1 | MODULE sbcblk_algo_coare3p0 |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE sbcblk_algo_coare3p0 *** |
---|
4 | !! Computes: |
---|
5 | !! * bulk transfer coefficients C_D, C_E and C_H |
---|
6 | !! * air temp. and spec. hum. adjusted from zt (2m) to zu (10m) if needed |
---|
7 | !! * the effective bulk wind speed at 10m U_blk |
---|
8 | !! => all these are used in bulk formulas in sbcblk.F90 |
---|
9 | !! |
---|
10 | !! Using the bulk formulation/param. of COARE v3, Fairall et al., 2003 |
---|
11 | !! |
---|
12 | !! Routine turb_coare3p0 maintained and developed in AeroBulk |
---|
13 | !! (https://github.com/brodeau/aerobulk) |
---|
14 | !! |
---|
15 | !! ** Author: L. Brodeau, June 2019 / AeroBulk (https://github.com/brodeau/aerobulk) |
---|
16 | !!---------------------------------------------------------------------- |
---|
17 | !! History : 4.0 ! 2016-02 (L.Brodeau) Original code |
---|
18 | !!---------------------------------------------------------------------- |
---|
19 | |
---|
20 | !!---------------------------------------------------------------------- |
---|
21 | !! turb_coare3p0 : computes the bulk turbulent transfer coefficients |
---|
22 | !! adjusts t_air and q_air from zt to zu m |
---|
23 | !! returns the effective bulk wind speed at 10m |
---|
24 | !!---------------------------------------------------------------------- |
---|
25 | USE oce ! ocean dynamics and tracers |
---|
26 | USE dom_oce ! ocean space and time domain |
---|
27 | USE phycst ! physical constants |
---|
28 | USE iom ! I/O manager library |
---|
29 | USE lib_mpp ! distribued memory computing library |
---|
30 | USE in_out_manager ! I/O manager |
---|
31 | USE prtctl ! Print control |
---|
32 | USE sbcwave, ONLY : cdn_wave ! wave module |
---|
33 | #if defined key_si3 || defined key_cice |
---|
34 | USE sbc_ice ! Surface boundary condition: ice fields |
---|
35 | #endif |
---|
36 | USE lib_fortran ! to use key_nosignedzero |
---|
37 | |
---|
38 | USE sbc_oce ! Surface boundary condition: ocean fields |
---|
39 | USE sbcblk_phy ! all thermodynamics functions, rho_air, q_sat, etc... !LB |
---|
40 | USE sbcblk_skin ! cool-skin/warm layer scheme (CSWL_ECMWF) !LB |
---|
41 | |
---|
42 | IMPLICIT NONE |
---|
43 | PRIVATE |
---|
44 | |
---|
45 | PUBLIC :: TURB_COARE3P0 ! called by sbcblk.F90 |
---|
46 | |
---|
47 | ! !! COARE own values for given constants: |
---|
48 | REAL(wp), PARAMETER :: zi0 = 600._wp ! scale height of the atmospheric boundary layer... |
---|
49 | REAL(wp), PARAMETER :: Beta0 = 1.25_wp ! gustiness parameter |
---|
50 | |
---|
51 | INTEGER , PARAMETER :: nb_itt = 5 ! number of itterations |
---|
52 | |
---|
53 | !!---------------------------------------------------------------------- |
---|
54 | CONTAINS |
---|
55 | |
---|
56 | SUBROUTINE turb_coare3p0( zt, zu, T_s, t_zt, q_s, q_zt, U_zu, & |
---|
57 | & Cd, Ch, Ce, t_zu, q_zu, U_blk, & |
---|
58 | & Cdn, Chn, Cen, & |
---|
59 | & Qsw, rad_lw, slp, & |
---|
60 | & Tsk_b ) |
---|
61 | !!---------------------------------------------------------------------- |
---|
62 | !! *** ROUTINE turb_coare3p0 *** |
---|
63 | !! |
---|
64 | !! ** Purpose : Computes turbulent transfert coefficients of surface |
---|
65 | !! fluxes according to Fairall et al. (2003) |
---|
66 | !! If relevant (zt /= zu), adjust temperature and humidity from height zt to zu |
---|
67 | !! Returns the effective bulk wind speed at zu to be used in the bulk formulas |
---|
68 | !! |
---|
69 | !! Applies the cool-skin warm-layer correction of the SST to T_s |
---|
70 | !! if the net shortwave flux at the surface (Qsw), the downwelling longwave |
---|
71 | !! radiative fluxes at the surface (rad_lw), and the sea-leve pressure (slp) |
---|
72 | !! are provided as (optional) arguments! |
---|
73 | !! |
---|
74 | !! INPUT : |
---|
75 | !! ------- |
---|
76 | !! * zt : height for temperature and spec. hum. of air [m] |
---|
77 | !! * zu : height for wind speed (usually 10m) [m] |
---|
78 | !! * U_zu : scalar wind speed at zu [m/s] |
---|
79 | !! * t_zt : potential air temperature at zt [K] |
---|
80 | !! * q_zt : specific humidity of air at zt [kg/kg] |
---|
81 | !! |
---|
82 | !! INPUT/OUTPUT: |
---|
83 | !! ------------- |
---|
84 | !! * T_s : always "bulk SST" as input [K] |
---|
85 | !! -> unchanged "bulk SST" as output if CSWL not used [K] |
---|
86 | !! -> skin temperature as output if CSWL used [K] |
---|
87 | !! |
---|
88 | !! * q_s : SSQ aka saturation specific humidity at temp. T_s [kg/kg] |
---|
89 | !! -> doesn't need to be given a value if skin temp computed (in case l_use_skin=True) |
---|
90 | !! -> MUST be given the correct value if not computing skint temp. (in case l_use_skin=False) |
---|
91 | !! |
---|
92 | !! OPTIONAL INPUT (will trigger l_use_skin=TRUE if present!): |
---|
93 | !! --------------- |
---|
94 | !! * Qsw : net solar flux (after albedo) at the surface (>0) [W/m^2] |
---|
95 | !! * rad_lw : downwelling longwave radiation at the surface (>0) [W/m^2] |
---|
96 | !! * slp : sea-level pressure [Pa] |
---|
97 | !! * Tsk_b : estimate of skin temperature at previous time-step [K] |
---|
98 | !! |
---|
99 | !! OUTPUT : |
---|
100 | !! -------- |
---|
101 | !! * Cd : drag coefficient |
---|
102 | !! * Ch : sensible heat coefficient |
---|
103 | !! * Ce : evaporation coefficient |
---|
104 | !! * t_zu : pot. air temperature adjusted at wind height zu [K] |
---|
105 | !! * q_zu : specific humidity of air // [kg/kg] |
---|
106 | !! * U_blk : bulk wind speed at zu [m/s] |
---|
107 | !! |
---|
108 | !! |
---|
109 | !! ** Author: L. Brodeau, June 2019 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
110 | !!---------------------------------------------------------------------------------- |
---|
111 | REAL(wp), INTENT(in ) :: zt ! height for t_zt and q_zt [m] |
---|
112 | REAL(wp), INTENT(in ) :: zu ! height for U_zu [m] |
---|
113 | REAL(wp), INTENT(inout), DIMENSION(jpi,jpj) :: T_s ! sea surface temperature [Kelvin] |
---|
114 | REAL(wp), INTENT(in ), DIMENSION(jpi,jpj) :: t_zt ! potential air temperature [Kelvin] |
---|
115 | REAL(wp), INTENT(inout), DIMENSION(jpi,jpj) :: q_s ! sea surface specific humidity [kg/kg] |
---|
116 | REAL(wp), INTENT(in ), DIMENSION(jpi,jpj) :: q_zt ! specific air humidity at zt [kg/kg] |
---|
117 | REAL(wp), INTENT(in ), DIMENSION(jpi,jpj) :: U_zu ! relative wind module at zu [m/s] |
---|
118 | REAL(wp), INTENT( out), DIMENSION(jpi,jpj) :: Cd ! transfer coefficient for momentum (tau) |
---|
119 | REAL(wp), INTENT( out), DIMENSION(jpi,jpj) :: Ch ! transfer coefficient for sensible heat (Q_sens) |
---|
120 | REAL(wp), INTENT( out), DIMENSION(jpi,jpj) :: Ce ! transfert coefficient for evaporation (Q_lat) |
---|
121 | REAL(wp), INTENT( out), DIMENSION(jpi,jpj) :: t_zu ! pot. air temp. adjusted at zu [K] |
---|
122 | REAL(wp), INTENT( out), DIMENSION(jpi,jpj) :: q_zu ! spec. humidity adjusted at zu [kg/kg] |
---|
123 | REAL(wp), INTENT( out), DIMENSION(jpi,jpj) :: U_blk ! bulk wind speed at zu [m/s] |
---|
124 | REAL(wp), INTENT( out), DIMENSION(jpi,jpj) :: Cdn, Chn, Cen ! neutral transfer coefficients |
---|
125 | ! |
---|
126 | REAL(wp), INTENT(in ), OPTIONAL, DIMENSION(jpi,jpj) :: Qsw ! [W/m^2] |
---|
127 | REAL(wp), INTENT(in ), OPTIONAL, DIMENSION(jpi,jpj) :: rad_lw ! [W/m^2] |
---|
128 | REAL(wp), INTENT(in ), OPTIONAL, DIMENSION(jpi,jpj) :: slp ! [Pa] |
---|
129 | REAL(wp), INTENT(in ), OPTIONAL, DIMENSION(jpi,jpj) :: Tsk_b ! [Pa] |
---|
130 | ! |
---|
131 | INTEGER :: j_itt |
---|
132 | LOGICAL :: l_zt_equal_zu = .FALSE. ! if q and t are given at same height as U |
---|
133 | ! |
---|
134 | REAL(wp), DIMENSION(jpi,jpj) :: & |
---|
135 | & u_star, t_star, q_star, & |
---|
136 | & dt_zu, dq_zu, & |
---|
137 | & znu_a, & !: Nu_air, Viscosity of air |
---|
138 | & z0, z0t |
---|
139 | REAL(wp), DIMENSION(jpi,jpj) :: zeta_u ! stability parameter at height zu |
---|
140 | REAL(wp), DIMENSION(jpi,jpj) :: ztmp0, ztmp1, ztmp2 |
---|
141 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: zeta_t ! stability parameter at height zt |
---|
142 | ! |
---|
143 | ! Cool skin: |
---|
144 | LOGICAL :: l_use_skin = .FALSE. |
---|
145 | REAL(wp), DIMENSION(jpi,jpj) :: zsst ! to back up the initial bulk SST |
---|
146 | !!---------------------------------------------------------------------------------- |
---|
147 | |
---|
148 | ! Cool skin ? |
---|
149 | IF( PRESENT(Qsw) .AND. PRESENT(rad_lw) .AND. PRESENT(slp) ) THEN |
---|
150 | l_use_skin = .TRUE. |
---|
151 | END IF |
---|
152 | IF (lwp) PRINT *, ' *** LOLO(sbcblk_algo_ecmwf.F90) => l_use_skin =', l_use_skin |
---|
153 | |
---|
154 | l_zt_equal_zu = .FALSE. |
---|
155 | IF( ABS(zu - zt) < 0.01_wp ) l_zt_equal_zu = .TRUE. ! testing "zu == zt" is risky with double precision |
---|
156 | |
---|
157 | IF( .NOT. l_zt_equal_zu ) ALLOCATE( zeta_t(jpi,jpj) ) |
---|
158 | |
---|
159 | !! Initialization for cool skin: |
---|
160 | zsst = T_s ! save the bulk SST |
---|
161 | IF( l_use_skin ) THEN |
---|
162 | ! First guess for skin temperature: |
---|
163 | IF( PRESENT(Tsk_b) ) THEN |
---|
164 | T_s = Tsk_b |
---|
165 | ELSE |
---|
166 | T_s = T_s - 0.25 ! sst - 0.25 |
---|
167 | END IF |
---|
168 | q_s = rdct_qsat_salt*q_sat(MAX(T_s, 200._wp), slp) ! First guess of q_s |
---|
169 | END IF |
---|
170 | |
---|
171 | !! First guess of temperature and humidity at height zu: |
---|
172 | t_zu = MAX( t_zt , 180._wp ) ! who knows what's given on masked-continental regions... |
---|
173 | q_zu = MAX( q_zt , 1.e-6_wp ) ! " |
---|
174 | |
---|
175 | !! Pot. temp. difference (and we don't want it to be 0!) |
---|
176 | dt_zu = t_zu - T_s ; dt_zu = SIGN( MAX(ABS(dt_zu),1.E-6_wp), dt_zu ) |
---|
177 | dq_zu = q_zu - q_s ; dq_zu = SIGN( MAX(ABS(dq_zu),1.E-9_wp), dq_zu ) |
---|
178 | |
---|
179 | znu_a = visc_air(t_zu) ! Air viscosity (m^2/s) at zt given from temperature in (K) |
---|
180 | |
---|
181 | U_blk = SQRT(U_zu*U_zu + 0.5_wp*0.5_wp) ! initial guess for wind gustiness contribution |
---|
182 | |
---|
183 | ztmp0 = LOG( zu*10000._wp) ! optimization: 10000. == 1/z0 (with z0 first guess == 0.0001) |
---|
184 | ztmp1 = LOG(10._wp*10000._wp) ! " " " |
---|
185 | u_star = 0.035_wp*U_blk*ztmp1/ztmp0 ! (u* = 0.035*Un10) |
---|
186 | |
---|
187 | z0 = alfa_charn_3p0(U_zu)*u_star*u_star/grav + 0.11_wp*znu_a/u_star |
---|
188 | z0 = MIN(ABS(z0), 0.001_wp) ! (prevent FPE from stupid values from masked region later on...) !#LOLO |
---|
189 | z0t = 1._wp / ( 0.1_wp*EXP(vkarmn/(0.00115/(vkarmn/ztmp1))) ) |
---|
190 | z0t = MIN(ABS(z0t), 0.001_wp) ! (prevent FPE from stupid values from masked region later on...) !#LOLO |
---|
191 | |
---|
192 | ztmp2 = vkarmn/ztmp0 |
---|
193 | Cd = ztmp2*ztmp2 ! first guess of Cd |
---|
194 | |
---|
195 | ztmp0 = vkarmn*vkarmn/LOG(zt/z0t)/Cd |
---|
196 | |
---|
197 | ztmp2 = Ri_bulk( zu, T_s, t_zu, q_s, q_zu, U_blk ) ! Bulk Richardson Number (BRN) |
---|
198 | |
---|
199 | !! First estimate of zeta_u, depending on the stability, ie sign of BRN (ztmp2): |
---|
200 | ztmp1 = 0.5 + SIGN( 0.5_wp , ztmp2 ) |
---|
201 | ztmp0 = ztmp0*ztmp2 |
---|
202 | zeta_u = (1._wp-ztmp1) * (ztmp0/(1._wp+ztmp2/(-zu/(zi0*0.004_wp*Beta0**3)))) & ! BRN < 0 |
---|
203 | & + ztmp1 * (ztmp0*(1._wp + 27._wp/9._wp*ztmp2/ztmp0)) ! BRN > 0 |
---|
204 | !#LB: should make sure that the "ztmp0" of "27./9.*ztmp2/ztmp0" is "ztmp0*ztmp2" and not "ztmp0==vkarmn*vkarmn/LOG(zt/z0t)/Cd" ! |
---|
205 | |
---|
206 | !! First guess M-O stability dependent scaling params.(u*,t*,q*) to estimate z0 and z/L |
---|
207 | ztmp0 = vkarmn/(LOG(zu/z0t) - psi_h_coare(zeta_u)) |
---|
208 | |
---|
209 | u_star = U_blk*vkarmn/(LOG(zu) - LOG(z0) - psi_m_coare(zeta_u)) |
---|
210 | t_star = dt_zu*ztmp0 |
---|
211 | q_star = dq_zu*ztmp0 |
---|
212 | |
---|
213 | ! What needs to be done if zt /= zu: |
---|
214 | IF( .NOT. l_zt_equal_zu ) THEN |
---|
215 | !! First update of values at zu (or zt for wind) |
---|
216 | zeta_t = zt*zeta_u/zu |
---|
217 | ztmp0 = psi_h_coare(zeta_u) - psi_h_coare(zeta_t) |
---|
218 | ztmp1 = LOG(zt/zu) + ztmp0 |
---|
219 | t_zu = t_zt - t_star/vkarmn*ztmp1 |
---|
220 | q_zu = q_zt - q_star/vkarmn*ztmp1 |
---|
221 | q_zu = (0.5_wp + SIGN(0.5_wp,q_zu))*q_zu !Makes it impossible to have negative humidity : |
---|
222 | ! |
---|
223 | dt_zu = t_zu - T_s ; dt_zu = SIGN( MAX(ABS(dt_zu),1.E-6_wp), dt_zu ) |
---|
224 | dq_zu = q_zu - q_s ; dq_zu = SIGN( MAX(ABS(dq_zu),1.E-9_wp), dq_zu ) |
---|
225 | END IF |
---|
226 | |
---|
227 | !! ITERATION BLOCK |
---|
228 | DO j_itt = 1, nb_itt |
---|
229 | |
---|
230 | !!Inverse of Monin-Obukov length (1/L) : |
---|
231 | ztmp0 = One_on_L(t_zu, q_zu, u_star, t_star, q_star) ! 1/L == 1/[Monin-Obukhov length] |
---|
232 | ztmp0 = SIGN( MIN(ABS(ztmp0),200._wp), ztmp0 ) ! (prevents FPE from stupid values from masked region later on...) !#LOLO |
---|
233 | |
---|
234 | ztmp1 = u_star*u_star ! u*^2 |
---|
235 | |
---|
236 | !! Update wind at zu taking into acount convection-related wind gustiness: |
---|
237 | ! Ug = Beta*w* (Beta = 1.25, Fairall et al. 2003, Eq.8): |
---|
238 | ztmp2 = Beta0*Beta0*ztmp1*(MAX(-zi0*ztmp0/vkarmn,0._wp))**(2./3.) ! square of wind gustiness contribution, ztmp2 == Ug^2 |
---|
239 | !! ! Only true when unstable (L<0) => when ztmp0 < 0 => explains "-" before 600. |
---|
240 | U_blk = MAX(sqrt(U_zu*U_zu + ztmp2), 0.2_wp) ! include gustiness in bulk wind speed |
---|
241 | ! => 0.2 prevents U_blk to be 0 in stable case when U_zu=0. |
---|
242 | |
---|
243 | !! Stability parameters: |
---|
244 | zeta_u = zu*ztmp0 |
---|
245 | zeta_u = SIGN( MIN(ABS(zeta_u),50.0_wp), zeta_u ) |
---|
246 | IF( .NOT. l_zt_equal_zu ) THEN |
---|
247 | zeta_t = zt*ztmp0 |
---|
248 | zeta_t = SIGN( MIN(ABS(zeta_t),50.0_wp), zeta_t ) |
---|
249 | END IF |
---|
250 | |
---|
251 | !! Adjustment the wind at 10m (not needed in the current algo form): |
---|
252 | !IF ( zu \= 10._wp ) U10 = U_zu + u_star/vkarmn*(LOG(10._wp/zu) - psi_m_coare(10._wp*ztmp0) + psi_m_coare(zeta_u)) |
---|
253 | |
---|
254 | !! Roughness lengthes z0, z0t (z0q = z0t) : |
---|
255 | ztmp2 = u_star/vkarmn*LOG(10./z0) ! Neutral wind speed at 10m |
---|
256 | z0 = alfa_charn_3p0(ztmp2)*ztmp1/grav + 0.11_wp*znu_a/u_star ! Roughness length (eq.6) |
---|
257 | ztmp1 = z0*u_star/znu_a ! Re_r: roughness Reynolds number |
---|
258 | z0t = MIN( 1.1E-4_wp , 5.5E-5_wp*ztmp1**(-0.6_wp) ) ! Scalar roughness for both theta and q (eq.28) #LOLO: some use 1.15 not 1.1 !!! |
---|
259 | |
---|
260 | !! Turbulent scales at zu : |
---|
261 | ztmp0 = psi_h_coare(zeta_u) |
---|
262 | ztmp1 = vkarmn/(LOG(zu) - LOG(z0t) - ztmp0) ! #LOLO: in ztmp0, some use psi_h_coare(zeta_t) rather than psi_h_coare(zeta_t) ??? |
---|
263 | |
---|
264 | t_star = dt_zu*ztmp1 |
---|
265 | q_star = dq_zu*ztmp1 |
---|
266 | u_star = U_blk*vkarmn/(LOG(zu) - LOG(z0) - psi_m_coare(zeta_u)) |
---|
267 | |
---|
268 | IF( .NOT. l_zt_equal_zu ) THEN |
---|
269 | ! What's need to be done if zt /= zu |
---|
270 | !! Re-updating temperature and humidity at zu : |
---|
271 | ztmp2 = ztmp0 - psi_h_coare(zeta_t) |
---|
272 | ztmp1 = log(zt/zu) + ztmp2 |
---|
273 | t_zu = t_zt - t_star/vkarmn*ztmp1 |
---|
274 | q_zu = q_zt - q_star/vkarmn*ztmp1 |
---|
275 | END IF |
---|
276 | |
---|
277 | !! SKIN related part |
---|
278 | !! ----------------- |
---|
279 | IF( l_use_skin ) THEN |
---|
280 | !! compute transfer coefficients at zu : lolo: verifier... |
---|
281 | ztmp0 = u_star/U_blk |
---|
282 | Ch = ztmp0*t_star/dt_zu |
---|
283 | Ce = ztmp0*q_star/dq_zu |
---|
284 | ! Non-Solar heat flux to the ocean: |
---|
285 | ztmp1 = U_blk*MAX(rho_air(t_zu, q_zu, slp), 1._wp) ! rho*U10 |
---|
286 | ztmp2 = T_s*T_s |
---|
287 | ztmp1 = ztmp1 * ( Ce*L_vap(T_s)*(q_zu - q_s) + Ch*cp_air(q_zu)*(t_zu - T_s) ) & ! Total turb. heat flux |
---|
288 | & + emiss_w*(rad_lw - stefan*ztmp2*ztmp2) ! Net longwave flux |
---|
289 | !! => "ztmp1" is the net non-solar surface heat flux ! |
---|
290 | !! Updating the values of the skin temperature T_s and q_s : |
---|
291 | CALL CSWL_ECMWF( Qsw, ztmp1, u_star, zsst, T_s ) ! yes ECMWF, because more advanced than COARE (warm-layer added!) |
---|
292 | q_s = rdct_qsat_salt*q_sat(MAX(T_s, 200._wp), slp) ! 200 -> just to avoid numerics problem on masked regions if silly values are given |
---|
293 | END IF |
---|
294 | |
---|
295 | IF( (l_use_skin).OR.(.NOT. l_zt_equal_zu) ) THEN |
---|
296 | dt_zu = t_zu - T_s ; dt_zu = SIGN( MAX(ABS(dt_zu),1.E-6_wp), dt_zu ) |
---|
297 | dq_zu = q_zu - q_s ; dq_zu = SIGN( MAX(ABS(dq_zu),1.E-9_wp), dq_zu ) |
---|
298 | END IF |
---|
299 | |
---|
300 | END DO !DO j_itt = 1, nb_itt |
---|
301 | |
---|
302 | ! compute transfer coefficients at zu : |
---|
303 | ztmp0 = u_star/U_blk |
---|
304 | Cd = ztmp0*ztmp0 |
---|
305 | Ch = ztmp0*t_star/dt_zu |
---|
306 | Ce = ztmp0*q_star/dq_zu |
---|
307 | |
---|
308 | ztmp1 = zu + z0 |
---|
309 | Cdn = vkarmn*vkarmn / (log(ztmp1/z0 )*log(ztmp1/z0 )) |
---|
310 | Chn = vkarmn*vkarmn / (log(ztmp1/z0t)*log(ztmp1/z0t)) |
---|
311 | Cen = Chn |
---|
312 | |
---|
313 | IF( .NOT. l_zt_equal_zu ) DEALLOCATE( zeta_t ) |
---|
314 | |
---|
315 | END SUBROUTINE turb_coare3p0 |
---|
316 | |
---|
317 | |
---|
318 | FUNCTION alfa_charn_3p0( pwnd ) |
---|
319 | !!------------------------------------------------------------------- |
---|
320 | !! Compute the Charnock parameter as a function of the wind speed |
---|
321 | !! |
---|
322 | !! (Fairall et al., 2003 p.577-578) |
---|
323 | !! |
---|
324 | !! Wind below 10 m/s : alfa = 0.011 |
---|
325 | !! Wind between 10 and 18 m/s : linear increase from 0.011 to 0.018 |
---|
326 | !! Wind greater than 18 m/s : alfa = 0.018 |
---|
327 | !! |
---|
328 | !! Author: L. Brodeau, June 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
329 | !!------------------------------------------------------------------- |
---|
330 | REAL(wp), DIMENSION(jpi,jpj) :: alfa_charn_3p0 |
---|
331 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pwnd ! wind speed |
---|
332 | ! |
---|
333 | INTEGER :: ji, jj ! dummy loop indices |
---|
334 | REAL(wp) :: zw, zgt10, zgt18 |
---|
335 | !!------------------------------------------------------------------- |
---|
336 | ! |
---|
337 | DO jj = 1, jpj |
---|
338 | DO ji = 1, jpi |
---|
339 | ! |
---|
340 | zw = pwnd(ji,jj) ! wind speed |
---|
341 | ! |
---|
342 | ! Charnock's constant, increases with the wind : |
---|
343 | zgt10 = 0.5 + SIGN(0.5_wp,(zw - 10)) ! If zw<10. --> 0, else --> 1 |
---|
344 | zgt18 = 0.5 + SIGN(0.5_wp,(zw - 18.)) ! If zw<18. --> 0, else --> 1 |
---|
345 | ! |
---|
346 | alfa_charn_3p0(ji,jj) = (1. - zgt10)*0.011 & ! wind is lower than 10 m/s |
---|
347 | & + zgt10*((1. - zgt18)*(0.011 + (0.018 - 0.011) & |
---|
348 | & *(zw - 10.)/(18. - 10.)) + zgt18*( 0.018 ) ) ! Hare et al. (1999) |
---|
349 | ! |
---|
350 | END DO |
---|
351 | END DO |
---|
352 | ! |
---|
353 | END FUNCTION alfa_charn_3p0 |
---|
354 | |
---|
355 | FUNCTION psi_m_coare( pzeta ) |
---|
356 | !!---------------------------------------------------------------------------------- |
---|
357 | !! ** Purpose: compute the universal profile stability function for momentum |
---|
358 | !! COARE 3.0, Fairall et al. 2003 |
---|
359 | !! pzeta : stability paramenter, z/L where z is altitude |
---|
360 | !! measurement and L is M-O length |
---|
361 | !! Stability function for wind speed and scalars matching Kansas and free |
---|
362 | !! convection forms with weighting f convective form, follows Fairall et |
---|
363 | !! al (1996) with profile constants from Grachev et al (2000) BLM stable |
---|
364 | !! form from Beljaars and Holtslag (1991) |
---|
365 | !! |
---|
366 | !! ** Author: L. Brodeau, June 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
367 | !!---------------------------------------------------------------------------------- |
---|
368 | REAL(wp), DIMENSION(jpi,jpj) :: psi_m_coare |
---|
369 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pzeta |
---|
370 | ! |
---|
371 | INTEGER :: ji, jj ! dummy loop indices |
---|
372 | REAL(wp) :: zta, zphi_m, zphi_c, zpsi_k, zpsi_c, zf, zc, zstab |
---|
373 | !!---------------------------------------------------------------------------------- |
---|
374 | ! |
---|
375 | DO jj = 1, jpj |
---|
376 | DO ji = 1, jpi |
---|
377 | ! |
---|
378 | zta = pzeta(ji,jj) |
---|
379 | ! |
---|
380 | zphi_m = ABS(1. - 15.*zta)**.25 !!Kansas unstable |
---|
381 | ! |
---|
382 | zpsi_k = 2.*LOG((1. + zphi_m)/2.) + LOG((1. + zphi_m*zphi_m)/2.) & |
---|
383 | & - 2.*ATAN(zphi_m) + 0.5*rpi |
---|
384 | ! |
---|
385 | zphi_c = ABS(1. - 10.15*zta)**.3333 !!Convective |
---|
386 | ! |
---|
387 | zpsi_c = 1.5*LOG((1. + zphi_c + zphi_c*zphi_c)/3.) & |
---|
388 | & - 1.7320508*ATAN((1. + 2.*zphi_c)/1.7320508) + 1.813799447 |
---|
389 | ! |
---|
390 | zf = zta*zta |
---|
391 | zf = zf/(1. + zf) |
---|
392 | zc = MIN(50._wp, 0.35_wp*zta) |
---|
393 | zstab = 0.5 + SIGN(0.5_wp, zta) |
---|
394 | ! |
---|
395 | psi_m_coare(ji,jj) = (1. - zstab) * ( (1. - zf)*zpsi_k + zf*zpsi_c ) & ! (zta < 0) |
---|
396 | & - zstab * ( 1. + 1.*zta & ! (zta > 0) |
---|
397 | & + 0.6667*(zta - 14.28)/EXP(zc) + 8.525 ) ! " |
---|
398 | ! |
---|
399 | END DO |
---|
400 | END DO |
---|
401 | ! |
---|
402 | END FUNCTION psi_m_coare |
---|
403 | |
---|
404 | |
---|
405 | FUNCTION psi_h_coare( pzeta ) |
---|
406 | !!--------------------------------------------------------------------- |
---|
407 | !! Universal profile stability function for temperature and humidity |
---|
408 | !! COARE 3.0, Fairall et al. 2003 |
---|
409 | !! |
---|
410 | !! pzeta : stability paramenter, z/L where z is altitude measurement |
---|
411 | !! and L is M-O length |
---|
412 | !! |
---|
413 | !! Stability function for wind speed and scalars matching Kansas and free |
---|
414 | !! convection forms with weighting f convective form, follows Fairall et |
---|
415 | !! al (1996) with profile constants from Grachev et al (2000) BLM stable |
---|
416 | !! form from Beljaars and Holtslag (1991) |
---|
417 | !! |
---|
418 | !! Author: L. Brodeau, June 2016 / AeroBulk |
---|
419 | !! (https://github.com/brodeau/aerobulk/) |
---|
420 | !!---------------------------------------------------------------- |
---|
421 | !! |
---|
422 | REAL(wp), DIMENSION(jpi,jpj) :: psi_h_coare |
---|
423 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pzeta |
---|
424 | ! |
---|
425 | INTEGER :: ji, jj ! dummy loop indices |
---|
426 | REAL(wp) :: zta, zphi_h, zphi_c, zpsi_k, zpsi_c, zf, zc, zstab |
---|
427 | ! |
---|
428 | DO jj = 1, jpj |
---|
429 | DO ji = 1, jpi |
---|
430 | ! |
---|
431 | zta = pzeta(ji,jj) |
---|
432 | ! |
---|
433 | zphi_h = (ABS(1. - 15.*zta))**.5 !! Kansas unstable (zphi_h = zphi_m**2 when unstable, zphi_m when stable) |
---|
434 | ! |
---|
435 | zpsi_k = 2.*LOG((1. + zphi_h)/2.) |
---|
436 | ! |
---|
437 | zphi_c = (ABS(1. - 34.15*zta))**.3333 !! Convective |
---|
438 | ! |
---|
439 | zpsi_c = 1.5*LOG((1. + zphi_c + zphi_c*zphi_c)/3.) & |
---|
440 | & -1.7320508*ATAN((1. + 2.*zphi_c)/1.7320508) + 1.813799447 |
---|
441 | ! |
---|
442 | zf = zta*zta |
---|
443 | zf = zf/(1. + zf) |
---|
444 | zc = MIN(50._wp,0.35_wp*zta) |
---|
445 | zstab = 0.5 + SIGN(0.5_wp, zta) |
---|
446 | ! |
---|
447 | psi_h_coare(ji,jj) = (1. - zstab) * ( (1. - zf)*zpsi_k + zf*zpsi_c ) & |
---|
448 | & - zstab * ( (ABS(1. + 2.*zta/3.))**1.5 & |
---|
449 | & + .6667*(zta - 14.28)/EXP(zc) + 8.525 ) |
---|
450 | ! |
---|
451 | END DO |
---|
452 | END DO |
---|
453 | ! |
---|
454 | END FUNCTION psi_h_coare |
---|
455 | |
---|
456 | !!====================================================================== |
---|
457 | END MODULE sbcblk_algo_coare3p0 |
---|