1 | MODULE sbcblk_phy |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE sbcblk_phy *** |
---|
4 | !! A set of functions to compute air themodynamics parameters |
---|
5 | !! needed by Aerodynamic Bulk Formulas |
---|
6 | !!===================================================================== |
---|
7 | !! 4.0 ! 2019 L. Brodeau from AeroBulk package (https://github.com/brodeau/aerobulk/) |
---|
8 | !!---------------------------------------------------------------------- |
---|
9 | |
---|
10 | !! virt_temp : virtual (aka sensible) temperature (potential or absolute) |
---|
11 | !! rho_air : density of (moist) air (depends on T_air, q_air and SLP |
---|
12 | !! visc_air : kinematic viscosity (aka Nu_air) of air from temperature |
---|
13 | !! L_vap : latent heat of vaporization of water as a function of temperature |
---|
14 | !! cp_air : specific heat of (moist) air (depends spec. hum. q_air) |
---|
15 | !! gamma_moist : adiabatic lapse-rate of moist air |
---|
16 | !! One_on_L : 1. / ( Monin-Obukhov length ) |
---|
17 | !! Ri_bulk : bulk Richardson number aka BRN |
---|
18 | !! q_sat : saturation humidity as a function of SLP and temperature |
---|
19 | !! q_air_rh : specific humidity as a function of RH (fraction, not %), t_air and SLP |
---|
20 | |
---|
21 | USE dom_oce ! ocean space and time domain |
---|
22 | USE phycst ! physical constants |
---|
23 | |
---|
24 | IMPLICIT NONE |
---|
25 | PRIVATE |
---|
26 | |
---|
27 | INTERFACE gamma_moist |
---|
28 | MODULE PROCEDURE gamma_moist_vctr, gamma_moist_sclr |
---|
29 | END INTERFACE gamma_moist |
---|
30 | |
---|
31 | INTERFACE e_sat |
---|
32 | MODULE PROCEDURE e_sat_vctr, e_sat_sclr |
---|
33 | END INTERFACE e_sat |
---|
34 | |
---|
35 | INTERFACE L_vap |
---|
36 | MODULE PROCEDURE L_vap_vctr, L_vap_sclr |
---|
37 | END INTERFACE L_vap |
---|
38 | |
---|
39 | INTERFACE rho_air |
---|
40 | MODULE PROCEDURE rho_air_vctr, rho_air_sclr |
---|
41 | END INTERFACE rho_air |
---|
42 | |
---|
43 | INTERFACE cp_air |
---|
44 | MODULE PROCEDURE cp_air_vctr, cp_air_sclr |
---|
45 | END INTERFACE cp_air |
---|
46 | |
---|
47 | INTERFACE alpha_sw |
---|
48 | MODULE PROCEDURE alpha_sw_vctr, alpha_sw_sclr |
---|
49 | END INTERFACE alpha_sw |
---|
50 | |
---|
51 | INTERFACE turb_fluxes |
---|
52 | MODULE PROCEDURE turb_fluxes_vctr, turb_fluxes_sclr |
---|
53 | END INTERFACE turb_fluxes |
---|
54 | |
---|
55 | |
---|
56 | |
---|
57 | PUBLIC virt_temp |
---|
58 | PUBLIC rho_air |
---|
59 | PUBLIC visc_air |
---|
60 | PUBLIC L_vap |
---|
61 | PUBLIC cp_air |
---|
62 | PUBLIC gamma_moist |
---|
63 | PUBLIC One_on_L |
---|
64 | PUBLIC Ri_bulk |
---|
65 | PUBLIC q_sat |
---|
66 | PUBLIC q_air_rh |
---|
67 | !: |
---|
68 | PUBLIC update_qnsol_tau |
---|
69 | PUBLIC alpha_sw |
---|
70 | PUBLIC turb_fluxes |
---|
71 | |
---|
72 | !!---------------------------------------------------------------------- |
---|
73 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
74 | !! $Id: sbcblk.F90 10535 2019-01-16 17:36:47Z clem $ |
---|
75 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
76 | !!---------------------------------------------------------------------- |
---|
77 | CONTAINS |
---|
78 | |
---|
79 | FUNCTION virt_temp( pta, pqa ) |
---|
80 | !!------------------------------------------------------------------------ |
---|
81 | !! |
---|
82 | !! Compute the (absolute/potential) virtual temperature, knowing the |
---|
83 | !! (absolute/potential) temperature and specific humidity |
---|
84 | !! |
---|
85 | !! If input temperature is absolute then output vitual temperature is absolute |
---|
86 | !! If input temperature is potential then output vitual temperature is potential |
---|
87 | !! |
---|
88 | !! Author: L. Brodeau, June 2019 / AeroBulk |
---|
89 | !! (https://github.com/brodeau/aerobulk/) |
---|
90 | !!------------------------------------------------------------------------ |
---|
91 | REAL(wp), DIMENSION(jpi,jpj) :: virt_temp !: 1./(Monin Obukhov length) [m^-1] |
---|
92 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pta, & !: absolute or potetntial air temperature [K] |
---|
93 | & pqa !: specific humidity of air [kg/kg] |
---|
94 | !!------------------------------------------------------------------- |
---|
95 | ! |
---|
96 | virt_temp(:,:) = pta(:,:) * (1._wp + rctv0*pqa(:,:)) |
---|
97 | !! |
---|
98 | !! This is exactly the same sing that: |
---|
99 | !! virt_temp = pta * ( pwa + reps0) / (reps0*(1.+pwa)) |
---|
100 | !! with wpa (mixing ration) defined as : pwa = pqa/(1.-pqa) |
---|
101 | ! |
---|
102 | END FUNCTION virt_temp |
---|
103 | |
---|
104 | FUNCTION rho_air_vctr( ptak, pqa, pslp ) |
---|
105 | !!------------------------------------------------------------------------------- |
---|
106 | !! *** FUNCTION rho_air_vctr *** |
---|
107 | !! |
---|
108 | !! ** Purpose : compute density of (moist) air using the eq. of state of the atmosphere |
---|
109 | !! |
---|
110 | !! ** Author: L. Brodeau, June 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
111 | !!------------------------------------------------------------------------------- |
---|
112 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak ! air temperature [K] |
---|
113 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa ! air specific humidity [kg/kg] |
---|
114 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pslp ! pressure in [Pa] |
---|
115 | REAL(wp), DIMENSION(jpi,jpj) :: rho_air_vctr ! density of moist air [kg/m^3] |
---|
116 | !!------------------------------------------------------------------------------- |
---|
117 | rho_air_vctr = MAX( pslp / (R_dry*ptak * ( 1._wp + rctv0*pqa )) , 0.8_wp ) |
---|
118 | END FUNCTION rho_air_vctr |
---|
119 | |
---|
120 | FUNCTION rho_air_sclr( ptak, pqa, pslp ) |
---|
121 | !!------------------------------------------------------------------------------- |
---|
122 | !! *** FUNCTION rho_air_sclr *** |
---|
123 | !! |
---|
124 | !! ** Purpose : compute density of (moist) air using the eq. of state of the atmosphere |
---|
125 | !! |
---|
126 | !! ** Author: L. Brodeau, June 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
127 | !!------------------------------------------------------------------------------- |
---|
128 | REAL(wp), INTENT(in) :: ptak ! air temperature [K] |
---|
129 | REAL(wp), INTENT(in) :: pqa ! air specific humidity [kg/kg] |
---|
130 | REAL(wp), INTENT(in) :: pslp ! pressure in [Pa] |
---|
131 | REAL(wp) :: rho_air_sclr ! density of moist air [kg/m^3] |
---|
132 | !!------------------------------------------------------------------------------- |
---|
133 | rho_air_sclr = MAX( pslp / (R_dry*ptak * ( 1._wp + rctv0*pqa )) , 0.8_wp ) |
---|
134 | END FUNCTION rho_air_sclr |
---|
135 | |
---|
136 | |
---|
137 | |
---|
138 | FUNCTION visc_air(ptak) |
---|
139 | !!---------------------------------------------------------------------------------- |
---|
140 | !! Air kinetic viscosity (m^2/s) given from temperature in degrees... |
---|
141 | !! |
---|
142 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
143 | !!---------------------------------------------------------------------------------- |
---|
144 | REAL(wp), DIMENSION(jpi,jpj) :: visc_air ! |
---|
145 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak ! air temperature in (K) |
---|
146 | ! |
---|
147 | INTEGER :: ji, jj ! dummy loop indices |
---|
148 | REAL(wp) :: ztc, ztc2 ! local scalar |
---|
149 | !!---------------------------------------------------------------------------------- |
---|
150 | ! |
---|
151 | DO jj = 1, jpj |
---|
152 | DO ji = 1, jpi |
---|
153 | ztc = ptak(ji,jj) - rt0 ! air temp, in deg. C |
---|
154 | ztc2 = ztc*ztc |
---|
155 | visc_air(ji,jj) = 1.326e-5*(1. + 6.542E-3*ztc + 8.301e-6*ztc2 - 4.84e-9*ztc2*ztc) |
---|
156 | END DO |
---|
157 | END DO |
---|
158 | ! |
---|
159 | END FUNCTION visc_air |
---|
160 | |
---|
161 | FUNCTION L_vap_vctr( psst ) |
---|
162 | !!--------------------------------------------------------------------------------- |
---|
163 | !! *** FUNCTION L_vap_vctr *** |
---|
164 | !! |
---|
165 | !! ** Purpose : Compute the latent heat of vaporization of water from temperature |
---|
166 | !! |
---|
167 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
168 | !!---------------------------------------------------------------------------------- |
---|
169 | REAL(wp), DIMENSION(jpi,jpj) :: L_vap_vctr ! latent heat of vaporization [J/kg] |
---|
170 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: psst ! water temperature [K] |
---|
171 | !!---------------------------------------------------------------------------------- |
---|
172 | ! |
---|
173 | L_vap_vctr = ( 2.501_wp - 0.00237_wp * ( psst(:,:) - rt0) ) * 1.e6_wp |
---|
174 | ! |
---|
175 | END FUNCTION L_vap_vctr |
---|
176 | |
---|
177 | FUNCTION L_vap_sclr( psst ) |
---|
178 | !!--------------------------------------------------------------------------------- |
---|
179 | !! *** FUNCTION L_vap_sclr *** |
---|
180 | !! |
---|
181 | !! ** Purpose : Compute the latent heat of vaporization of water from temperature |
---|
182 | !! |
---|
183 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
184 | !!---------------------------------------------------------------------------------- |
---|
185 | REAL(wp) :: L_vap_sclr ! latent heat of vaporization [J/kg] |
---|
186 | REAL(wp), INTENT(in) :: psst ! water temperature [K] |
---|
187 | !!---------------------------------------------------------------------------------- |
---|
188 | ! |
---|
189 | L_vap_sclr = ( 2.501_wp - 0.00237_wp * ( psst - rt0) ) * 1.e6_wp |
---|
190 | ! |
---|
191 | END FUNCTION L_vap_sclr |
---|
192 | |
---|
193 | |
---|
194 | FUNCTION cp_air_vctr( pqa ) |
---|
195 | !!------------------------------------------------------------------------------- |
---|
196 | !! *** FUNCTION cp_air_vctr *** |
---|
197 | !! |
---|
198 | !! ** Purpose : Compute specific heat (Cp) of moist air |
---|
199 | !! |
---|
200 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
201 | !!------------------------------------------------------------------------------- |
---|
202 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa ! air specific humidity [kg/kg] |
---|
203 | REAL(wp), DIMENSION(jpi,jpj) :: cp_air_vctr ! specific heat of moist air [J/K/kg] |
---|
204 | !!------------------------------------------------------------------------------- |
---|
205 | cp_air_vctr = rCp_dry + rCp_vap * pqa |
---|
206 | END FUNCTION cp_air_vctr |
---|
207 | |
---|
208 | FUNCTION cp_air_sclr( pqa ) |
---|
209 | !!------------------------------------------------------------------------------- |
---|
210 | !! *** FUNCTION cp_air_sclr *** |
---|
211 | !! |
---|
212 | !! ** Purpose : Compute specific heat (Cp) of moist air |
---|
213 | !! |
---|
214 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
215 | !!------------------------------------------------------------------------------- |
---|
216 | REAL(wp), INTENT(in) :: pqa ! air specific humidity [kg/kg] |
---|
217 | REAL(wp) :: cp_air_sclr ! specific heat of moist air [J/K/kg] |
---|
218 | !!------------------------------------------------------------------------------- |
---|
219 | cp_air_sclr = rCp_dry + rCp_vap * pqa |
---|
220 | END FUNCTION cp_air_sclr |
---|
221 | |
---|
222 | |
---|
223 | |
---|
224 | |
---|
225 | |
---|
226 | FUNCTION gamma_moist_vctr( ptak, pqa ) |
---|
227 | !!---------------------------------------------------------------------------------- |
---|
228 | !! *** FUNCTION gamma_moist_vctr *** |
---|
229 | !! |
---|
230 | !! ** Purpose : Compute the moist adiabatic lapse-rate. |
---|
231 | !! => http://glossary.ametsoc.org/wiki/Moist-adiabatic_lapse_rate |
---|
232 | !! => http://www.geog.ucsb.edu/~joel/g266_s10/lecture_notes/chapt03/oh10_3_01/oh10_3_01.html |
---|
233 | !! |
---|
234 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
235 | !!---------------------------------------------------------------------------------- |
---|
236 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak ! air temperature [K] |
---|
237 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa ! specific humidity [kg/kg] |
---|
238 | REAL(wp), DIMENSION(jpi,jpj) :: gamma_moist_vctr ! moist adiabatic lapse-rate |
---|
239 | ! |
---|
240 | INTEGER :: ji, jj ! dummy loop indices |
---|
241 | REAL(wp) :: zta, zqa, zwa, ziRT ! local scalar |
---|
242 | !!---------------------------------------------------------------------------------- |
---|
243 | ! |
---|
244 | DO jj = 1, jpj |
---|
245 | DO ji = 1, jpi |
---|
246 | zta = MAX( ptak(ji,jj), 180._wp) ! prevents screw-up over masked regions where field == 0. |
---|
247 | zqa = MAX( pqa(ji,jj), 1.E-6_wp) ! " " " |
---|
248 | ! |
---|
249 | zwa = zqa / (1. - zqa) ! w is mixing ratio w = q/(1-q) | q = w/(1+w) |
---|
250 | ziRT = 1._wp/(R_dry*zta) ! 1/RT |
---|
251 | gamma_moist_vctr(ji,jj) = grav * ( 1._wp + rLevap*zwa*ziRT ) / ( rCp_dry + rLevap*rLevap*zwa*reps0*ziRT/zta ) |
---|
252 | END DO |
---|
253 | END DO |
---|
254 | ! |
---|
255 | END FUNCTION gamma_moist_vctr |
---|
256 | |
---|
257 | FUNCTION gamma_moist_sclr( ptak, pqa ) |
---|
258 | !!---------------------------------------------------------------------------------- |
---|
259 | !! ** Purpose : Compute the moist adiabatic lapse-rate. |
---|
260 | !! => http://glossary.ametsoc.org/wiki/Moist-adiabatic_lapse_rate |
---|
261 | !! => http://www.geog.ucsb.edu/~joel/g266_s10/lecture_notes/chapt03/oh10_3_01/oh10_3_01.html |
---|
262 | !! |
---|
263 | !! ** Author: L. Brodeau, June 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
264 | !!---------------------------------------------------------------------------------- |
---|
265 | REAL(wp) :: gamma_moist_sclr |
---|
266 | REAL(wp), INTENT(in) :: ptak, pqa ! air temperature (K) and specific humidity (kg/kg) |
---|
267 | ! |
---|
268 | REAL(wp) :: zta, zqa, zwa, ziRT ! local scalar |
---|
269 | !!---------------------------------------------------------------------------------- |
---|
270 | zta = MAX( ptak, 180._wp) ! prevents screw-up over masked regions where field == 0. |
---|
271 | zqa = MAX( pqa, 1.E-6_wp) ! " " " |
---|
272 | !! |
---|
273 | zwa = zqa / (1._wp - zqa) ! w is mixing ratio w = q/(1-q) | q = w/(1+w) |
---|
274 | ziRT = 1._wp / (R_dry*zta) ! 1/RT |
---|
275 | gamma_moist_sclr = grav * ( 1._wp + rLevap*zwa*ziRT ) / ( rCp_dry + rLevap*rLevap*zwa*reps0*ziRT/zta ) |
---|
276 | !! |
---|
277 | END FUNCTION gamma_moist_sclr |
---|
278 | |
---|
279 | FUNCTION One_on_L( ptha, pqa, pus, pts, pqs ) |
---|
280 | !!------------------------------------------------------------------------ |
---|
281 | !! |
---|
282 | !! Evaluates the 1./(Monin Obukhov length) from air temperature and |
---|
283 | !! specific humidity, and frictional scales u*, t* and q* |
---|
284 | !! |
---|
285 | !! Author: L. Brodeau, June 2016 / AeroBulk |
---|
286 | !! (https://github.com/brodeau/aerobulk/) |
---|
287 | !!------------------------------------------------------------------------ |
---|
288 | REAL(wp), DIMENSION(jpi,jpj) :: One_on_L !: 1./(Monin Obukhov length) [m^-1] |
---|
289 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptha, & !: average potetntial air temperature [K] |
---|
290 | & pqa, & !: average specific humidity of air [kg/kg] |
---|
291 | & pus, pts, pqs !: frictional velocity, temperature and humidity |
---|
292 | ! |
---|
293 | INTEGER :: ji, jj ! dummy loop indices |
---|
294 | REAL(wp) :: zqa ! local scalar |
---|
295 | !!------------------------------------------------------------------- |
---|
296 | ! |
---|
297 | DO jj = 1, jpj |
---|
298 | DO ji = 1, jpi |
---|
299 | ! |
---|
300 | zqa = (1._wp + rctv0*pqa(ji,jj)) |
---|
301 | ! |
---|
302 | ! The main concern is to know whether, the vertical turbulent flux of virtual temperature, < u' theta_v' > is estimated with: |
---|
303 | ! a/ -u* [ theta* (1 + 0.61 q) + 0.61 theta q* ] => this is the one that seems correct! chose this one! |
---|
304 | ! or |
---|
305 | ! b/ -u* [ theta* + 0.61 theta q* ] |
---|
306 | ! |
---|
307 | One_on_L(ji,jj) = grav*vkarmn*( pts(ji,jj)*zqa + rctv0*ptha(ji,jj)*pqs(ji,jj) ) & |
---|
308 | & / MAX( pus(ji,jj)*pus(ji,jj)*ptha(ji,jj)*zqa , 1.E-9_wp ) |
---|
309 | ! |
---|
310 | END DO |
---|
311 | END DO |
---|
312 | ! |
---|
313 | One_on_L = SIGN( MIN(ABS(One_on_L),200._wp), One_on_L ) ! (prevent FPE from stupid values over masked regions...) |
---|
314 | ! |
---|
315 | END FUNCTION One_on_L |
---|
316 | |
---|
317 | FUNCTION Ri_bulk( pz, psst, ptha, pssq, pqa, pub ) |
---|
318 | !!---------------------------------------------------------------------------------- |
---|
319 | !! Bulk Richardson number according to "wide-spread equation"... |
---|
320 | !! |
---|
321 | !! ** Author: L. Brodeau, June 2019 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
322 | !!---------------------------------------------------------------------------------- |
---|
323 | REAL(wp), DIMENSION(jpi,jpj) :: Ri_bulk |
---|
324 | REAL(wp) , INTENT(in) :: pz ! height above the sea (aka "delta z") [m] |
---|
325 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: psst ! SST [K] |
---|
326 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptha ! pot. air temp. at height "pz" [K] |
---|
327 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pssq ! 0.98*q_sat(SST) [kg/kg] |
---|
328 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa ! air spec. hum. at height "pz" [kg/kg] |
---|
329 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pub ! bulk wind speed [m/s] |
---|
330 | ! |
---|
331 | INTEGER :: ji, jj ! dummy loop indices |
---|
332 | REAL(wp) :: zqa, zta, zgamma, zdth_v, ztv, zsstv ! local scalars |
---|
333 | !!------------------------------------------------------------------- |
---|
334 | ! |
---|
335 | DO jj = 1, jpj |
---|
336 | DO ji = 1, jpi |
---|
337 | ! |
---|
338 | zqa = 0.5_wp*(pqa(ji,jj)+pssq(ji,jj)) ! ~ mean q within the layer... |
---|
339 | zta = 0.5_wp*( psst(ji,jj) + ptha(ji,jj) - gamma_moist(ptha(ji,jj),zqa)*pz ) ! ~ mean absolute temperature of air within the layer |
---|
340 | zta = 0.5_wp*( psst(ji,jj) + ptha(ji,jj) - gamma_moist(zta, zqa)*pz ) ! ~ mean absolute temperature of air within the layer |
---|
341 | zgamma = gamma_moist(zta, zqa) ! Adiabatic lapse-rate for moist air within the layer |
---|
342 | ! |
---|
343 | zsstv = psst(ji,jj)*(1._wp + rctv0*pssq(ji,jj)) ! absolute==potential virtual SST (absolute==potential because z=0!) |
---|
344 | ! |
---|
345 | zdth_v = ptha(ji,jj)*(1._wp + rctv0*pqa(ji,jj)) - zsstv ! air-sea delta of "virtual potential temperature" |
---|
346 | ! |
---|
347 | ztv = 0.5_wp*( zsstv + (ptha(ji,jj) - zgamma*pz)*(1._wp + rctv0*pqa(ji,jj)) ) ! ~ mean absolute virtual temp. within the layer |
---|
348 | ! |
---|
349 | Ri_bulk(ji,jj) = grav*zdth_v*pz / ( ztv*pub(ji,jj)*pub(ji,jj) ) ! the usual definition of Ri_bulk |
---|
350 | ! |
---|
351 | END DO |
---|
352 | END DO |
---|
353 | END FUNCTION Ri_bulk |
---|
354 | |
---|
355 | |
---|
356 | FUNCTION e_sat_vctr(ptak) |
---|
357 | !!************************************************** |
---|
358 | !! ptak: air temperature [K] |
---|
359 | !! e_sat: water vapor at saturation [Pa] |
---|
360 | !! |
---|
361 | !! Recommended by WMO |
---|
362 | !! |
---|
363 | !! Goff, J. A., 1957: Saturation pressure of water on the new kelvin |
---|
364 | !! temperature scale. Transactions of the American society of heating |
---|
365 | !! and ventilating engineers, 347–354. |
---|
366 | !! |
---|
367 | !! rt0 should be 273.16 (triple point of water) and not 273.15 like here |
---|
368 | !!************************************************** |
---|
369 | |
---|
370 | REAL(wp), DIMENSION(jpi,jpj) :: e_sat_vctr !: vapour pressure at saturation [Pa] |
---|
371 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak !: temperature (K) |
---|
372 | |
---|
373 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ztmp |
---|
374 | |
---|
375 | ALLOCATE ( ztmp(jpi,jpj) ) |
---|
376 | |
---|
377 | ztmp(:,:) = rtt0/ptak(:,:) |
---|
378 | |
---|
379 | e_sat_vctr = 100.*( 10.**(10.79574*(1. - ztmp) - 5.028*LOG10(ptak/rtt0) & |
---|
380 | & + 1.50475*10.**(-4)*(1. - 10.**(-8.2969*(ptak/rtt0 - 1.)) ) & |
---|
381 | & + 0.42873*10.**(-3)*(10.**(4.76955*(1. - ztmp)) - 1.) + 0.78614) ) |
---|
382 | |
---|
383 | DEALLOCATE ( ztmp ) |
---|
384 | |
---|
385 | END FUNCTION e_sat_vctr |
---|
386 | |
---|
387 | |
---|
388 | FUNCTION e_sat_sclr( ptak ) |
---|
389 | !!---------------------------------------------------------------------------------- |
---|
390 | !! *** FUNCTION e_sat_sclr *** |
---|
391 | !! < SCALAR argument version > |
---|
392 | !! ** Purpose : water vapor at saturation in [Pa] |
---|
393 | !! Based on accurate estimate by Goff, 1957 |
---|
394 | !! |
---|
395 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
396 | !! |
---|
397 | !! Note: what rt0 should be here, is 273.16 (triple point of water) and not 273.15 like here |
---|
398 | !!---------------------------------------------------------------------------------- |
---|
399 | REAL(wp), INTENT(in) :: ptak ! air temperature [K] |
---|
400 | REAL(wp) :: e_sat_sclr ! water vapor at saturation [kg/kg] |
---|
401 | ! |
---|
402 | REAL(wp) :: zta, ztmp ! local scalar |
---|
403 | !!---------------------------------------------------------------------------------- |
---|
404 | ! |
---|
405 | zta = MAX( ptak , 180._wp ) ! air temp., prevents fpe0 errors dute to unrealistically low values over masked regions... |
---|
406 | ztmp = rt0 / zta |
---|
407 | ! |
---|
408 | ! Vapour pressure at saturation [Pa] : WMO, (Goff, 1957) |
---|
409 | e_sat_sclr = 100.*( 10.**( 10.79574*(1. - ztmp) - 5.028*LOG10(zta/rt0) & |
---|
410 | & + 1.50475*10.**(-4)*(1. - 10.**(-8.2969*(zta/rt0 - 1.)) ) & |
---|
411 | & + 0.42873*10.**(-3)*(10.**(4.76955*(1. - ztmp)) - 1.) + 0.78614) ) |
---|
412 | ! |
---|
413 | END FUNCTION e_sat_sclr |
---|
414 | |
---|
415 | |
---|
416 | FUNCTION q_sat( ptak, pslp ) |
---|
417 | !!---------------------------------------------------------------------------------- |
---|
418 | !! *** FUNCTION q_sat *** |
---|
419 | !! |
---|
420 | !! ** Purpose : Specific humidity at saturation in [kg/kg] |
---|
421 | !! Based on accurate estimate of "e_sat" |
---|
422 | !! aka saturation water vapor (Goff, 1957) |
---|
423 | !! |
---|
424 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
425 | !!---------------------------------------------------------------------------------- |
---|
426 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak ! air temperature [K] |
---|
427 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pslp ! sea level atmospheric pressure [Pa] |
---|
428 | REAL(wp), DIMENSION(jpi,jpj) :: q_sat ! Specific humidity at saturation [kg/kg] |
---|
429 | ! |
---|
430 | INTEGER :: ji, jj ! dummy loop indices |
---|
431 | REAL(wp) :: ze_sat ! local scalar |
---|
432 | !!---------------------------------------------------------------------------------- |
---|
433 | ! |
---|
434 | DO jj = 1, jpj |
---|
435 | DO ji = 1, jpi |
---|
436 | ! |
---|
437 | ze_sat = e_sat_sclr( ptak(ji,jj) ) |
---|
438 | ! |
---|
439 | q_sat(ji,jj) = reps0 * ze_sat/( pslp(ji,jj) - (1._wp - reps0)*ze_sat ) |
---|
440 | ! |
---|
441 | END DO |
---|
442 | END DO |
---|
443 | ! |
---|
444 | END FUNCTION q_sat |
---|
445 | |
---|
446 | FUNCTION q_air_rh(prha, ptak, pslp) |
---|
447 | !!---------------------------------------------------------------------------------- |
---|
448 | !! Specific humidity of air out of Relative Humidity |
---|
449 | !! |
---|
450 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
451 | !!---------------------------------------------------------------------------------- |
---|
452 | REAL(wp), DIMENSION(jpi,jpj) :: q_air_rh |
---|
453 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: prha !: relative humidity [fraction, not %!!!] |
---|
454 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak !: air temperature [K] |
---|
455 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pslp !: atmospheric pressure [Pa] |
---|
456 | ! |
---|
457 | INTEGER :: ji, jj ! dummy loop indices |
---|
458 | REAL(wp) :: ze ! local scalar |
---|
459 | !!---------------------------------------------------------------------------------- |
---|
460 | ! |
---|
461 | DO jj = 1, jpj |
---|
462 | DO ji = 1, jpi |
---|
463 | ze = prha(ji,jj)*e_sat_sclr(ptak(ji,jj)) |
---|
464 | q_air_rh(ji,jj) = ze*reps0/(pslp(ji,jj) - (1. - reps0)*ze) |
---|
465 | END DO |
---|
466 | END DO |
---|
467 | ! |
---|
468 | END FUNCTION q_air_rh |
---|
469 | |
---|
470 | |
---|
471 | SUBROUTINE UPDATE_QNSOL_TAU( pzu, pTs, pqs, pTa, pqa, pust, ptst, pqst, pwnd, pUb, pslp, prlw, & |
---|
472 | & pQns, pTau, & |
---|
473 | & Qlat) |
---|
474 | !!---------------------------------------------------------------------------------- |
---|
475 | !! Purpose: returns the non-solar heat flux to the ocean aka "Qlat + Qsen + Qlw" |
---|
476 | !! and the module of the wind stress => pTau = Tau |
---|
477 | !! ** Author: L. Brodeau, Sept. 2019 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
478 | !!---------------------------------------------------------------------------------- |
---|
479 | REAL(wp), INTENT(in) :: pzu ! height above the sea-level where all this takes place (normally 10m) |
---|
480 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pTs ! water temperature at the air-sea interface [K] |
---|
481 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqs ! satur. spec. hum. at T=pTs [kg/kg] |
---|
482 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pTa ! potential air temperature at z=pzu [K] |
---|
483 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa ! specific humidity at z=pzu [kg/kg] |
---|
484 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pust ! u* |
---|
485 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptst ! t* |
---|
486 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqst ! q* |
---|
487 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pwnd ! wind speed module at z=pzu [m/s] |
---|
488 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pUb ! bulk wind speed at z=pzu (inc. pot. effect of gustiness etc) [m/s] |
---|
489 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pslp ! sea-level atmospheric pressure [Pa] |
---|
490 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: prlw ! downwelling longwave radiative flux [W/m^2] |
---|
491 | ! |
---|
492 | REAL(wp), DIMENSION(jpi,jpj), INTENT(out) :: pQns ! non-solar heat flux to the ocean aka "Qlat + Qsen + Qlw" [W/m^2]] |
---|
493 | REAL(wp), DIMENSION(jpi,jpj), INTENT(out) :: pTau ! module of the wind stress [N/m^2] |
---|
494 | ! |
---|
495 | REAL(wp), DIMENSION(jpi,jpj), OPTIONAL, INTENT(out) :: Qlat |
---|
496 | ! |
---|
497 | REAL(wp) :: zdt, zdq, zCd, zCh, zCe, zUrho, zTs2, zz0, & |
---|
498 | & zQlat, zQsen, zQlw |
---|
499 | INTEGER :: ji, jj ! dummy loop indices |
---|
500 | !!---------------------------------------------------------------------------------- |
---|
501 | DO jj = 1, jpj |
---|
502 | DO ji = 1, jpi |
---|
503 | |
---|
504 | zdt = pTa(ji,jj) - pTs(ji,jj) ; zdt = SIGN( MAX(ABS(zdt),1.E-6_wp), zdt ) |
---|
505 | zdq = pqa(ji,jj) - pqs(ji,jj) ; zdq = SIGN( MAX(ABS(zdq),1.E-9_wp), zdq ) |
---|
506 | zz0 = pust(ji,jj)/pUb(ji,jj) |
---|
507 | zCd = zz0*zz0 |
---|
508 | zCh = zz0*ptst(ji,jj)/zdt |
---|
509 | zCe = zz0*pqst(ji,jj)/zdq |
---|
510 | |
---|
511 | !zUrho = pUb(ji,jj)*MAX(rho_air(pTa(ji,jj), pqa(ji,jj), pslp(ji,jj)), 1._wp) ! rho*U10 |
---|
512 | zTs2 = pTs(ji,jj)*pTs(ji,jj) |
---|
513 | |
---|
514 | CALL TURB_FLUXES( pzu, pTs(ji,jj), pqs(ji,jj), pTa(ji,jj), pqa(ji,jj), zCd, zCh, zCe, & |
---|
515 | & pwnd(ji,jj), pUb(ji,jj), pslp(ji,jj), & |
---|
516 | & pTau(ji,jj), zQsen, zQlat ) |
---|
517 | |
---|
518 | |
---|
519 | ! Wind stress module: |
---|
520 | !pTau(ji,jj) = zCd*zUrho*pUb(ji,jj) ! lolo? |
---|
521 | |
---|
522 | ! Non-Solar heat flux to the ocean: |
---|
523 | !zQlat = MIN ( zUrho*zCe*L_vap( pTs(ji,jj)) * zdq , 0._wp ) ! we do not want a Qlat > 0 ! |
---|
524 | !zQsen = zUrho*zCh*cp_air(pqa(ji,jj)) * zdt |
---|
525 | zQlw = emiss_w*(prlw(ji,jj) - stefan*zTs2*zTs2) ! Net longwave flux |
---|
526 | |
---|
527 | pQns(ji,jj) = zQlat + zQsen + zQlw |
---|
528 | |
---|
529 | IF ( PRESENT(Qlat) ) Qlat(ji,jj) = zQlat |
---|
530 | END DO |
---|
531 | END DO |
---|
532 | END SUBROUTINE UPDATE_QNSOL_TAU |
---|
533 | |
---|
534 | |
---|
535 | |
---|
536 | |
---|
537 | |
---|
538 | SUBROUTINE TURB_FLUXES_VCTR( pzu, pTs, pqs, pTa, pqa, pCd, pCh, pCe, pwnd, pUb, pslp, & |
---|
539 | & pTau, pQsen, pQlat, pEvap ) |
---|
540 | !!---------------------------------------------------------------------------------- |
---|
541 | REAL(wp), INTENT(in) :: pzu ! height above the sea-level where all this takes place (normally 10m) |
---|
542 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pTs ! water temperature at the air-sea interface [K] |
---|
543 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqs ! satur. spec. hum. at T=pTs [kg/kg] |
---|
544 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pTa ! potential air temperature at z=pzu [K] |
---|
545 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa ! specific humidity at z=pzu [kg/kg] |
---|
546 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pCd |
---|
547 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pCh |
---|
548 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pCe |
---|
549 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pwnd ! wind speed module at z=pzu [m/s] |
---|
550 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pUb ! bulk wind speed at z=pzu (inc. pot. effect of gustiness etc) [m/s] |
---|
551 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pslp ! sea-level atmospheric pressure [Pa] |
---|
552 | !! |
---|
553 | REAL(wp), DIMENSION(jpi,jpj), INTENT(out) :: pTau ! module of the wind stress [N/m^2] |
---|
554 | REAL(wp), DIMENSION(jpi,jpj), INTENT(out) :: pQsen ! [W/m^2] |
---|
555 | REAL(wp), DIMENSION(jpi,jpj), INTENT(out) :: pQlat ! [W/m^2] |
---|
556 | !! |
---|
557 | REAL(wp), DIMENSION(jpi,jpj), INTENT(out), OPTIONAL :: pEvap ! [kg/m^2/s] |
---|
558 | !! |
---|
559 | REAL(wp) :: ztaa, zgamma, zrho, zUrho, zevap |
---|
560 | INTEGER :: ji, jj, jq ! dummy loop indices |
---|
561 | !!---------------------------------------------------------------------------------- |
---|
562 | DO jj = 1, jpj |
---|
563 | DO ji = 1, jpi |
---|
564 | |
---|
565 | !! Need ztaa, absolute temperature at pzu (formula to estimate rho_air needs absolute temperature, not the potential temperature "pTa") |
---|
566 | ztaa = pTa(ji,jj) ! first guess... |
---|
567 | DO jq = 1, 4 |
---|
568 | zgamma = gamma_moist( 0.5*(ztaa+pTs(ji,jj)) , pqa(ji,jj) ) |
---|
569 | ztaa = pTa(ji,jj) - zgamma*pzu ! Absolute temp. is slightly colder... |
---|
570 | END DO |
---|
571 | zrho = rho_air(ztaa, pqa(ji,jj), pslp(ji,jj)) |
---|
572 | zrho = rho_air(ztaa, pqa(ji,jj), pslp(ji,jj)-zrho*grav*pzu) ! taking into account that we are pzu m above the sea level where SLP is given! |
---|
573 | |
---|
574 | zUrho = pUb(ji,jj)*MAX(zrho, 1._wp) ! rho*U10 |
---|
575 | |
---|
576 | pTau(ji,jj) = zUrho * pCd(ji,jj) * pwnd(ji,jj) ! Wind stress module |
---|
577 | |
---|
578 | zevap = MIN( zUrho * pCe(ji,jj) * (pqa(ji,jj) - pqs(ji,jj)) , 0._wp ) ! we do not want condensation & Qlat > 0 ! |
---|
579 | pQsen(ji,jj) = zUrho * pCh(ji,jj) * (pTa(ji,jj) - pTs(ji,jj)) * cp_air(pqa(ji,jj)) |
---|
580 | pQlat(ji,jj) = L_vap(pTs(ji,jj)) * zevap |
---|
581 | |
---|
582 | IF ( PRESENT(pEvap) ) pEvap(ji,jj) = - zevap |
---|
583 | |
---|
584 | END DO |
---|
585 | END DO |
---|
586 | END SUBROUTINE TURB_FLUXES_VCTR |
---|
587 | |
---|
588 | |
---|
589 | SUBROUTINE TURB_FLUXES_SCLR( pzu, pTs, pqs, pTa, pqa, pCd, pCh, pCe, pwnd, pUb, pslp, & |
---|
590 | & pTau, pQsen, pQlat, pEvap ) |
---|
591 | !!---------------------------------------------------------------------------------- |
---|
592 | REAL(wp), INTENT(in) :: pzu ! height above the sea-level where all this takes place (normally 10m) |
---|
593 | REAL(wp), INTENT(in) :: pTs ! water temperature at the air-sea interface [K] |
---|
594 | REAL(wp), INTENT(in) :: pqs ! satur. spec. hum. at T=pTs [kg/kg] |
---|
595 | REAL(wp), INTENT(in) :: pTa ! potential air temperature at z=pzu [K] |
---|
596 | REAL(wp), INTENT(in) :: pqa ! specific humidity at z=pzu [kg/kg] |
---|
597 | REAL(wp), INTENT(in) :: pCd |
---|
598 | REAL(wp), INTENT(in) :: pCh |
---|
599 | REAL(wp), INTENT(in) :: pCe |
---|
600 | REAL(wp), INTENT(in) :: pwnd ! wind speed module at z=pzu [m/s] |
---|
601 | REAL(wp), INTENT(in) :: pUb ! bulk wind speed at z=pzu (inc. pot. effect of gustiness etc) [m/s] |
---|
602 | REAL(wp), INTENT(in) :: pslp ! sea-level atmospheric pressure [Pa] |
---|
603 | !! |
---|
604 | REAL(wp), INTENT(out) :: pTau ! module of the wind stress [N/m^2] |
---|
605 | REAL(wp), INTENT(out) :: pQsen ! [W/m^2] |
---|
606 | REAL(wp), INTENT(out) :: pQlat ! [W/m^2] |
---|
607 | !! |
---|
608 | REAL(wp), INTENT(out), OPTIONAL :: pEvap ! [kg/m^2/s] |
---|
609 | !! |
---|
610 | REAL(wp) :: ztaa, zgamma, zrho, zUrho, zevap |
---|
611 | INTEGER :: jq |
---|
612 | !!---------------------------------------------------------------------------------- |
---|
613 | |
---|
614 | !! Need ztaa, absolute temperature at pzu (formula to estimate rho_air needs absolute temperature, not the potential temperature "pTa") |
---|
615 | ztaa = pTa ! first guess... |
---|
616 | DO jq = 1, 4 |
---|
617 | zgamma = gamma_moist( 0.5*(ztaa+pTs) , pqa ) |
---|
618 | ztaa = pTa - zgamma*pzu ! Absolute temp. is slightly colder... |
---|
619 | END DO |
---|
620 | zrho = rho_air(ztaa, pqa, pslp) |
---|
621 | zrho = rho_air(ztaa, pqa, pslp-zrho*grav*pzu) ! taking into account that we are pzu m above the sea level where SLP is given! |
---|
622 | |
---|
623 | zUrho = pUb*MAX(zrho, 1._wp) ! rho*U10 |
---|
624 | |
---|
625 | pTau = zUrho * pCd * pwnd ! Wind stress module |
---|
626 | |
---|
627 | zevap = MIN( zUrho * pCe * (pqa - pqs) , 0._wp ) ! we do not want condensation & Qlat > 0 ! |
---|
628 | pQsen = zUrho * pCh * (pTa - pTs) * cp_air(pqa) |
---|
629 | pQlat = L_vap(pTs) * zevap |
---|
630 | |
---|
631 | IF ( PRESENT(pEvap) ) pEvap = - zevap |
---|
632 | |
---|
633 | END SUBROUTINE TURB_FLUXES_SCLR |
---|
634 | |
---|
635 | |
---|
636 | |
---|
637 | |
---|
638 | |
---|
639 | FUNCTION alpha_sw_vctr( psst ) |
---|
640 | !!--------------------------------------------------------------------------------- |
---|
641 | !! *** FUNCTION alpha_sw_vctr *** |
---|
642 | !! |
---|
643 | !! ** Purpose : ROUGH estimate of the thermal expansion coefficient of sea-water at the surface (P =~ 1010 hpa) |
---|
644 | !! |
---|
645 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
646 | !!---------------------------------------------------------------------------------- |
---|
647 | REAL(wp), DIMENSION(jpi,jpj) :: alpha_sw_vctr ! thermal expansion coefficient of sea-water [1/K] |
---|
648 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: psst ! water temperature [K] |
---|
649 | !!---------------------------------------------------------------------------------- |
---|
650 | alpha_sw_vctr = 2.1e-5_wp * MAX(psst(:,:)-rt0 + 3.2_wp, 0._wp)**0.79 |
---|
651 | END FUNCTION alpha_sw_vctr |
---|
652 | |
---|
653 | FUNCTION alpha_sw_sclr( psst ) |
---|
654 | !!--------------------------------------------------------------------------------- |
---|
655 | !! *** FUNCTION alpha_sw_sclr *** |
---|
656 | !! |
---|
657 | !! ** Purpose : ROUGH estimate of the thermal expansion coefficient of sea-water at the surface (P =~ 1010 hpa) |
---|
658 | !! |
---|
659 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
660 | !!---------------------------------------------------------------------------------- |
---|
661 | REAL(wp) :: alpha_sw_sclr ! thermal expansion coefficient of sea-water [1/K] |
---|
662 | REAL(wp), INTENT(in) :: psst ! sea-water temperature [K] |
---|
663 | !!---------------------------------------------------------------------------------- |
---|
664 | alpha_sw_sclr = 2.1e-5_wp * MAX(psst-rt0 + 3.2_wp, 0._wp)**0.79 |
---|
665 | END FUNCTION alpha_sw_sclr |
---|
666 | |
---|
667 | |
---|
668 | |
---|
669 | !!====================================================================== |
---|
670 | END MODULE sbcblk_phy |
---|