/horizontal ratio of diffusion coefficient by $\epsilon = A^{vT} / A^{lT}$. |
---|
36 | The diffusion operator is given by: |
---|
37 | |
---|
38 | \begin{equation} |
---|
39 | \label{apdx:B2} |
---|
40 | D^T = \left. \nabla \right|_s \cdot |
---|
41 | \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T \right] \\ |
---|
42 | \;\;\text{where} \;\Re =\left( {{ |
---|
43 | \begin{array}{*{20}c} |
---|
44 | 1 \hfill & 0 \hfill & {-\sigma_1 } \hfill \\ |
---|
45 | 0 \hfill & 1 \hfill & {-\sigma_2 } \hfill \\ |
---|
46 | {-\sigma_1 } \hfill & {-\sigma_2 } \hfill & {\varepsilon +\sigma_1 |
---|
47 | ^2+\sigma_2 ^2} \hfill \\ |
---|
48 | \end{array} |
---|
49 | }} \right) |
---|
50 | \end{equation} |
---|
51 | or in expanded form: |
---|
52 | \begin{align*} |
---|
53 | { |
---|
54 | \begin{array}{*{20}l} |
---|
55 | D^T=& \frac{1}{e_1\,e_2\,e_3 }\;\left[ {\ \ \ \ e_2\,e_3\,A^{lT} \;\left. |
---|
56 | {\frac{\partial }{\partial i}\left( {\frac{1}{e_1}\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma_1 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ |
---|
57 | &\qquad \quad \ \ \ +e_1\,e_3\,A^{lT} \;\left. {\frac{\partial }{\partial j}\left( {\frac{1}{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s -\frac{\sigma_2 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s \\ |
---|
58 | &\qquad \quad \ \ \ + e_1\,e_2\,A^{lT} \;\frac{\partial }{\partial s}\left( {-\frac{\sigma_1 }{e_1 }\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma_2 }{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s } \right. |
---|
59 | \left. {\left. {+\left( {\varepsilon +\sigma_1^2+\sigma_2 ^2} \right)\;\frac{1}{e_3 }\;\frac{\partial T}{\partial s}} \right)\;\;} \right] |
---|
60 | \end{array} |
---|
61 | } |
---|
62 | \end{align*} |
---|
63 | |
---|
64 | Equation \autoref{apdx:B2} is obtained from \autoref{apdx:B1} without any additional assumption. |
---|
65 | Indeed, for the special case $k=z$ and thus $e_3 =1$, |
---|
66 | we introduce an arbitrary vertical coordinate $s = s (i,j,z)$ as in \autoref{apdx:A} and |
---|
67 | use \autoref{apdx:A_s_slope} and \autoref{apdx:A_s_chain_rule}. |
---|
68 | Since no cross horizontal derivative $\partial _i \partial _j $ appears in \autoref{apdx:B1}, |
---|
69 | the ($i$,$z$) and ($j$,$z$) planes are independent. |
---|
70 | The derivation can then be demonstrated for the ($i$,$z$)~$\to$~($j$,$s$) transformation without |
---|
71 | any loss of generality: |
---|
72 | |
---|
73 | \begin{align*} |
---|
74 | { |
---|
75 | \begin{array}{*{20}l} |
---|
76 | D^T&=\frac{1}{e_1\,e_2} \left. {\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_z } \right)} \right|_z |
---|
77 | +\frac{\partial }{\partial z}\left( {A^{vT}\;\frac{\partial T}{\partial z}} \right) \\ \\ |
---|
78 | % |
---|
79 | &=\frac{1}{e_1\,e_2 }\left[ {\left. {\;\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left( {\left. {\frac{\partial T}{\partial i}} \right|_s |
---|
80 | -\frac{e_1\,\sigma_1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right)} \right|_s } \right. \\ |
---|
81 | & \qquad \qquad \left. { -\frac{e_1\,\sigma_1 }{e_3 }\frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma_1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right|_s } \right)\;} \right] |
---|
82 | \shoveright{ +\frac{1}{e_3 }\frac{\partial }{\partial s}\left[ {\frac{A^{vT}}{e_3 }\;\frac{\partial T}{\partial s}} \right]} \qquad \qquad \qquad \\ \\ |
---|
83 | % |
---|
84 | &=\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s -\left. {\frac{e_2 }{e_1}A^{lT}\;\frac{\partial e_3 }{\partial i}} \right|_s \left. {\frac{\partial T}{\partial i}} \right|_s } \right. \\ |
---|
85 | & \qquad \qquad \quad \left. {-e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ |
---|
86 | & \qquad \qquad \quad \shoveright{ -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {-\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)\;\,\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\quad} \right] }\\ |
---|
87 | \end{array} |
---|
88 | } \\ |
---|
89 | % |
---|
90 | { |
---|
91 | \begin{array}{*{20}l} |
---|
92 | \intertext{Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma_1 }{\partial s}$, it becomes:} |
---|
93 | % |
---|
94 | & =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. -\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ |
---|
95 | & \qquad \qquad \quad -e_2 A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ |
---|
96 | & \qquad \qquad \quad\shoveright{ \left. { +e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial z}} \right)\;\;\;} \right] }\\ |
---|
97 | \\ |
---|
98 | &=\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-\frac{\partial }{\partial i}\left( {e_2 \,\sigma_1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ |
---|
99 | & \qquad \qquad \quad \left. {+\frac{e_2 \,\sigma_1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}} \right|_s -e_2 A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\ |
---|
100 | & \qquad \qquad \quad-e_2 \,\sigma_1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma_1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\ |
---|
101 | & \qquad \qquad \quad\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma_1 } \right)}{\partial s} \left( {\frac{\sigma_1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} |
---|
102 | \end{array} |
---|
103 | } \\ |
---|
104 | { |
---|
105 | \begin{array}{*{20}l} |
---|
106 | % |
---|
107 | \intertext{using the same remark as just above, it becomes:} |
---|
108 | % |
---|
109 | &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\ |
---|
110 | & \qquad \qquad \quad+\frac{e_1 \,e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma_1 }{\partial s} - \frac {\sigma_1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma_1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\ |
---|
111 | & \qquad \qquad \quad-e_2 \left( {A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma_1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma_1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ |
---|
112 | & \qquad \qquad \quad\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma_1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] } |
---|
113 | \end{array} |
---|
114 | } \\ |
---|
115 | { |
---|
116 | \begin{array}{*{20}l} |
---|
117 | % |
---|
118 | \intertext{Since the horizontal scale factors do not depend on the vertical coordinate, |
---|
119 | the last term of the first line and the first term of the last line cancel, while |
---|
120 | the second line reduces to a single vertical derivative, so it becomes:} |
---|
121 | % |
---|
122 | & =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ |
---|
123 | & \qquad \qquad \quad \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma_1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma_1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\ |
---|
124 | % |
---|
125 | \intertext{in other words, the horizontal/vertical Laplacian operator in the ($i$,$s$) plane takes the following form:} |
---|
126 | \end{array} |
---|
127 | } \\ |
---|
128 | % |
---|
129 | {\frac{1}{e_1\,e_2\,e_3}} |
---|
130 | \left( {{ |
---|
131 | \begin{array}{*{30}c} |
---|
132 | {\left. {\frac{\partial \left( {e_2 e_3 \bullet } \right)}{\partial i}} \right|_s } \hfill \\ |
---|
133 | {\frac{\partial \left( {e_1 e_2 \bullet } \right)}{\partial s}} \hfill \\ |
---|
134 | \end{array}}} |
---|
135 | \right) |
---|
136 | \cdot \left[ {A^{lT} |
---|
137 | \left( {{ |
---|
138 | \begin{array}{*{30}c} |
---|
139 | {1} \hfill & {-\sigma_1 } \hfill \\ |
---|
140 | {-\sigma_1} \hfill & {\varepsilon + \sigma_1^2} \hfill \\ |
---|
141 | \end{array} |
---|
142 | }} \right) |
---|
143 | \cdot |
---|
144 | \left( {{ |
---|
145 | \begin{array}{*{30}c} |
---|
146 | {\frac{1}{e_1 }\;\left. {\frac{\partial \bullet }{\partial i}} \right|_s } \hfill \\ |
---|
147 | {\frac{1}{e_3 }\;\frac{\partial \bullet }{\partial s}} \hfill \\ |
---|
148 | \end{array} |
---|
149 | }} \right) \left( T \right)} \right] |
---|
150 | \end{align*} |
---|
151 | %\addtocounter{equation}{-2} |
---|
152 | |
---|
153 | % ================================================================ |
---|
154 | % Isopycnal/Vertical 2nd Order Tracer Diffusive Operators |
---|
155 | % ================================================================ |
---|
156 | \section{Iso/Diapycnal $2^{nd}$ order tracer diffusive operators} |
---|
157 | \label{sec:B_2} |
---|
158 | |
---|
159 | \subsubsection*{In z-coordinates} |
---|
160 | |
---|
161 | The iso/diapycnal diffusive tensor $\textbf {A}_{\textbf I}$ expressed in |
---|
162 | the ($i$,$j$,$k$) curvilinear coordinate system in which |
---|
163 | the equations of the ocean circulation model are formulated, |
---|
164 | takes the following form \citep{redi_JPO82}: |
---|
165 | |
---|
166 | \begin{equation} |
---|
167 | \label{apdx:B3} |
---|
168 | \textbf {A}_{\textbf I} = \frac{A^{lT}}{\left( {1+a_1 ^2+a_2 ^2} \right)} |
---|
169 | \left[ {{ |
---|
170 | \begin{array}{*{20}c} |
---|
171 | {1+a_1 ^2} \hfill & {-a_1 a_2 } \hfill & {-a_1 } \hfill \\ |
---|
172 | {-a_1 a_2 } \hfill & {1+a_2 ^2} \hfill & {-a_2 } \hfill \\ |
---|
173 | {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\ |
---|
174 | \end{array} |
---|
175 | }} \right] |
---|
176 | \end{equation} |
---|
177 | where ($a_1$, $a_2$) are the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions, relative to geopotentials: |
---|
178 | \[ |
---|
179 | a_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1} |
---|
180 | \qquad , \qquad |
---|
181 | a_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}} |
---|
182 | \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1} |
---|
183 | \] |
---|
184 | |
---|
185 | In practice, isopycnal slopes are generally less than $10^{-2}$ in the ocean, |
---|
186 | so $\textbf {A}_{\textbf I}$ can be simplified appreciably \citep{cox_OM87}: |
---|
187 | \begin{subequations} |
---|
188 | \label{apdx:B4} |
---|
189 | \begin{equation} |
---|
190 | \label{apdx:B4a} |
---|
191 | {\textbf{A}_{\textbf{I}}} \approx A^{lT}\;\Re\;\text{where} \;\Re = |
---|
192 | \left[ {{ |
---|
193 | \begin{array}{*{20}c} |
---|
194 | 1 \hfill & 0 \hfill & {-a_1 } \hfill \\ |
---|
195 | 0 \hfill & 1 \hfill & {-a_2 } \hfill \\ |
---|
196 | {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\ |
---|
197 | \end{array} |
---|
198 | }} \right], |
---|
199 | \end{equation} |
---|
200 | and the iso/dianeutral diffusive operator in $z$-coordinates is then |
---|
201 | \begin{equation} |
---|
202 | \label{apdx:B4b} |
---|
203 | D^T = \left. \nabla \right|_z \cdot |
---|
204 | \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_z T \right]. \\ |
---|
205 | \end{equation} |
---|
206 | \end{subequations} |
---|
207 | |
---|
208 | Physically, the full tensor \autoref{apdx:B3} represents strong isoneutral diffusion on a plane parallel to |
---|
209 | the isoneutral surface and weak dianeutral diffusion perpendicular to this plane. |
---|
210 | However, |
---|
211 | the approximate `weak-slope' tensor \autoref{apdx:B4a} represents strong diffusion along the isoneutral surface, |
---|
212 | with weak \emph{vertical} diffusion -- the principal axes of the tensor are no longer orthogonal. |
---|
213 | This simplification also decouples the ($i$,$z$) and ($j$,$z$) planes of the tensor. |
---|
214 | The weak-slope operator therefore takes the same form, \autoref{apdx:B4}, as \autoref{apdx:B2}, |
---|
215 | the diffusion operator for geopotential diffusion written in non-orthogonal $i,j,s$-coordinates. |
---|
216 | Written out explicitly, |
---|
217 | |
---|
218 | \begin{multline} |
---|
219 | \label{apdx:B_ldfiso} |
---|
220 | D^T=\frac{1}{e_1 e_2 }\left\{ |
---|
221 | {\;\frac{\partial }{\partial i}\left[ {A_h \left( {\frac{e_2}{e_1}\frac{\partial T}{\partial i}-a_1 \frac{e_2}{e_3}\frac{\partial T}{\partial k}} \right)} \right]} |
---|
222 | {+\frac{\partial}{\partial j}\left[ {A_h \left( {\frac{e_1}{e_2}\frac{\partial T}{\partial j}-a_2 \frac{e_1}{e_3}\frac{\partial T}{\partial k}} \right)} \right]\;} \right\} \\ |
---|
223 | \shoveright{+\frac{1}{e_3 }\frac{\partial }{\partial k}\left[ {A_h \left( {-\frac{a_1 }{e_1 }\frac{\partial T}{\partial i}-\frac{a_2 }{e_2 }\frac{\partial T}{\partial j}+\frac{\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)}{e_3 }\frac{\partial T}{\partial k}} \right)} \right]}. \\ |
---|
224 | \end{multline} |
---|
225 | |
---|
226 | The isopycnal diffusion operator \autoref{apdx:B4}, |
---|
227 | \autoref{apdx:B_ldfiso} conserves tracer quantity and dissipates its square. |
---|
228 | The demonstration of the first property is trivial as \autoref{apdx:B4} is the divergence of fluxes. |
---|
229 | Let us demonstrate the second one: |
---|
230 | \[ |
---|
231 | \iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv |
---|
232 | = -\iiint\limits_D \nabla T\;.\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv, |
---|
233 | \] |
---|
234 | and since |
---|
235 | \begin{align*} |
---|
236 | { |
---|
237 | \begin{array}{*{20}l} |
---|
238 | \nabla T\;.\left( {{\mathrm {\mathbf A}}_{\mathrm {\mathbf I}} \nabla T} |
---|
239 | \right)&=A^{lT}\left[ {\left( {\frac{\partial T}{\partial i}} \right)^2-2a_1 |
---|
240 | \frac{\partial T}{\partial i}\frac{\partial T}{\partial k}+\left( |
---|
241 | {\frac{\partial T}{\partial j}} \right)^2} \right. \\ |
---|
242 | &\qquad \qquad \qquad |
---|
243 | { \left. -\,{2a_2 \frac{\partial T}{\partial j}\frac{\partial T}{\partial k}+\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)\left( {\frac{\partial T}{\partial k}} \right)^2} \right]} \\ |
---|
244 | &=A_h \left[ {\left( {\frac{\partial T}{\partial i}-a_1 \frac{\partial |
---|
245 | T}{\partial k}} \right)^2+\left( {\frac{\partial T}{\partial |
---|
246 | j}-a_2 \frac{\partial T}{\partial k}} \right)^2} |
---|
247 | +\varepsilon \left(\frac{\partial T}{\partial k}\right) ^2\right] \\ |
---|
248 | & \geq 0 |
---|
249 | \end{array} |
---|
250 | } |
---|
251 | \end{align*} |
---|
252 | %\addtocounter{equation}{-1} |
---|
253 | the property becomes obvious. |
---|
254 | |
---|
255 | \subsubsection*{In generalized vertical coordinates} |
---|
256 | |
---|
257 | Because the weak-slope operator \autoref{apdx:B4}, |
---|
258 | \autoref{apdx:B_ldfiso} is decoupled in the ($i$,$z$) and ($j$,$z$) planes, |
---|
259 | it may be transformed into generalized $s$-coordinates in the same way as |
---|
260 | \autoref{sec:B_1} was transformed into \autoref{sec:B_2}. |
---|
261 | The resulting operator then takes the simple form |
---|
262 | |
---|
263 | \begin{equation} |
---|
264 | \label{apdx:B_ldfiso_s} |
---|
265 | D^T = \left. \nabla \right|_s \cdot |
---|
266 | \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T \right] \\ |
---|
267 | \;\;\text{where} \;\Re =\left( {{ |
---|
268 | \begin{array}{*{20}c} |
---|
269 | 1 \hfill & 0 \hfill & {-r _1 } \hfill \\ |
---|
270 | 0 \hfill & 1 \hfill & {-r _2 } \hfill \\ |
---|
271 | {-r _1 } \hfill & {-r _2 } \hfill & {\varepsilon +r _1 |
---|
272 | ^2+r _2 ^2} \hfill \\ |
---|
273 | \end{array} |
---|
274 | }} \right), |
---|
275 | \end{equation} |
---|
276 | |
---|
277 | where ($r_1$, $r_2$) are the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions, |
---|
278 | relative to $s$-coordinate surfaces: |
---|
279 | \[ |
---|
280 | r_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1} |
---|
281 | \qquad , \qquad |
---|
282 | r_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}} |
---|
283 | \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}. |
---|
284 | \] |
---|
285 | |
---|
286 | To prove \autoref{apdx:B5} by direct re-expression of \autoref{apdx:B_ldfiso} is straightforward, but laborious. |
---|
287 | An easier way is first to note (by reversing the derivation of \autoref{sec:B_2} from \autoref{sec:B_1} ) that |
---|
288 | the weak-slope operator may be \emph{exactly} reexpressed in non-orthogonal $i,j,\rho$-coordinates as |
---|
289 | |
---|
290 | \begin{equation} |
---|
291 | \label{apdx:B5} |
---|
292 | D^T = \left. \nabla \right|_\rho \cdot |
---|
293 | \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_\rho T \right] \\ |
---|
294 | \;\;\text{where} \;\Re =\left( {{ |
---|
295 | \begin{array}{*{20}c} |
---|
296 | 1 \hfill & 0 \hfill &0 \hfill \\ |
---|
297 | 0 \hfill & 1 \hfill & 0 \hfill \\ |
---|
298 | 0 \hfill & 0 \hfill & \varepsilon \hfill \\ |
---|
299 | \end{array} |
---|
300 | }} \right). |
---|
301 | \end{equation} |
---|
302 | Then direct transformation from $i,j,\rho$-coordinates to $i,j,s$-coordinates gives |
---|
303 | \autoref{apdx:B_ldfiso_s} immediately. |
---|
304 | |
---|
305 | Note that the weak-slope approximation is only made in transforming from |
---|
306 | the (rotated,orthogonal) isoneutral axes to the non-orthogonal $i,j,\rho$-coordinates. |
---|
307 | The further transformation into $i,j,s$-coordinates is exact, whatever the steepness of the $s$-surfaces, |
---|
308 | in the same way as the transformation of horizontal/vertical Laplacian diffusion in $z$-coordinates, |
---|
309 | \autoref{sec:B_1} onto $s$-coordinates is exact, however steep the $s$-surfaces. |
---|
310 | |
---|
311 | |
---|
312 | % ================================================================ |
---|
313 | % Lateral/Vertical Momentum Diffusive Operators |
---|
314 | % ================================================================ |
---|
315 | \section{Lateral/Vertical momentum diffusive operators} |
---|
316 | \label{sec:B_3} |
---|
317 | |
---|
318 | The second order momentum diffusion operator (Laplacian) in the $z$-coordinate is found by |
---|
319 | applying \autoref{eq:PE_lap_vector}, the expression for the Laplacian of a vector, |
---|
320 | to the horizontal velocity vector: |
---|
321 | \begin{align*} |
---|
322 | \Delta {\textbf{U}}_h |
---|
323 | &=\nabla \left( {\nabla \cdot {\textbf{U}}_h } \right)- |
---|
324 | \nabla \times \left( {\nabla \times {\textbf{U}}_h } \right) \\ \\ |
---|
325 | &=\left( {{ |
---|
326 | \begin{array}{*{20}c} |
---|
327 | {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}} \hfill \\ |
---|
328 | {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}} \hfill \\ |
---|
329 | {\frac{1}{e_3 }\frac{\partial \chi }{\partial k}} \hfill \\ |
---|
330 | \end{array} |
---|
331 | }} \right) |
---|
332 | -\left( {{ |
---|
333 | \begin{array}{*{20}c} |
---|
334 | {\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}-\frac{1}{e_3 |
---|
335 | }\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial |
---|
336 | u}{\partial k}} \right)} \hfill \\ |
---|
337 | {\frac{1}{e_3 }\frac{\partial }{\partial k}\left( {-\frac{1}{e_3 |
---|
338 | }\frac{\partial v}{\partial k}} \right)-\frac{1}{e_1 }\frac{\partial \zeta |
---|
339 | }{\partial i}} \hfill \\ |
---|
340 | {\frac{1}{e_1 e_2 }\left[ {\frac{\partial }{\partial i}\left( {\frac{e_2 |
---|
341 | }{e_3 }\frac{\partial u}{\partial k}} \right)-\frac{\partial }{\partial |
---|
342 | j}\left( {-\frac{e_1 }{e_3 }\frac{\partial v}{\partial k}} \right)} \right]} |
---|
343 | \hfill \\ |
---|
344 | \end{array} |
---|
345 | }} \right) \\ \\ |
---|
346 | &=\left( {{ |
---|
347 | \begin{array}{*{20}c} |
---|
348 | {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}-\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}} \\ |
---|
349 | {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}+\frac{1}{e_1 }\frac{\partial \zeta }{\partial i}} \\ |
---|
350 | 0 \\ |
---|
351 | \end{array} |
---|
352 | }} \right) |
---|
353 | +\frac{1}{e_3 } |
---|
354 | \left( {{ |
---|
355 | \begin{array}{*{20}c} |
---|
356 | {\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial u}{\partial k}} \right)} \\ |
---|
357 | {\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial v}{\partial k}} \right)} \\ |
---|
358 | {\frac{\partial \chi }{\partial k}-\frac{1}{e_1 e_2 }\left( {\frac{\partial ^2\left( {e_2 \,u} \right)}{\partial i\partial k}+\frac{\partial ^2\left( {e_1 \,v} \right)}{\partial j\partial k}} \right)} \\ |
---|
359 | \end{array} |
---|
360 | }} \right) |
---|
361 | \end{align*} |
---|
362 | Using \autoref{eq:PE_div}, the definition of the horizontal divergence, |
---|
363 | the third componant of the second vector is obviously zero and thus : |
---|
364 | \[ |
---|
365 | \Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right) |
---|
366 | \] |
---|
367 | |
---|
368 | Note that this operator ensures a full separation between |
---|
369 | the vorticity and horizontal divergence fields (see \autoref{apdx:C}). |
---|
370 | It is only equal to a Laplacian applied to each component in Cartesian coordinates, not on the sphere. |
---|
371 | |
---|
372 | The horizontal/vertical second order (Laplacian type) operator used to diffuse horizontal momentum in |
---|
373 | the $z$-coordinate therefore takes the following form: |
---|
374 | \begin{equation} |
---|
375 | \label{apdx:B_Lap_U} |
---|
376 | { |
---|
377 | \textbf{D}}^{\textbf{U}} = |
---|
378 | \nabla _h \left( {A^{lm}\;\chi } \right) |
---|
379 | - \nabla _h \times \left( {A^{lm}\;\zeta \;{\textbf{k}}} \right) |
---|
380 | + \frac{1}{e_3 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}\;}{e_3 } |
---|
381 | \frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}} \right) \\ |
---|
382 | \end{equation} |
---|
383 | that is, in expanded form: |
---|
384 | \begin{align*} |
---|
385 | D^{\textbf{U}}_u |
---|
386 | & = \frac{1}{e_1} \frac{\partial \left( {A^{lm}\chi } \right)}{\partial i} |
---|
387 | -\frac{1}{e_2} \frac{\partial \left( {A^{lm}\zeta } \right)}{\partial j} |
---|
388 | +\frac{1}{e_3} \frac{\partial u}{\partial k} \\ |
---|
389 | D^{\textbf{U}}_v |
---|
390 | & = \frac{1}{e_2 }\frac{\partial \left( {A^{lm}\chi } \right)}{\partial j} |
---|
391 | +\frac{1}{e_1 }\frac{\partial \left( {A^{lm}\zeta } \right)}{\partial i} |
---|
392 | +\frac{1}{e_3} \frac{\partial v}{\partial k} |
---|
393 | \end{align*} |
---|
394 | |
---|
395 | Note Bene: introducing a rotation in \autoref{apdx:B_Lap_U} does not lead to |
---|
396 | a useful expression for the iso/diapycnal Laplacian operator in the $z$-coordinate. |
---|
397 | Similarly, we did not found an expression of practical use for |
---|
398 | the geopotential horizontal/vertical Laplacian operator in the $s$-coordinate. |
---|
399 | Generally, \autoref{apdx:B_Lap_U} is used in both $z$- and $s$-coordinate systems, |
---|
400 | that is a Laplacian diffusion is applied on momentum along the coordinate directions. |
---|
401 | |
---|
402 | \biblio |
---|
403 | |
---|
404 | \pindex |
---|
405 | |
---|
406 | \end{document} |
---|