1 | MODULE p4zmeso |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p4zmeso *** |
---|
4 | !! TOP : PISCES Compute the sources/sinks for mesozooplankton |
---|
5 | !!====================================================================== |
---|
6 | !! History : 1.0 ! 2002 (O. Aumont) Original code |
---|
7 | !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 |
---|
8 | !! 3.4 ! 2011-06 (O. Aumont, C. Ethe) Quota model for iron |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | !! p4z_meso : Compute the sources/sinks for mesozooplankton |
---|
11 | !! p4z_meso_init : Initialization of the parameters for mesozooplankton |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | USE oce_trc ! shared variables between ocean and passive tracers |
---|
14 | USE trc ! passive tracers common variables |
---|
15 | USE sms_pisces ! PISCES Source Minus Sink variables |
---|
16 | USE p4zprod ! production |
---|
17 | USE prtctl_trc ! print control for debugging |
---|
18 | USE iom ! I/O manager |
---|
19 | |
---|
20 | IMPLICIT NONE |
---|
21 | PRIVATE |
---|
22 | |
---|
23 | PUBLIC p4z_meso ! called in p4zbio.F90 |
---|
24 | PUBLIC p4z_meso_init ! called in trcsms_pisces.F90 |
---|
25 | PUBLIC p4z_meso_alloc |
---|
26 | |
---|
27 | REAL(wp), PUBLIC :: part2 !: part of calcite not dissolved in mesozoo guts |
---|
28 | REAL(wp), PUBLIC :: xpref2d !: mesozoo preference for diatoms |
---|
29 | REAL(wp), PUBLIC :: xpref2n !: mesozoo preference for nanophyto |
---|
30 | REAL(wp), PUBLIC :: xpref2z !: mesozoo preference for microzooplankton |
---|
31 | REAL(wp), PUBLIC :: xpref2c !: mesozoo preference for POC |
---|
32 | REAL(wp), PUBLIC :: xthresh2zoo !: zoo feeding threshold for mesozooplankton |
---|
33 | REAL(wp), PUBLIC :: xthresh2dia !: diatoms feeding threshold for mesozooplankton |
---|
34 | REAL(wp), PUBLIC :: xthresh2phy !: nanophyto feeding threshold for mesozooplankton |
---|
35 | REAL(wp), PUBLIC :: xthresh2poc !: poc feeding threshold for mesozooplankton |
---|
36 | REAL(wp), PUBLIC :: xthresh2 !: feeding threshold for mesozooplankton |
---|
37 | REAL(wp), PUBLIC :: resrat2 !: exsudation rate of mesozooplankton |
---|
38 | REAL(wp), PUBLIC :: mzrat2 !: microzooplankton mortality rate |
---|
39 | REAL(wp), PUBLIC :: grazrat2 !: maximal mesozoo grazing rate |
---|
40 | REAL(wp), PUBLIC :: xkgraz2 !: non assimilated fraction of P by mesozoo |
---|
41 | REAL(wp), PUBLIC :: unass2 !: Efficicency of mesozoo growth |
---|
42 | REAL(wp), PUBLIC :: sigma2 !: Fraction of mesozoo excretion as DOM |
---|
43 | REAL(wp), PUBLIC :: epsher2 !: growth efficiency |
---|
44 | REAL(wp), PUBLIC :: epsher2min !: minimum growth efficiency at high food for grazing 2 |
---|
45 | REAL(wp), PUBLIC :: grazflux !: mesozoo flux feeding rate |
---|
46 | REAL(wp), PUBLIC :: xfracmig !: Fractional biomass of meso that performs DVM |
---|
47 | LOGICAL , PUBLIC :: ln_dvm_meso !: Boolean to activate DVM of mesozooplankton |
---|
48 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: depmig |
---|
49 | INTEGER , ALLOCATABLE, SAVE, DIMENSION(:,:) :: kmig |
---|
50 | |
---|
51 | !!---------------------------------------------------------------------- |
---|
52 | !! NEMO/TOP 4.0 , NEMO Consortium (2018) |
---|
53 | !! $Id$ |
---|
54 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
55 | !!---------------------------------------------------------------------- |
---|
56 | CONTAINS |
---|
57 | |
---|
58 | SUBROUTINE p4z_meso( kt, knt ) |
---|
59 | !!--------------------------------------------------------------------- |
---|
60 | !! *** ROUTINE p4z_meso *** |
---|
61 | !! |
---|
62 | !! ** Purpose : Compute the sources/sinks for mesozooplankton |
---|
63 | !! |
---|
64 | !! ** Method : - ??? |
---|
65 | !!--------------------------------------------------------------------- |
---|
66 | INTEGER, INTENT(in) :: kt, knt ! ocean time step and ??? |
---|
67 | ! |
---|
68 | INTEGER :: ji, jj, jk, jkt |
---|
69 | REAL(wp) :: zcompadi, zcompaph, zcompapoc, zcompaz, zcompam |
---|
70 | REAL(wp) :: zgraze2 , zdenom, zdenom2 |
---|
71 | REAL(wp) :: zfact , zfood, zfoodlim, zproport, zbeta |
---|
72 | REAL(wp) :: zmortzgoc, zfrac, zfracfe, zratio, zratio2, zfracal, zgrazcal |
---|
73 | REAL(wp) :: zepsherf, zepshert, zepsherq, zepsherv, zgrarsig, zgraztotc, zgraztotn, zgraztotf |
---|
74 | REAL(wp) :: zmigreltime, zprcaca, zmortz, zgrasrat, zgrasratn |
---|
75 | REAL(wp) :: zrespz, ztortz, zgrazd, zgrazz, zgrazpof |
---|
76 | REAL(wp) :: zgrazn, zgrazpoc, zgraznf, zgrazf |
---|
77 | REAL(wp) :: zgrazfffp, zgrazfffg, zgrazffep, zgrazffeg |
---|
78 | REAL(wp) :: zrum, zcodel, zargu, zval |
---|
79 | CHARACTER (len=25) :: charout |
---|
80 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zgrazing, zfezoo2 |
---|
81 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zgrarem, zgraref, zgrapoc, zgrapof |
---|
82 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zgramigrem, zgramigref, zgramigpoc, zgramigpof, zstrn |
---|
83 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: zw3d, zz2ligprod |
---|
84 | !!--------------------------------------------------------------------- |
---|
85 | ! |
---|
86 | IF( ln_timing ) CALL timing_start('p4z_meso') |
---|
87 | ! |
---|
88 | zgrazing(:,:,:) = 0._wp |
---|
89 | zfezoo2 (:,:,:) = 0._wp |
---|
90 | ! |
---|
91 | IF (ln_ligand) THEN |
---|
92 | ALLOCATE( zz2ligprod(jpi,jpj,jpk) ) |
---|
93 | zz2ligprod(:,:,:) = 0._wp |
---|
94 | ENDIF |
---|
95 | ! |
---|
96 | ! Diurnal vertical migration of mesozooplankton |
---|
97 | ! --------------------------------------------- |
---|
98 | IF (ln_dvm_meso) CALL p4z_meso_depmig |
---|
99 | ! |
---|
100 | DO jk = 1, jpkm1 |
---|
101 | DO jj = 1, jpj |
---|
102 | DO ji = 1, jpi |
---|
103 | zcompam = MAX( ( trb(ji,jj,jk,jpmes) - 1.e-9 ), 0.e0 ) |
---|
104 | zfact = xstep * tgfunc2(ji,jj,jk) * zcompam |
---|
105 | |
---|
106 | ! Respiration rates of both zooplankton |
---|
107 | ! ------------------------------------- |
---|
108 | zrespz = resrat2 * zfact * ( trb(ji,jj,jk,jpmes) / ( xkmort + trb(ji,jj,jk,jpmes) ) & |
---|
109 | & + 3. * nitrfac(ji,jj,jk) ) |
---|
110 | |
---|
111 | ! Zooplankton mortality. A square function has been selected with |
---|
112 | ! no real reason except that it seems to be more stable and may mimic predation |
---|
113 | ! --------------------------------------------------------------- |
---|
114 | ztortz = mzrat2 * 1.e6 * zfact * trb(ji,jj,jk,jpmes) * (1. - nitrfac(ji,jj,jk) ) |
---|
115 | ! |
---|
116 | zcompadi = MAX( ( trb(ji,jj,jk,jpdia) - xthresh2dia ), 0.e0 ) |
---|
117 | zcompaz = MAX( ( trb(ji,jj,jk,jpzoo) - xthresh2zoo ), 0.e0 ) |
---|
118 | zcompapoc = MAX( ( trb(ji,jj,jk,jppoc) - xthresh2poc ), 0.e0 ) |
---|
119 | ! Size effect of nanophytoplankton on grazing : the smaller it is, the less prone |
---|
120 | ! it is to predation by mesozooplankton |
---|
121 | ! ------------------------------------------------------------------------------- |
---|
122 | zcompaph = MAX( ( trb(ji,jj,jk,jpphy) - xthresh2phy ), 0.e0 ) & |
---|
123 | & * MIN(1., MAX( 0., ( quotan(ji,jj,jk) - 0.2) / 0.3 ) ) |
---|
124 | |
---|
125 | ! Mesozooplankton grazing |
---|
126 | ! ------------------------ |
---|
127 | zfood = xpref2d * zcompadi + xpref2z * zcompaz + xpref2n * zcompaph + xpref2c * zcompapoc |
---|
128 | zfoodlim = MAX( 0., zfood - MIN( 0.5 * zfood, xthresh2 ) ) |
---|
129 | zdenom = zfoodlim / ( xkgraz2 + zfoodlim ) |
---|
130 | zdenom2 = zdenom / ( zfood + rtrn ) |
---|
131 | zgraze2 = grazrat2 * xstep * tgfunc2(ji,jj,jk) * trb(ji,jj,jk,jpmes) * (1. - nitrfac(ji,jj,jk)) |
---|
132 | |
---|
133 | zgrazd = zgraze2 * xpref2d * zcompadi * zdenom2 |
---|
134 | zgrazz = zgraze2 * xpref2z * zcompaz * zdenom2 |
---|
135 | zgrazn = zgraze2 * xpref2n * zcompaph * zdenom2 |
---|
136 | zgrazpoc = zgraze2 * xpref2c * zcompapoc * zdenom2 |
---|
137 | |
---|
138 | zgraznf = zgrazn * trb(ji,jj,jk,jpnfe) / ( trb(ji,jj,jk,jpphy) + rtrn) |
---|
139 | zgrazf = zgrazd * trb(ji,jj,jk,jpdfe) / ( trb(ji,jj,jk,jpdia) + rtrn) |
---|
140 | zgrazpof = zgrazpoc * trb(ji,jj,jk,jpsfe) / ( trb(ji,jj,jk,jppoc) + rtrn) |
---|
141 | |
---|
142 | ! Mesozooplankton flux feeding on GOC |
---|
143 | ! ---------------------------------- |
---|
144 | zgrazffeg = grazflux * xstep * wsbio4(ji,jj,jk) & |
---|
145 | & * tgfunc2(ji,jj,jk) * trb(ji,jj,jk,jpgoc) * trb(ji,jj,jk,jpmes) & |
---|
146 | & * (1. - nitrfac(ji,jj,jk)) |
---|
147 | zgrazfffg = zgrazffeg * trb(ji,jj,jk,jpbfe) / (trb(ji,jj,jk,jpgoc) + rtrn) |
---|
148 | zgrazffep = grazflux * xstep * wsbio3(ji,jj,jk) & |
---|
149 | & * tgfunc2(ji,jj,jk) * trb(ji,jj,jk,jppoc) * trb(ji,jj,jk,jpmes) & |
---|
150 | & * (1. - nitrfac(ji,jj,jk)) |
---|
151 | zgrazfffp = zgrazffep * trb(ji,jj,jk,jpsfe) / (trb(ji,jj,jk,jppoc) + rtrn) |
---|
152 | ! |
---|
153 | zgraztotc = zgrazd + zgrazz + zgrazn + zgrazpoc + zgrazffep + zgrazffeg |
---|
154 | ! Compute the proportion of filter feeders |
---|
155 | zproport = (zgrazffep + zgrazffeg)/(rtrn + zgraztotc) |
---|
156 | ! Compute fractionation of aggregates. It is assumed that |
---|
157 | ! diatoms based aggregates are more prone to fractionation |
---|
158 | ! since they are more porous (marine snow instead of fecal pellets) |
---|
159 | zratio = trb(ji,jj,jk,jpgsi) / ( trb(ji,jj,jk,jpgoc) + rtrn ) |
---|
160 | zratio2 = zratio * zratio |
---|
161 | zfrac = zproport * grazflux * xstep * wsbio4(ji,jj,jk) & |
---|
162 | & * trb(ji,jj,jk,jpgoc) * trb(ji,jj,jk,jpmes) & |
---|
163 | & * ( 0.2 + 3.8 * zratio2 / ( 1.**2 + zratio2 ) ) |
---|
164 | zfracfe = zfrac * trb(ji,jj,jk,jpbfe) / (trb(ji,jj,jk,jpgoc) + rtrn) |
---|
165 | |
---|
166 | zgrazffep = zproport * zgrazffep |
---|
167 | zgrazffeg = zproport * zgrazffeg |
---|
168 | zgrazfffp = zproport * zgrazfffp |
---|
169 | zgrazfffg = zproport * zgrazfffg |
---|
170 | zgraztotc = zgrazd + zgrazz + zgrazn + zgrazpoc + zgrazffep + zgrazffeg |
---|
171 | zgraztotn = zgrazd * quotad(ji,jj,jk) + zgrazz + zgrazn * quotan(ji,jj,jk) & |
---|
172 | & + zgrazpoc + zgrazffep + zgrazffeg |
---|
173 | zgraztotf = zgrazf + zgraznf + zgrazz * ferat3 + zgrazpof + zgrazfffp + zgrazfffg |
---|
174 | |
---|
175 | ! Total grazing ( grazing by microzoo is already computed in p4zmicro ) |
---|
176 | zgrazing(ji,jj,jk) = zgraztotc |
---|
177 | |
---|
178 | ! Mesozooplankton efficiency |
---|
179 | ! -------------------------- |
---|
180 | zgrasrat = ( zgraztotf + rtrn )/ ( zgraztotc + rtrn ) |
---|
181 | zgrasratn = ( zgraztotn + rtrn )/ ( zgraztotc + rtrn ) |
---|
182 | zepshert = MIN( 1., zgrasratn, zgrasrat / ferat3) |
---|
183 | zbeta = MAX(0., (epsher2 - epsher2min) ) |
---|
184 | zepsherf = epsher2min + zbeta / ( 1.0 + 0.04E6 * 12. * zfood * zbeta ) |
---|
185 | zepsherq = 0.5 + (1.0 - 0.5) * zepshert * ( 1.0 + 1.0 ) / ( zepshert + 1.0 ) |
---|
186 | zepsherv = zepsherf * zepshert * zepsherq |
---|
187 | ! |
---|
188 | ! Impact of grazing on the prognostic variables |
---|
189 | ! --------------------------------------------- |
---|
190 | zmortz = ztortz + zrespz |
---|
191 | zmortzgoc = unass2 / ( 1. - epsher2 ) * ztortz + zrespz |
---|
192 | tra(ji,jj,jk,jpmes) = tra(ji,jj,jk,jpmes) - zmortz + zepsherv * zgraztotc |
---|
193 | tra(ji,jj,jk,jpdia) = tra(ji,jj,jk,jpdia) - zgrazd |
---|
194 | tra(ji,jj,jk,jpzoo) = tra(ji,jj,jk,jpzoo) - zgrazz |
---|
195 | tra(ji,jj,jk,jpphy) = tra(ji,jj,jk,jpphy) - zgrazn |
---|
196 | tra(ji,jj,jk,jpnch) = tra(ji,jj,jk,jpnch) - zgrazn * trb(ji,jj,jk,jpnch) / ( trb(ji,jj,jk,jpphy) + rtrn ) |
---|
197 | tra(ji,jj,jk,jpdch) = tra(ji,jj,jk,jpdch) - zgrazd * trb(ji,jj,jk,jpdch) / ( trb(ji,jj,jk,jpdia) + rtrn ) |
---|
198 | tra(ji,jj,jk,jpdsi) = tra(ji,jj,jk,jpdsi) - zgrazd * trb(ji,jj,jk,jpdsi) / ( trb(ji,jj,jk,jpdia) + rtrn ) |
---|
199 | tra(ji,jj,jk,jpgsi) = tra(ji,jj,jk,jpgsi) + zgrazd * trb(ji,jj,jk,jpdsi) / ( trb(ji,jj,jk,jpdia) + rtrn ) |
---|
200 | tra(ji,jj,jk,jpnfe) = tra(ji,jj,jk,jpnfe) - zgraznf |
---|
201 | tra(ji,jj,jk,jpdfe) = tra(ji,jj,jk,jpdfe) - zgrazf |
---|
202 | tra(ji,jj,jk,jppoc) = tra(ji,jj,jk,jppoc) - zgrazpoc - zgrazffep + zfrac |
---|
203 | prodpoc(ji,jj,jk) = prodpoc(ji,jj,jk) + zfrac |
---|
204 | conspoc(ji,jj,jk) = conspoc(ji,jj,jk) - zgrazpoc - zgrazffep |
---|
205 | tra(ji,jj,jk,jpgoc) = tra(ji,jj,jk,jpgoc) - zgrazffeg - zfrac |
---|
206 | consgoc(ji,jj,jk) = consgoc(ji,jj,jk) - zgrazffeg - zfrac |
---|
207 | tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) - zgrazpof - zgrazfffp + zfracfe |
---|
208 | tra(ji,jj,jk,jpbfe) = tra(ji,jj,jk,jpbfe) - zgrazfffg - zfracfe |
---|
209 | ! Calcite remineralization due to zooplankton activity |
---|
210 | zfracal = trb(ji,jj,jk,jpcal) / (trb(ji,jj,jk,jppoc) + trb(ji,jj,jk,jpgoc) + rtrn ) |
---|
211 | zgrazcal = (zgrazffeg + zgrazpoc) * (1. - part2) * zfracal |
---|
212 | ! calcite production by zooplankton activity |
---|
213 | zprcaca = xfracal(ji,jj,jk) * zgrazn |
---|
214 | prodcal(ji,jj,jk) = prodcal(ji,jj,jk) + zprcaca ! prodcal=prodcal(nanophy)+prodcal(microzoo)+prodcal(mesozoo) |
---|
215 | ! |
---|
216 | zprcaca = part2 * zprcaca |
---|
217 | tra(ji,jj,jk,jpdic) = tra(ji,jj,jk,jpdic) + zgrazcal - zprcaca |
---|
218 | tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) - 2. * ( zgrazcal + zprcaca ) |
---|
219 | tra(ji,jj,jk,jpcal) = tra(ji,jj,jk,jpcal) - zgrazcal + zprcaca |
---|
220 | |
---|
221 | ! Correct the fluxes for the effect of DVM |
---|
222 | ! A fixed fraction of mesozooplankton is assumed to migrate |
---|
223 | ! --------------------------------------------------------- |
---|
224 | zgrarem(ji,jj,jk) = zgraztotc * ( 1. - zepsherv - unass2 ) & |
---|
225 | & + ( 1. - epsher2 - unass2 ) / ( 1. - epsher2 ) * ztortz |
---|
226 | zgraref(ji,jj,jk) = zgraztotc * MAX( 0. , ( 1. - unass2 ) * zgrasrat - ferat3 * zepsherv ) & |
---|
227 | & + ferat3 * ( ( 1. - epsher2 - unass2 ) /( 1. - epsher2 ) * ztortz ) |
---|
228 | zgrapoc(ji,jj,jk) = zgraztotc * unass2 + zmortzgoc |
---|
229 | zgrapof(ji,jj,jk) = zgraztotf * unass2 + ferat3 * zmortzgoc |
---|
230 | END DO |
---|
231 | END DO |
---|
232 | END DO |
---|
233 | |
---|
234 | IF (ln_dvm_meso) THEN |
---|
235 | ALLOCATE( zgramigrem(jpi,jpj), zgramigref(jpi,jpj), zgramigpoc(jpi,jpj), zgramigpof(jpi,jpj) ) |
---|
236 | ALLOCATE( zstrn(jpi,jpj) ) |
---|
237 | zgramigrem(:,:) = 0.0 ; zgramigref(:,:) = 0.0 |
---|
238 | zgramigpoc(:,:) = 0.0 ; zgramigpof(:,:) = 0.0 |
---|
239 | |
---|
240 | ! compute the day length depending on latitude and the day |
---|
241 | zrum = REAL( nday_year - 80, wp ) / REAL( nyear_len(1), wp ) |
---|
242 | zcodel = ASIN( SIN( zrum * rpi * 2._wp ) * SIN( rad * 23.5_wp ) ) |
---|
243 | |
---|
244 | ! day length in hours |
---|
245 | zstrn(:,:) = 0. |
---|
246 | DO jj = 1, jpj |
---|
247 | DO ji = 1, jpi |
---|
248 | zargu = TAN( zcodel ) * TAN( gphit(ji,jj) * rad ) |
---|
249 | zargu = MAX( -1., MIN( 1., zargu ) ) |
---|
250 | zstrn(ji,jj) = MAX( 0.0, 24. - 2. * ACOS( zargu ) / rad / 15. ) |
---|
251 | zstrn(ji,jj) = MIN(0.75, MAX( 0.25, zstrn(ji,jj) / 24.) ) |
---|
252 | END DO |
---|
253 | END DO |
---|
254 | |
---|
255 | |
---|
256 | DO jk = 1, jpk |
---|
257 | DO jj = 1, jpj |
---|
258 | DO ji = 1, jpi |
---|
259 | |
---|
260 | ! Compute the amount of materials that will go into vertical migration |
---|
261 | zmigreltime = (1. - zstrn(ji,jj)) |
---|
262 | IF ( gdept_n(ji,jj,jk) <= heup(ji,jj) ) THEN |
---|
263 | zgramigrem(ji,jj) = zgramigrem(ji,jj) + xfracmig * zgrarem(ji,jj,jk) * (1. - zmigreltime ) & |
---|
264 | & * e3t_n(ji,jj,jk) * tmask(ji,jj,jk) |
---|
265 | zgramigref(ji,jj) = zgramigref(ji,jj) + xfracmig * zgraref(ji,jj,jk) * (1. - zmigreltime ) & |
---|
266 | & * e3t_n(ji,jj,jk) * tmask(ji,jj,jk) |
---|
267 | zgramigpoc(ji,jj) = zgramigpoc(ji,jj) + xfracmig * zgrapoc(ji,jj,jk) * (1. - zmigreltime ) & |
---|
268 | & * e3t_n(ji,jj,jk) * tmask(ji,jj,jk) |
---|
269 | zgramigpof(ji,jj) = zgramigpof(ji,jj) + xfracmig * zgrapof(ji,jj,jk) * (1. - zmigreltime ) & |
---|
270 | & * e3t_n(ji,jj,jk) * tmask(ji,jj,jk) |
---|
271 | |
---|
272 | zgrarem(ji,jj,jk) = zgrarem(ji,jj,jk) * ( (1.0 - xfracmig) + xfracmig * zmigreltime ) |
---|
273 | zgraref(ji,jj,jk) = zgraref(ji,jj,jk) * ( (1.0 - xfracmig) + xfracmig * zmigreltime ) |
---|
274 | zgrapoc(ji,jj,jk) = zgrapoc(ji,jj,jk) * ( (1.0 - xfracmig) + xfracmig * zmigreltime ) |
---|
275 | zgrapof(ji,jj,jk) = zgrapof(ji,jj,jk) * ( (1.0 - xfracmig) + xfracmig * zmigreltime ) |
---|
276 | ENDIF |
---|
277 | END DO |
---|
278 | END DO |
---|
279 | END DO |
---|
280 | |
---|
281 | DO jj = 1, jpj |
---|
282 | DO ji = 1, jpi |
---|
283 | IF (tmask(ji,jj,1) == 1.) THEN |
---|
284 | jkt = kmig(ji,jj) |
---|
285 | zgrarem(ji,jj,jkt) = zgrarem(ji,jj,jkt) + zgramigrem(ji,jj) / e3t_n(ji,jj,jkt) |
---|
286 | zgraref(ji,jj,jkt) = zgraref(ji,jj,jkt) + zgramigref(ji,jj) / e3t_n(ji,jj,jkt) |
---|
287 | zgrapoc(ji,jj,jkt) = zgrapoc(ji,jj,jkt) + zgramigpoc(ji,jj) / e3t_n(ji,jj,jkt) |
---|
288 | zgrapof(ji,jj,jkt) = zgrapof(ji,jj,jkt) + zgramigpof(ji,jj) / e3t_n(ji,jj,jkt) |
---|
289 | ENDIF |
---|
290 | END DO |
---|
291 | END DO |
---|
292 | ! |
---|
293 | ! Deallocate temporary variables |
---|
294 | ! ------------------------------ |
---|
295 | DEALLOCATE( zgramigrem, zgramigref, zgramigpoc, zgramigpof ) |
---|
296 | DEALLOCATE( zstrn ) |
---|
297 | |
---|
298 | ENDIF |
---|
299 | |
---|
300 | DO jk = 1, jpk |
---|
301 | DO jj = 1, jpj |
---|
302 | DO ji = 1, jpi |
---|
303 | ! Update the arrays TRA which contain the biological sources and sinks |
---|
304 | zgrarsig = zgrarem(ji,jj,jk) * sigma2 |
---|
305 | tra(ji,jj,jk,jppo4) = tra(ji,jj,jk,jppo4) + zgrarsig |
---|
306 | tra(ji,jj,jk,jpnh4) = tra(ji,jj,jk,jpnh4) + zgrarsig |
---|
307 | tra(ji,jj,jk,jpdoc) = tra(ji,jj,jk,jpdoc) + zgrarem(ji,jj,jk) - zgrarsig |
---|
308 | ! |
---|
309 | IF( ln_ligand ) THEN |
---|
310 | tra(ji,jj,jk,jplgw) = tra(ji,jj,jk,jplgw) + (zgrarem(ji,jj,jk) - zgrarsig) * ldocz |
---|
311 | zz2ligprod(ji,jj,jk) = (zgrarem(ji,jj,jk) - zgrarsig) * ldocz |
---|
312 | ENDIF |
---|
313 | ! |
---|
314 | tra(ji,jj,jk,jpoxy) = tra(ji,jj,jk,jpoxy) - o2ut * zgrarsig |
---|
315 | tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) + zgraref(ji,jj,jk) |
---|
316 | zfezoo2(ji,jj,jk) = zgraref(ji,jj,jk) |
---|
317 | tra(ji,jj,jk,jpdic) = tra(ji,jj,jk,jpdic) + zgrarsig |
---|
318 | tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) + rno3 * zgrarsig |
---|
319 | tra(ji,jj,jk,jpgoc) = tra(ji,jj,jk,jpgoc) + zgrapoc(ji,jj,jk) |
---|
320 | prodgoc(ji,jj,jk) = prodgoc(ji,jj,jk) + zgrapoc(ji,jj,jk) |
---|
321 | tra(ji,jj,jk,jpbfe) = tra(ji,jj,jk,jpbfe) + zgrapof(ji,jj,jk) |
---|
322 | END DO |
---|
323 | END DO |
---|
324 | END DO |
---|
325 | ! |
---|
326 | IF( lk_iomput .AND. knt == nrdttrc ) THEN |
---|
327 | ALLOCATE( zw3d(jpi,jpj,jpk) ) |
---|
328 | IF( iom_use( "GRAZ2" ) ) THEN |
---|
329 | zw3d(:,:,:) = zgrazing(:,:,:) * 1.e+3 * rfact2r * tmask(:,:,:) ! Total grazing of phyto by zooplankton |
---|
330 | CALL iom_put( "GRAZ2", zw3d ) |
---|
331 | ENDIF |
---|
332 | IF( iom_use( "PCAL" ) ) THEN |
---|
333 | zw3d(:,:,:) = prodcal(:,:,:) * 1.e+3 * rfact2r * tmask(:,:,:) ! Calcite production |
---|
334 | CALL iom_put( "PCAL", zw3d ) |
---|
335 | ENDIF |
---|
336 | IF( iom_use( "FEZOO2" ) ) THEN |
---|
337 | zw3d(:,:,:) = zfezoo2(:,:,:) * 1e9 * 1.e+3 * rfact2r * tmask(:,:,:) ! |
---|
338 | CALL iom_put( "FEZOO2", zw3d ) |
---|
339 | ENDIF |
---|
340 | IF( iom_use( "LPRODZ2" ) .AND. ln_ligand ) THEN |
---|
341 | zw3d(:,:,:) = zz2ligprod(:,:,:) * 1e9 * 1.e+3 * rfact2r * tmask(:,:,:) |
---|
342 | CALL iom_put( "LPRODZ2" , zw3d ) |
---|
343 | ENDIF |
---|
344 | DEALLOCATE( zw3d ) |
---|
345 | ENDIF |
---|
346 | ! |
---|
347 | IF (ln_ligand) DEALLOCATE( zz2ligprod ) |
---|
348 | ! |
---|
349 | IF(ln_ctl) THEN ! print mean trends (used for debugging) |
---|
350 | WRITE(charout, FMT="('meso')") |
---|
351 | CALL prt_ctl_trc_info(charout) |
---|
352 | CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) |
---|
353 | ENDIF |
---|
354 | ! |
---|
355 | IF( ln_timing ) CALL timing_stop('p4z_meso') |
---|
356 | ! |
---|
357 | END SUBROUTINE p4z_meso |
---|
358 | |
---|
359 | |
---|
360 | SUBROUTINE p4z_meso_init |
---|
361 | !!---------------------------------------------------------------------- |
---|
362 | !! *** ROUTINE p4z_meso_init *** |
---|
363 | !! |
---|
364 | !! ** Purpose : Initialization of mesozooplankton parameters |
---|
365 | !! |
---|
366 | !! ** Method : Read the nampismes namelist and check the parameters |
---|
367 | !! called at the first timestep (nittrc000) |
---|
368 | !! |
---|
369 | !! ** input : Namelist nampismes |
---|
370 | !!---------------------------------------------------------------------- |
---|
371 | INTEGER :: ios ! Local integer |
---|
372 | ! |
---|
373 | NAMELIST/namp4zmes/ part2, grazrat2, resrat2, mzrat2, xpref2n, xpref2d, xpref2z, & |
---|
374 | & xpref2c, xthresh2dia, xthresh2phy, xthresh2zoo, xthresh2poc, & |
---|
375 | & xthresh2, xkgraz2, epsher2, epsher2min, sigma2, unass2, grazflux, ln_dvm_meso, & |
---|
376 | & xfracmig |
---|
377 | !!---------------------------------------------------------------------- |
---|
378 | ! |
---|
379 | IF(lwp) THEN |
---|
380 | WRITE(numout,*) |
---|
381 | WRITE(numout,*) 'p4z_meso_init : Initialization of mesozooplankton parameters' |
---|
382 | WRITE(numout,*) '~~~~~~~~~~~~~' |
---|
383 | ENDIF |
---|
384 | ! |
---|
385 | REWIND( numnatp_ref ) ! Namelist nampismes in reference namelist : Pisces mesozooplankton |
---|
386 | READ ( numnatp_ref, namp4zmes, IOSTAT = ios, ERR = 901) |
---|
387 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namp4zmes in reference namelist' ) |
---|
388 | REWIND( numnatp_cfg ) ! Namelist nampismes in configuration namelist : Pisces mesozooplankton |
---|
389 | READ ( numnatp_cfg, namp4zmes, IOSTAT = ios, ERR = 902 ) |
---|
390 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namp4zmes in configuration namelist' ) |
---|
391 | IF(lwm) WRITE( numonp, namp4zmes ) |
---|
392 | ! |
---|
393 | IF(lwp) THEN ! control print |
---|
394 | WRITE(numout,*) ' Namelist : namp4zmes' |
---|
395 | WRITE(numout,*) ' part of calcite not dissolved in mesozoo guts part2 =', part2 |
---|
396 | WRITE(numout,*) ' mesozoo preference for phyto xpref2n =', xpref2n |
---|
397 | WRITE(numout,*) ' mesozoo preference for diatoms xpref2d =', xpref2d |
---|
398 | WRITE(numout,*) ' mesozoo preference for zoo xpref2z =', xpref2z |
---|
399 | WRITE(numout,*) ' mesozoo preference for poc xpref2c =', xpref2c |
---|
400 | WRITE(numout,*) ' microzoo feeding threshold for mesozoo xthresh2zoo =', xthresh2zoo |
---|
401 | WRITE(numout,*) ' diatoms feeding threshold for mesozoo xthresh2dia =', xthresh2dia |
---|
402 | WRITE(numout,*) ' nanophyto feeding threshold for mesozoo xthresh2phy =', xthresh2phy |
---|
403 | WRITE(numout,*) ' poc feeding threshold for mesozoo xthresh2poc =', xthresh2poc |
---|
404 | WRITE(numout,*) ' feeding threshold for mesozooplankton xthresh2 =', xthresh2 |
---|
405 | WRITE(numout,*) ' exsudation rate of mesozooplankton resrat2 =', resrat2 |
---|
406 | WRITE(numout,*) ' mesozooplankton mortality rate mzrat2 =', mzrat2 |
---|
407 | WRITE(numout,*) ' maximal mesozoo grazing rate grazrat2 =', grazrat2 |
---|
408 | WRITE(numout,*) ' mesozoo flux feeding rate grazflux =', grazflux |
---|
409 | WRITE(numout,*) ' non assimilated fraction of P by mesozoo unass2 =', unass2 |
---|
410 | WRITE(numout,*) ' Efficiency of Mesozoo growth epsher2 =', epsher2 |
---|
411 | WRITE(numout,*) ' Minimum Efficiency of Mesozoo growth epsher2min =', epsher2min |
---|
412 | WRITE(numout,*) ' Fraction of mesozoo excretion as DOM sigma2 =', sigma2 |
---|
413 | WRITE(numout,*) ' half sturation constant for grazing 2 xkgraz2 =', xkgraz2 |
---|
414 | WRITE(numout,*) ' Diurnal vertical migration of mesozoo. ln_dvm_meso =', ln_dvm_meso |
---|
415 | WRITE(numout,*) ' Fractional biomass of meso that performs DVM xfracmig =', xfracmig |
---|
416 | ENDIF |
---|
417 | ! |
---|
418 | END SUBROUTINE p4z_meso_init |
---|
419 | |
---|
420 | SUBROUTINE p4z_meso_depmig |
---|
421 | !!---------------------------------------------------------------------- |
---|
422 | !! *** ROUTINE p4z_meso_depmig *** |
---|
423 | !! |
---|
424 | !! ** Purpose : Computation the migration depth of mesozooplankton |
---|
425 | !! |
---|
426 | !! ** Method : Computes the DVM depth of mesozooplankton from oxygen |
---|
427 | !! temperature and chlorophylle following the parameterization |
---|
428 | !! proposed by Bianchi et al. (2013) |
---|
429 | !! |
---|
430 | !! ** input : |
---|
431 | !!---------------------------------------------------------------------- |
---|
432 | INTEGER :: ji, jj, jk |
---|
433 | ! |
---|
434 | REAL(wp) :: totchl |
---|
435 | REAL(wp), DIMENSION(jpi,jpj) :: oxymoy, tempmoy, zdepmoy |
---|
436 | |
---|
437 | !!--------------------------------------------------------------------- |
---|
438 | ! |
---|
439 | IF( ln_timing == 1 ) CALL timing_start('p4z_meso_zdepmig') |
---|
440 | ! |
---|
441 | oxymoy(:,:) = 0. |
---|
442 | tempmoy(:,:) = 0. |
---|
443 | zdepmoy(:,:) = 0. |
---|
444 | depmig (:,:) = 5. |
---|
445 | kmig (:,:) = 1 |
---|
446 | ! |
---|
447 | ! Compute the averaged values of oxygen, temperature over the domain |
---|
448 | ! 150m to 500 m depth. |
---|
449 | ! |
---|
450 | DO jk =1, jpk |
---|
451 | DO jj = 1, jpj |
---|
452 | DO ji = 1, jpi |
---|
453 | IF (tmask(ji,jj,jk) == 1.) THEN |
---|
454 | IF (gdept_n(ji,jj,jk) >= 150. .AND. gdept_n(ji,jj,jk) <= 500.) THEN |
---|
455 | oxymoy(ji,jj) = oxymoy(ji,jj) + trb(ji,jj,jk,jpoxy)*e3t_n(ji,jj,jk)*1E6 |
---|
456 | tempmoy(ji,jj) = tempmoy(ji,jj) + tsn(ji,jj,jk,jp_tem)*e3t_n(ji,jj,jk) |
---|
457 | zdepmoy(ji,jj) = zdepmoy(ji,jj) + e3t_n(ji,jj,jk) |
---|
458 | ENDIF |
---|
459 | ENDIF |
---|
460 | END DO |
---|
461 | END DO |
---|
462 | END DO |
---|
463 | |
---|
464 | DO jj = 1, jpj |
---|
465 | DO ji = 1, jpi |
---|
466 | oxymoy(ji,jj) = trb(ji,jj,1,jpoxy)*1E6 - oxymoy(ji,jj) / (zdepmoy(ji,jj) + rtrn) |
---|
467 | tempmoy(ji,jj) = tsn(ji,jj,1,jp_tem)-tempmoy(ji,jj) / (zdepmoy(ji,jj) + rtrn) |
---|
468 | END DO |
---|
469 | END DO |
---|
470 | ! |
---|
471 | ! Computation of the migration depth based on the parameterization of |
---|
472 | ! Bianchi et al. (2013) |
---|
473 | ! ------------------------------------------------------------------- |
---|
474 | ! |
---|
475 | DO jj = 1, jpj |
---|
476 | DO ji = 1, jpi |
---|
477 | IF (tmask(ji,jj,1) == 1.) THEN |
---|
478 | totchl = (trb(ji,jj,1,jpnch)+trb(ji,jj,1,jpdch))*1E6 |
---|
479 | depmig(ji,jj) = 398. - 0.56 * oxymoy(ji,jj) -115. * log10(totchl) + 0.36 * hmld(ji,jj) -2.4 * tempmoy(ji,jj) |
---|
480 | ENDIF |
---|
481 | END DO |
---|
482 | END DO |
---|
483 | ! |
---|
484 | ! Computation of the corresponding jk indice |
---|
485 | ! ------------------------------------------ |
---|
486 | ! |
---|
487 | DO jk = 1, jpk-1 |
---|
488 | DO jj = 1, jpj |
---|
489 | DO ji = 1, jpi |
---|
490 | IF (depmig(ji,jj) .GE. gdepw_n(ji,jj,jk) .AND. depmig(ji,jj) .LT. gdepw_n(ji,jj,jk+1) ) THEN |
---|
491 | kmig(ji,jj) = jk |
---|
492 | ENDIF |
---|
493 | END DO |
---|
494 | END DO |
---|
495 | END DO |
---|
496 | ! |
---|
497 | ! Correction of the migration depth and indice based on O2 levels |
---|
498 | ! If O2 is too low, imposing a migration depth at this low O2 levels |
---|
499 | ! would lead to negative O2 concentrations (respiration while O2 is close |
---|
500 | ! to 0. Thus, to avoid that problem, the migration depth is adjusted so |
---|
501 | ! that it falls above the OMZ |
---|
502 | ! ----------------------------------------------------------------------- |
---|
503 | ! |
---|
504 | DO ji =1, jpi |
---|
505 | DO jj = 1, jpj |
---|
506 | IF (trb(ji,jj,kmig(ji,jj),jpoxy) < 5E-6) THEN |
---|
507 | DO jk = kmig(ji,jj),1,-1 |
---|
508 | IF (trb(ji,jj,jk,jpoxy) >= 5E-6 .AND. trb(ji,jj,jk+1,jpoxy) < 5E-6) THEN |
---|
509 | kmig(ji,jj) = jk |
---|
510 | depmig(ji,jj) = gdept_n(ji,jj,jk) |
---|
511 | ENDIF |
---|
512 | END DO |
---|
513 | ENDIF |
---|
514 | END DO |
---|
515 | END DO |
---|
516 | ! |
---|
517 | IF( ln_timing ) CALL timing_stop('p4z_meso_depmig') |
---|
518 | ! |
---|
519 | END SUBROUTINE p4z_meso_depmig |
---|
520 | |
---|
521 | INTEGER FUNCTION p4z_meso_alloc() |
---|
522 | !!---------------------------------------------------------------------- |
---|
523 | !! *** ROUTINE p4z_meso_alloc *** |
---|
524 | !!---------------------------------------------------------------------- |
---|
525 | ! |
---|
526 | ALLOCATE( depmig(jpi,jpj), kmig(jpi,jpj), STAT= p4z_meso_alloc ) |
---|
527 | ! |
---|
528 | IF( p4z_meso_alloc /= 0 ) CALL ctl_stop( 'STOP', 'p4z_meso_alloc : failed to allocate arrays.' ) |
---|
529 | ! |
---|
530 | END FUNCTION p4z_meso_alloc |
---|
531 | |
---|
532 | |
---|
533 | !!====================================================================== |
---|
534 | END MODULE p4zmeso |
---|