1 | MODULE p5zlim |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p5zlim *** |
---|
4 | !! TOP : PISCES with variable stoichiometry |
---|
5 | !!====================================================================== |
---|
6 | !! History : 1.0 ! 2004 (O. Aumont) Original code |
---|
7 | !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 |
---|
8 | !! 3.4 ! 2011-04 (O. Aumont, C. Ethe) Limitation for iron modelled in quota |
---|
9 | !! 3.6 ! 2015-05 (O. Aumont) PISCES quota |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | !! p5z_lim : Compute the nutrients limitation terms |
---|
12 | !! p5z_lim_init : Read the namelist |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | USE oce_trc ! Shared ocean-passive tracers variables |
---|
15 | USE trc ! Tracers defined |
---|
16 | USE p4zlim |
---|
17 | USE sms_pisces ! PISCES variables |
---|
18 | USE iom ! I/O manager |
---|
19 | |
---|
20 | IMPLICIT NONE |
---|
21 | PRIVATE |
---|
22 | |
---|
23 | PUBLIC p5z_lim |
---|
24 | PUBLIC p5z_lim_init |
---|
25 | PUBLIC p5z_lim_alloc |
---|
26 | |
---|
27 | !! * Shared module variables |
---|
28 | REAL(wp), PUBLIC :: concpno3 !: NO3 half saturation for picophyto |
---|
29 | REAL(wp), PUBLIC :: concpnh4 !: NH4 half saturation for picophyto |
---|
30 | REAL(wp), PUBLIC :: concnpo4 !: PO4 half saturation for nanophyto |
---|
31 | REAL(wp), PUBLIC :: concppo4 !: PO4 half saturation for picophyto |
---|
32 | REAL(wp), PUBLIC :: concdpo4 !: PO4 half saturation for diatoms |
---|
33 | REAL(wp), PUBLIC :: concpfer !: Iron half saturation for picophyto |
---|
34 | REAL(wp), PUBLIC :: concbpo4 !: PO4 half saturation for bacteria |
---|
35 | REAL(wp), PUBLIC :: xsizepic !: Minimum size criteria for picophyto |
---|
36 | REAL(wp), PUBLIC :: xsizerp !: Size ratio for picophytoplankton |
---|
37 | REAL(wp), PUBLIC :: qfnopt !: optimal Fe quota for nanophyto |
---|
38 | REAL(wp), PUBLIC :: qfpopt !: optimal Fe quota for picophyto |
---|
39 | REAL(wp), PUBLIC :: qfdopt !: optimal Fe quota for diatoms |
---|
40 | REAL(wp), PUBLIC :: qnnmin !: minimum N quota for nanophyto |
---|
41 | REAL(wp), PUBLIC :: qnnmax !: maximum N quota for nanophyto |
---|
42 | REAL(wp), PUBLIC :: qpnmin !: minimum P quota for nanophyto |
---|
43 | REAL(wp), PUBLIC :: qpnmax !: maximum P quota for nanophyto |
---|
44 | REAL(wp), PUBLIC :: qnpmin !: minimum N quota for nanophyto |
---|
45 | REAL(wp), PUBLIC :: qnpmax !: maximum N quota for nanophyto |
---|
46 | REAL(wp), PUBLIC :: qppmin !: minimum P quota for nanophyto |
---|
47 | REAL(wp), PUBLIC :: qppmax !: maximum P quota for nanophyto |
---|
48 | REAL(wp), PUBLIC :: qndmin !: minimum N quota for diatoms |
---|
49 | REAL(wp), PUBLIC :: qndmax !: maximum N quota for diatoms |
---|
50 | REAL(wp), PUBLIC :: qpdmin !: minimum P quota for diatoms |
---|
51 | REAL(wp), PUBLIC :: qpdmax !: maximum P quota for diatoms |
---|
52 | REAL(wp), PUBLIC :: qfnmax !: maximum Fe quota for nanophyto |
---|
53 | REAL(wp), PUBLIC :: qfpmax !: maximum Fe quota for picophyto |
---|
54 | REAL(wp), PUBLIC :: qfdmax !: maximum Fe quota for diatoms |
---|
55 | REAL(wp), PUBLIC :: zpsinh4 !: respiration cost of NH4 assimilation |
---|
56 | REAL(wp), PUBLIC :: zpsino3 !: respiration cost of NO3 assimilation |
---|
57 | REAL(wp), PUBLIC :: zpsiuptk !: Mean respiration cost |
---|
58 | |
---|
59 | !!* Allometric variations of the quotas |
---|
60 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqnnmin !: ??? |
---|
61 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqnnmax !: ??? |
---|
62 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqpnmin !: ??? |
---|
63 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqpnmax !: ??? |
---|
64 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqnpmin !: ??? |
---|
65 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqnpmax !: ??? |
---|
66 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqppmin !: ??? |
---|
67 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqppmax !: ??? |
---|
68 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqndmin !: ??? |
---|
69 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqndmax !: ??? |
---|
70 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqpdmin !: ??? |
---|
71 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqpdmax !: ??? |
---|
72 | |
---|
73 | !!* Phytoplankton nutrient limitation terms |
---|
74 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xpicono3 !: ??? |
---|
75 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xpiconh4 !: ??? |
---|
76 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xpicopo4 !: ??? |
---|
77 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xnanodop !: ??? |
---|
78 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xpicodop !: ??? |
---|
79 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xdiatdop !: ??? |
---|
80 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xnanofer !: ??? |
---|
81 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xpicofer !: ??? |
---|
82 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xdiatfer !: ??? |
---|
83 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xlimpic !: ??? |
---|
84 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xlimpics !: ??? |
---|
85 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xlimphys !: ??? |
---|
86 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xlimdias !: ??? |
---|
87 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xlimpfe !: ??? |
---|
88 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: fvnuptk |
---|
89 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: fvpuptk |
---|
90 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: fvduptk |
---|
91 | |
---|
92 | ! Coefficient for iron limitation |
---|
93 | REAL(wp) :: xcoef1 = 0.00167 / 55.85 |
---|
94 | REAL(wp) :: xcoef2 = 1.21E-5 * 14. / 55.85 / 7.625 * 0.5 * 1.5 |
---|
95 | REAL(wp) :: xcoef3 = 1.15E-4 * 14. / 55.85 / 7.625 * 0.5 |
---|
96 | !!---------------------------------------------------------------------- |
---|
97 | !! NEMO/TOP 4.0 , NEMO Consortium (2018) |
---|
98 | !! $Id: p5zlim.F90 10070 2018-08-28 14:30:54Z nicolasmartin $ |
---|
99 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
100 | !!---------------------------------------------------------------------- |
---|
101 | |
---|
102 | CONTAINS |
---|
103 | |
---|
104 | SUBROUTINE p5z_lim( kt, knt ) |
---|
105 | !!--------------------------------------------------------------------- |
---|
106 | !! *** ROUTINE p5z_lim *** |
---|
107 | !! |
---|
108 | !! ** Purpose : Compute the co-limitations by the various nutrients |
---|
109 | !! for the various phytoplankton species. Quota based |
---|
110 | !! approach. The quota model is derived from theoretical |
---|
111 | !! models proposed by Pahlow and Oschlies (2009) and |
---|
112 | !! Flynn (2001). Various adaptations from several publications |
---|
113 | !! by these authors have been also adopted. |
---|
114 | !! |
---|
115 | !! ** Method : Quota based approach. The quota model is derived from |
---|
116 | !! theoretical models by Pahlow and Oschlies (2009) and |
---|
117 | !! Flynn (2001). Various adaptations from several publications |
---|
118 | !! by these authors have been also adopted. |
---|
119 | !!--------------------------------------------------------------------- |
---|
120 | ! |
---|
121 | INTEGER, INTENT(in) :: kt, knt |
---|
122 | ! |
---|
123 | INTEGER :: ji, jj, jk |
---|
124 | REAL(wp) :: zlim1, zlim2, zlim3, zlim4, zno3, zferlim |
---|
125 | REAL(wp) :: z1_trndia, z1_trnpic, z1_trnphy, ztem1, ztem2, zetot1 |
---|
126 | REAL(wp) :: zratio, zration, zratiof, znutlim, zfalim, zzpsiuptk |
---|
127 | REAL(wp) :: zconc1d, zconc1dnh4, zconc0n, zconc0nnh4, zconc0npo4, zconc0dpo4 |
---|
128 | REAL(wp) :: zconc0p, zconc0pnh4, zconc0ppo4, zconcpfe, zconcnfe, zconcdfe |
---|
129 | REAL(wp) :: fanano, fananop, fananof, fadiat, fadiatp, fadiatf |
---|
130 | REAL(wp) :: fapico, fapicop, fapicof |
---|
131 | REAL(wp) :: zrpho, zrass, zcoef, zfuptk, zratchl |
---|
132 | REAL(wp) :: zfvn, zfvp, zfvf, zsizen, zsizep, zsized, znanochl, zpicochl, zdiatchl |
---|
133 | REAL(wp) :: zqfemn, zqfemp, zqfemd, zbactno3, zbactnh4 |
---|
134 | REAL(wp) :: zlim1f, zsizetmp |
---|
135 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: xlimnpn, xlimnpp, xlimnpd |
---|
136 | !!--------------------------------------------------------------------- |
---|
137 | ! |
---|
138 | IF( ln_timing ) CALL timing_start('p5z_lim') |
---|
139 | ! |
---|
140 | zratchl = 6.0 |
---|
141 | sizena(:,:,:) = 0.0 ; sizepa(:,:,:) = 0.0 ; sizeda(:,:,:) = 0.0 |
---|
142 | ! |
---|
143 | DO jk = 1, jpkm1 |
---|
144 | DO jj = 1, jpj |
---|
145 | DO ji = 1, jpi |
---|
146 | ! |
---|
147 | ! Tuning of the iron concentration to a minimum level that is set to the detection limit |
---|
148 | !------------------------------------- |
---|
149 | zno3 = trb(ji,jj,jk,jpno3) / 40.e-6 |
---|
150 | zferlim = MAX( 3e-11 * zno3 * zno3, 5e-12 ) |
---|
151 | zferlim = MIN( zferlim, 7e-11 ) |
---|
152 | trb(ji,jj,jk,jpfer) = MAX( trb(ji,jj,jk,jpfer), zferlim ) |
---|
153 | |
---|
154 | ! Computation of the mean relative size of each community |
---|
155 | ! ------------------------------------------------------- |
---|
156 | z1_trnphy = 1. / ( trb(ji,jj,jk,jpphy) + rtrn ) |
---|
157 | z1_trnpic = 1. / ( trb(ji,jj,jk,jppic) + rtrn ) |
---|
158 | z1_trndia = 1. / ( trb(ji,jj,jk,jpdia) + rtrn ) |
---|
159 | znanochl = trb(ji,jj,jk,jpnch) * z1_trnphy |
---|
160 | zpicochl = trb(ji,jj,jk,jppch) * z1_trnpic |
---|
161 | zdiatchl = trb(ji,jj,jk,jpdch) * z1_trndia |
---|
162 | |
---|
163 | ! Computation of a variable Ks for iron on diatoms taking into account |
---|
164 | ! that increasing biomass is made of generally bigger cells |
---|
165 | !------------------------------------------------ |
---|
166 | zsized = sized(ji,jj,jk)**0.81 |
---|
167 | zconcdfe = concdfer * zsized |
---|
168 | zconc1d = concdno3 * zsized |
---|
169 | zconc1dnh4 = concdnh4 * zsized |
---|
170 | zconc0dpo4 = concdpo4 * zsized |
---|
171 | |
---|
172 | zsizep = sizep(ji,jj,jk)**0.81 |
---|
173 | zconcpfe = concpfer * zsizep |
---|
174 | zconc0p = concpno3 * zsizep |
---|
175 | zconc0pnh4 = concpnh4 * zsizep |
---|
176 | zconc0ppo4 = concppo4 * zsizep |
---|
177 | |
---|
178 | zsizen = sizen(ji,jj,jk)**0.81 |
---|
179 | zconcnfe = concnfer * zsizen |
---|
180 | zconc0n = concnno3 * zsizen |
---|
181 | zconc0nnh4 = concnnh4 * zsizen |
---|
182 | zconc0npo4 = concnpo4 * zsizen |
---|
183 | |
---|
184 | ! Allometric variations of the minimum and maximum quotas |
---|
185 | ! From Talmy et al. (2014) and Maranon et al. (2013) |
---|
186 | ! ------------------------------------------------------- |
---|
187 | xqnnmin(ji,jj,jk) = qnnmin * sizen(ji,jj,jk)**(-0.3) |
---|
188 | xqnnmax(ji,jj,jk) = qnnmax |
---|
189 | xqndmin(ji,jj,jk) = qndmin * sized(ji,jj,jk)**(-0.3) |
---|
190 | xqndmax(ji,jj,jk) = qndmax |
---|
191 | xqnpmin(ji,jj,jk) = qnpmin * sizep(ji,jj,jk)**(-0.48) |
---|
192 | xqnpmax(ji,jj,jk) = qnpmax * sizep(ji,jj,jk)**(-0.21) |
---|
193 | |
---|
194 | ! Computation of the optimal allocation parameters |
---|
195 | ! Based on the different papers by Pahlow et al., and Smith et al. |
---|
196 | ! ----------------------------------------------------------------- |
---|
197 | znutlim = MAX( trb(ji,jj,jk,jpnh4) / zconc0nnh4, & |
---|
198 | & trb(ji,jj,jk,jpno3) / zconc0n) |
---|
199 | fanano = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) ) |
---|
200 | znutlim = trb(ji,jj,jk,jppo4) / zconc0npo4 |
---|
201 | fananop = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) ) |
---|
202 | znutlim = biron(ji,jj,jk) / zconcnfe |
---|
203 | fananof = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) ) |
---|
204 | znutlim = MAX( trb(ji,jj,jk,jpnh4) / zconc0pnh4, & |
---|
205 | & trb(ji,jj,jk,jpno3) / zconc0p) |
---|
206 | fapico = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) ) |
---|
207 | znutlim = trb(ji,jj,jk,jppo4) / zconc0ppo4 |
---|
208 | fapicop = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) ) |
---|
209 | znutlim = biron(ji,jj,jk) / zconcpfe |
---|
210 | fapicof = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) ) |
---|
211 | znutlim = MAX( trb(ji,jj,jk,jpnh4) / zconc1dnh4, & |
---|
212 | & trb(ji,jj,jk,jpno3) / zconc1d ) |
---|
213 | fadiat = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) ) |
---|
214 | znutlim = trb(ji,jj,jk,jppo4) / zconc0dpo4 |
---|
215 | fadiatp = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) ) |
---|
216 | znutlim = biron(ji,jj,jk) / zconcdfe |
---|
217 | fadiatf = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) ) |
---|
218 | ! |
---|
219 | ! Michaelis-Menten Limitation term for nutrients Small bacteria |
---|
220 | ! ------------------------------------------------------------- |
---|
221 | zbactnh4 = trb(ji,jj,jk,jpnh4) / ( concbnh4 + trb(ji,jj,jk,jpnh4) ) |
---|
222 | zbactno3 = trb(ji,jj,jk,jpno3) / ( concbno3 + trb(ji,jj,jk,jpno3) ) * (1. - zbactnh4) |
---|
223 | ! |
---|
224 | zlim1 = zbactno3 + zbactnh4 |
---|
225 | zlim2 = trb(ji,jj,jk,jppo4) / ( trb(ji,jj,jk,jppo4) + concbpo4) |
---|
226 | zlim3 = biron(ji,jj,jk) / ( concbfe + biron(ji,jj,jk) ) |
---|
227 | zlim4 = trb(ji,jj,jk,jpdoc) / ( xkdoc + trb(ji,jj,jk,jpdoc) ) |
---|
228 | xlimbacl(ji,jj,jk) = MIN( zlim1, zlim2, zlim3 ) |
---|
229 | xlimbac (ji,jj,jk) = xlimbacl(ji,jj,jk) * zlim4 |
---|
230 | ! |
---|
231 | ! Michaelis-Menten Limitation term for nutrients Small flagellates |
---|
232 | ! ----------------------------------------------- |
---|
233 | zfalim = (1.-fanano) / fanano |
---|
234 | xnanonh4(ji,jj,jk) = (1. - fanano) * trb(ji,jj,jk,jpnh4) / ( zfalim * zconc0nnh4 + trb(ji,jj,jk,jpnh4) ) |
---|
235 | xnanono3(ji,jj,jk) = (1. - fanano) * trb(ji,jj,jk,jpno3) / ( zfalim * zconc0n + trb(ji,jj,jk,jpno3) ) & |
---|
236 | & * (1. - xnanonh4(ji,jj,jk)) |
---|
237 | ! |
---|
238 | zfalim = (1.-fananop) / fananop |
---|
239 | xnanopo4(ji,jj,jk) = (1. - fananop) * trb(ji,jj,jk,jppo4) / ( trb(ji,jj,jk,jppo4) + zfalim * zconc0npo4 ) |
---|
240 | xnanodop(ji,jj,jk) = trb(ji,jj,jk,jpdop) / ( trb(ji,jj,jk,jpdop) + xkdoc ) & |
---|
241 | & * ( 1.0 - xnanopo4(ji,jj,jk) ) |
---|
242 | xnanodop(ji,jj,jk) = 0. |
---|
243 | ! |
---|
244 | zfalim = (1.-fananof) / fananof |
---|
245 | xnanofer(ji,jj,jk) = (1. - fananof) * biron(ji,jj,jk) / ( biron(ji,jj,jk) + zfalim * zconcnfe ) |
---|
246 | ! |
---|
247 | zratiof = trb(ji,jj,jk,jpnfe) * z1_trnphy |
---|
248 | zqfemn = xcoef1 * znanochl + xcoef2 + xcoef3 * xnanono3(ji,jj,jk) |
---|
249 | ! |
---|
250 | zration = trb(ji,jj,jk,jpnph) * z1_trnphy |
---|
251 | zration = MIN(xqnnmax(ji,jj,jk), MAX( xqnnmin(ji,jj,jk), zration )) |
---|
252 | zzpsiuptk = xqnnmin(ji,jj,jk) * rno3 / zpsiuptk**2 |
---|
253 | fvnuptk(ji,jj,jk) = 1. / zzpsiuptk * xqnnmin(ji,jj,jk) / (zration + rtrn) & |
---|
254 | & * MAX(0., (1. - zratchl * znanochl / 12. ) ) |
---|
255 | ! |
---|
256 | zlim1 = max(0., (zration - xqnnmin(ji,jj,jk) ) & |
---|
257 | & / (xqnnmax(ji,jj,jk) - xqnnmin(ji,jj,jk) ) ) * xqnnmax(ji,jj,jk) & |
---|
258 | & / (zration + rtrn) |
---|
259 | ! The value of the optimal quota in the formulation below |
---|
260 | ! has been found by solving a non linear equation |
---|
261 | zlim1f = max(0., ( 1.086 - xqnnmin(ji,jj,jk) ) & |
---|
262 | & / (xqnnmax(ji,jj,jk) - xqnnmin(ji,jj,jk) ) ) * xqnnmax(ji,jj,jk) |
---|
263 | zlim3 = MAX( 0.,( zratiof - zqfemn ) / qfnopt ) |
---|
264 | xlimnfe (ji,jj,jk) = MIN( 1., zlim3 ) |
---|
265 | xlimphy (ji,jj,jk) = MIN( 1., zlim1, zlim3 ) |
---|
266 | xlimphys(ji,jj,jk) = MIN( 1., zlim1/( zlim1f + rtrn ), zlim3 ) |
---|
267 | xlimnpn (ji,jj,jk) = MIN( 1., zlim1) |
---|
268 | ! |
---|
269 | ! Michaelis-Menten Limitation term for nutrients picophytoplankton |
---|
270 | ! ---------------------------------------------------------------- |
---|
271 | zfalim = (1.-fapico) / fapico |
---|
272 | xpiconh4(ji,jj,jk) = (1. - fapico) * trb(ji,jj,jk,jpnh4) / ( zfalim * zconc0pnh4 + trb(ji,jj,jk,jpnh4) ) |
---|
273 | xpicono3(ji,jj,jk) = (1. - fapico) * trb(ji,jj,jk,jpno3) / ( zfalim * zconc0p + trb(ji,jj,jk,jpno3) ) & |
---|
274 | & * (1. - xpiconh4(ji,jj,jk)) |
---|
275 | ! |
---|
276 | zfalim = (1.-fapicop) / fapicop |
---|
277 | xpicopo4(ji,jj,jk) = (1. - fapicop) * trb(ji,jj,jk,jppo4) / ( trb(ji,jj,jk,jppo4) + zfalim * zconc0ppo4 ) |
---|
278 | xpicodop(ji,jj,jk) = trb(ji,jj,jk,jpdop) / ( trb(ji,jj,jk,jpdop) + xkdoc ) & |
---|
279 | & * ( 1.0 - xpicopo4(ji,jj,jk) ) |
---|
280 | xpicodop(ji,jj,jk) = 0. |
---|
281 | ! |
---|
282 | zfalim = (1.-fapicof) / fapicof |
---|
283 | xpicofer(ji,jj,jk) = (1. - fapicof) * biron(ji,jj,jk) / ( biron(ji,jj,jk) + zfalim * zconcpfe ) |
---|
284 | ! |
---|
285 | zratiof = trb(ji,jj,jk,jppfe) * z1_trnpic |
---|
286 | zqfemp = xcoef1 * zpicochl + xcoef2 + xcoef3 * xpicono3(ji,jj,jk) |
---|
287 | ! |
---|
288 | zration = trb(ji,jj,jk,jpnpi) * z1_trnpic |
---|
289 | zration = MIN(xqnpmax(ji,jj,jk), MAX( xqnpmin(ji,jj,jk), zration )) |
---|
290 | zzpsiuptk = xqnpmin(ji,jj,jk) * rno3 / zpsiuptk**2 |
---|
291 | fvpuptk(ji,jj,jk) = 1. / zzpsiuptk * xqnpmin(ji,jj,jk) / (zration + rtrn) & |
---|
292 | & * MAX(0., (1. - zratchl * zpicochl / 12. ) ) |
---|
293 | ! |
---|
294 | zlim1 = max(0., (zration - xqnpmin(ji,jj,jk) ) & |
---|
295 | & / (xqnpmax(ji,jj,jk) - xqnpmin(ji,jj,jk) ) ) * xqnpmax(ji,jj,jk) & |
---|
296 | & / (zration + rtrn) |
---|
297 | ! The value of the optimal quota in the formulation below |
---|
298 | ! has been found by solving a non linear equation |
---|
299 | zlim1f = max(0., (1.367 - xqnpmin(ji,jj,jk) ) & |
---|
300 | & / (xqnpmax(ji,jj,jk) - xqnpmin(ji,jj,jk) ) ) * xqnpmax(ji,jj,jk) |
---|
301 | zlim3 = MAX( 0.,( zratiof - zqfemp ) / qfpopt ) |
---|
302 | xlimpfe (ji,jj,jk) = MIN( 1., zlim3 ) |
---|
303 | xlimpic (ji,jj,jk) = MIN( 1., zlim1, zlim3 ) |
---|
304 | xlimnpp (ji,jj,jk) = MIN( 1., zlim1 ) |
---|
305 | xlimpics(ji,jj,jk) = MIN( 1., zlim1/( zlim1f + rtrn ), zlim3 ) |
---|
306 | ! |
---|
307 | ! Michaelis-Menten Limitation term for nutrients Diatoms |
---|
308 | ! ------------------------------------------------------ |
---|
309 | zfalim = (1.-fadiat) / fadiat |
---|
310 | xdiatnh4(ji,jj,jk) = (1. - fadiat) * trb(ji,jj,jk,jpnh4) / ( zfalim * zconc1dnh4 + trb(ji,jj,jk,jpnh4) ) |
---|
311 | xdiatno3(ji,jj,jk) = (1. - fadiat) * trb(ji,jj,jk,jpno3) / ( zfalim * zconc1d + trb(ji,jj,jk,jpno3) ) & |
---|
312 | & * (1. - xdiatnh4(ji,jj,jk)) |
---|
313 | ! |
---|
314 | zfalim = (1.-fadiatp) / fadiatp |
---|
315 | xdiatpo4(ji,jj,jk) = (1. - fadiatp) * trb(ji,jj,jk,jppo4) / ( trb(ji,jj,jk,jppo4) + zfalim * zconc0dpo4 ) |
---|
316 | xdiatdop(ji,jj,jk) = trb(ji,jj,jk,jpdop) / ( trb(ji,jj,jk,jpdop) + xkdoc ) & |
---|
317 | & * ( 1.0 - xdiatpo4(ji,jj,jk) ) |
---|
318 | xdiatdop(ji,jj,jk) = 0. |
---|
319 | ! |
---|
320 | zfalim = (1.-fadiatf) / fadiatf |
---|
321 | xdiatfer(ji,jj,jk) = (1. - fadiatf) * biron(ji,jj,jk) / ( biron(ji,jj,jk) + zfalim * zconcdfe ) |
---|
322 | ! |
---|
323 | zratiof = trb(ji,jj,jk,jpdfe) * z1_trndia |
---|
324 | zqfemd = xcoef1 * zdiatchl + xcoef2 + xcoef3 * xdiatno3(ji,jj,jk) |
---|
325 | ! |
---|
326 | zration = trb(ji,jj,jk,jpndi) * z1_trndia |
---|
327 | zration = MIN(xqndmax(ji,jj,jk), MAX( xqndmin(ji,jj,jk), zration )) |
---|
328 | zzpsiuptk = xqndmin(ji,jj,jk) * rno3 / zpsiuptk**2 |
---|
329 | fvduptk(ji,jj,jk) = 1. / zzpsiuptk * xqndmin(ji,jj,jk) / (zration + rtrn) & |
---|
330 | & * MAX(0., (1. - zratchl * zdiatchl / 12. ) ) |
---|
331 | ! |
---|
332 | zlim1 = max(0., (zration - xqndmin(ji,jj,jk) ) & |
---|
333 | & / (xqndmax(ji,jj,jk) - xqndmin(ji,jj,jk) ) ) & |
---|
334 | & * xqndmax(ji,jj,jk) / (zration + rtrn) |
---|
335 | ! The value of the optimal quota in the formulation below |
---|
336 | ! has been found by solving a non linear equation |
---|
337 | zlim1f = max(0., (1.077 - xqndmin(ji,jj,jk) ) & |
---|
338 | & / (xqndmax(ji,jj,jk) - xqndmin(ji,jj,jk) ) ) & |
---|
339 | & * xqndmax(ji,jj,jk) |
---|
340 | zlim3 = trb(ji,jj,jk,jpsil) / ( trb(ji,jj,jk,jpsil) + xksi(ji,jj) ) |
---|
341 | zlim4 = MAX( 0., ( zratiof - zqfemd ) / qfdopt ) |
---|
342 | xlimdfe(ji,jj,jk) = MIN( 1., zlim4 ) |
---|
343 | xlimdia(ji,jj,jk) = MIN( 1., zlim1, zlim3, zlim4 ) |
---|
344 | xlimdias(ji,jj,jk) = MIN (1.0, zlim1 / (zlim1f + rtrn ), zlim3, zlim4 ) |
---|
345 | xlimsi(ji,jj,jk) = MIN( zlim1, zlim4 ) |
---|
346 | xlimnpd(ji,jj,jk) = MIN( 1., zlim1 ) |
---|
347 | END DO |
---|
348 | END DO |
---|
349 | END DO |
---|
350 | ! |
---|
351 | ! Compute the phosphorus quota values. It is based on Litchmann et al., 2004 and Daines et al, 2013. |
---|
352 | ! The relative contribution of three fonctional pools are computed: light harvesting apparatus, |
---|
353 | ! nutrient uptake pool and assembly machinery. DNA is assumed to represent 1% of the dry mass of |
---|
354 | ! phytoplankton (see Daines et al., 2013). |
---|
355 | ! -------------------------------------------------------------------------------------------------- |
---|
356 | DO jk = 1, jpkm1 |
---|
357 | DO jj = 1, jpj |
---|
358 | DO ji = 1, jpi |
---|
359 | ! Size estimation of nanophytoplankton |
---|
360 | ! ------------------------------------ |
---|
361 | zcoef = trb(ji,jj,jk,jpphy) - MIN(xsizephy, trb(ji,jj,jk,jpphy) ) |
---|
362 | sizena(ji,jj,jk) = 1. + ( xsizern -1.0 ) * zcoef / ( xsizephy + zcoef ) |
---|
363 | ! N/P ratio of nanophytoplankton |
---|
364 | ! ------------------------------ |
---|
365 | zfuptk = 0.2 + 0.12 / ( 3.0 * sizen(ji,jj,jk) + rtrn ) |
---|
366 | zrpho = 1.54 * trb(ji,jj,jk,jpnch) / ( trb(ji,jj,jk,jpnph) * rno3 * 14. + rtrn ) |
---|
367 | zrass = MAX(0.62/4., ( 1. - zrpho - zfuptk ) * xlimnpn(ji,jj,jk) ) |
---|
368 | xqpnmin(ji,jj,jk) = ( 0.0 + 0.0078 + 0.62/4. * 0.0783 * xqnnmin(ji,jj,jk) ) * 16. |
---|
369 | xqpnmax(ji,jj,jk) = ( zrpho * 0.0128 + zrass * 0.0783 ) * 16. |
---|
370 | xqpnmax(ji,jj,jk) = xqpnmax(ji,jj,jk) * trb(ji,jj,jk,jpnph) / ( trb(ji,jj,jk,jpphy) + rtrn ) & |
---|
371 | & + (0.033 + 0.0078 ) * 16. |
---|
372 | xqpnmax(ji,jj,jk) = MIN( qpnmax, xqpnmax(ji,jj,jk) ) |
---|
373 | |
---|
374 | |
---|
375 | ! Size estimation of picophytoplankton |
---|
376 | ! ------------------------------------ |
---|
377 | zcoef = trb(ji,jj,jk,jppic) - MIN(xsizepic, trb(ji,jj,jk,jppic) ) |
---|
378 | sizepa(ji,jj,jk) = 1. + ( xsizerp -1.0 ) * zcoef / ( xsizepic + zcoef ) |
---|
379 | |
---|
380 | ! N/P ratio of picophytoplankton |
---|
381 | ! ------------------------------ |
---|
382 | zfuptk = 0.2 + 0.12 / ( 0.5 * sizep(ji,jj,jk) + rtrn ) |
---|
383 | zrpho = 1.54 * trb(ji,jj,jk,jppch) / ( trb(ji,jj,jk,jpnpi) * rno3 * 14. + rtrn ) |
---|
384 | zrass = MAX(0.4/4., ( 1. - zrpho - zfuptk ) * xlimnpp(ji,jj,jk) ) |
---|
385 | xqppmin(ji,jj,jk) = ( (0.0 + 0.0078 ) + 0.4/4. * 0.0517 * xqnpmin(ji,jj,jk) ) * 16. |
---|
386 | xqppmax(ji,jj,jk) = ( zrpho * 0.0128 + zrass * 0.0517 ) * 16. |
---|
387 | xqppmax(ji,jj,jk) = xqppmax(ji,jj,jk) * trb(ji,jj,jk,jpnpi) / ( trb(ji,jj,jk,jppic) + rtrn ) & |
---|
388 | & + (0.033 + 0.0078 ) * 16 |
---|
389 | xqppmax(ji,jj,jk) = MIN( qppmax, xqppmax(ji,jj,jk) ) |
---|
390 | |
---|
391 | ! Size estimation of diatoms |
---|
392 | ! -------------------------- |
---|
393 | zcoef = trb(ji,jj,jk,jpdia) - MIN(xsizedia, trb(ji,jj,jk,jpdia) ) |
---|
394 | sized(ji,jj,jk) = 1. + ( xsizerd - 1.0 ) * zcoef / ( xsizedia + zcoef ) |
---|
395 | sizeda(ji,jj,jk) = 1. + ( xsizerd - 1.0 ) * zcoef / ( xsizedia + zcoef ) |
---|
396 | |
---|
397 | ! N/P ratio of diatoms |
---|
398 | ! -------------------- |
---|
399 | zfuptk = 0.2 + 0.12 / ( 5.0 * sized(ji,jj,jk) + rtrn ) |
---|
400 | zrpho = 1.54 * trb(ji,jj,jk,jpdch) / ( trb(ji,jj,jk,jpndi) * rno3 * 14. + rtrn ) |
---|
401 | zrass = MAX(0.66/4., ( 1. - zrpho - zfuptk ) * xlimnpd(ji,jj,jk) ) |
---|
402 | |
---|
403 | xqpdmin(ji,jj,jk) = ( ( 0.0 + 0.0078 ) + 0.66/4. * 0.0783 * xqndmin(ji,jj,jk) ) * 16. |
---|
404 | xqpdmax(ji,jj,jk) = ( zrpho * 0.0128 + zrass * 0.0783 ) * 16. |
---|
405 | xqpdmax(ji,jj,jk) = xqpdmax(ji,jj,jk) * trb(ji,jj,jk,jpndi) / ( trb(ji,jj,jk,jpdia) + rtrn ) & |
---|
406 | & + ( 0.0078 + 0.033 ) * 16. |
---|
407 | xqpdmax(ji,jj,jk) = MIN(qpdmax, xqpdmax(ji,jj,jk) ) |
---|
408 | |
---|
409 | END DO |
---|
410 | END DO |
---|
411 | END DO |
---|
412 | |
---|
413 | ! Compute the fraction of nanophytoplankton that is made of calcifiers |
---|
414 | ! -------------------------------------------------------------------- |
---|
415 | DO jk = 1, jpkm1 |
---|
416 | DO jj = 1, jpj |
---|
417 | DO ji = 1, jpi |
---|
418 | zlim1 = trb(ji,jj,jk,jpnh4) / ( trb(ji,jj,jk,jpnh4) + concnnh4 ) + trb(ji,jj,jk,jpno3) & |
---|
419 | & / ( trb(ji,jj,jk,jpno3) + concnno3 ) * ( 1.0 - trb(ji,jj,jk,jpnh4) & |
---|
420 | & / ( trb(ji,jj,jk,jpnh4) + concnnh4 ) ) |
---|
421 | zlim2 = trb(ji,jj,jk,jppo4) / ( trb(ji,jj,jk,jppo4) + concnpo4 ) |
---|
422 | zlim3 = trb(ji,jj,jk,jpfer) / ( trb(ji,jj,jk,jpfer) + 5.E-11 ) |
---|
423 | ztem1 = MAX( 0., tsn(ji,jj,jk,jp_tem) ) |
---|
424 | ztem2 = tsn(ji,jj,jk,jp_tem) - 10. |
---|
425 | zetot1 = MAX( 0., etot(ji,jj,jk) - 1.) / ( 4. + etot(ji,jj,jk) ) * 20. / ( 20. + etot(ji,jj,jk) ) |
---|
426 | |
---|
427 | xfracal(ji,jj,jk) = caco3r * MIN( zlim1, zlim2, zlim3 ) & |
---|
428 | & * ztem1 / ( 1. + ztem1 ) * MAX( 1., trb(ji,jj,jk,jpphy)*1E6 ) & |
---|
429 | & * ( 1. + EXP(-ztem2 * ztem2 / 25. ) ) & |
---|
430 | & * zetot1 * MIN( 1., 50. / ( hmld(ji,jj) + rtrn ) ) |
---|
431 | xfracal(ji,jj,jk) = MAX( 0.02, MIN( 0.8 , xfracal(ji,jj,jk) ) ) |
---|
432 | END DO |
---|
433 | END DO |
---|
434 | END DO |
---|
435 | ! |
---|
436 | DO jk = 1, jpkm1 |
---|
437 | DO jj = 1, jpj |
---|
438 | DO ji = 1, jpi |
---|
439 | ! denitrification factor computed from O2 levels |
---|
440 | nitrfac(ji,jj,jk) = MAX( 0.e0, 0.4 * ( 6.e-6 - trb(ji,jj,jk,jpoxy) ) & |
---|
441 | & / ( oxymin + trb(ji,jj,jk,jpoxy) ) ) |
---|
442 | nitrfac(ji,jj,jk) = MIN( 1., nitrfac(ji,jj,jk) ) |
---|
443 | END DO |
---|
444 | END DO |
---|
445 | END DO |
---|
446 | ! |
---|
447 | IF( lk_iomput .AND. knt == nrdttrc ) THEN ! save output diagnostics |
---|
448 | IF( iom_use( "xfracal" ) ) CALL iom_put( "xfracal", xfracal(:,:,:) * tmask(:,:,:) ) ! euphotic layer deptht |
---|
449 | IF( iom_use( "LNnut" ) ) CALL iom_put( "LNnut" , xlimphy(:,:,:) * tmask(:,:,:) ) ! Nutrient limitation term |
---|
450 | IF( iom_use( "LPnut" ) ) CALL iom_put( "LPnut" , xlimpic(:,:,:) * tmask(:,:,:) ) ! Nutrient limitation term |
---|
451 | IF( iom_use( "LDnut" ) ) CALL iom_put( "LDnut" , xlimdia(:,:,:) * tmask(:,:,:) ) ! Nutrient limitation term |
---|
452 | IF( iom_use( "LNFe" ) ) CALL iom_put( "LNFe" , xlimnfe(:,:,:) * tmask(:,:,:) ) ! Iron limitation term |
---|
453 | IF( iom_use( "LPFe" ) ) CALL iom_put( "LPFe" , xlimpfe(:,:,:) * tmask(:,:,:) ) ! Iron limitation term |
---|
454 | IF( iom_use( "LDFe" ) ) CALL iom_put( "LDFe" , xlimdfe(:,:,:) * tmask(:,:,:) ) ! Iron limitation term |
---|
455 | IF( iom_use( "SIZEN" ) ) CALL iom_put( "SIZEN" , sizen(:,:,:) * tmask(:,:,:) ) ! Iron limitation term |
---|
456 | IF( iom_use( "SIZEP" ) ) CALL iom_put( "SIZEP" , sizep(:,:,:) * tmask(:,:,:) ) ! Iron limitation term |
---|
457 | IF( iom_use( "SIZED" ) ) CALL iom_put( "SIZED" , sized(:,:,:) * tmask(:,:,:) ) ! Iron limitation term |
---|
458 | ENDIF |
---|
459 | ! |
---|
460 | IF( ln_timing ) CALL timing_stop('p5z_lim') |
---|
461 | ! |
---|
462 | END SUBROUTINE p5z_lim |
---|
463 | |
---|
464 | |
---|
465 | SUBROUTINE p5z_lim_init |
---|
466 | !!---------------------------------------------------------------------- |
---|
467 | !! *** ROUTINE p5z_lim_init *** |
---|
468 | !! |
---|
469 | !! ** Purpose : Initialization of nutrient limitation parameters |
---|
470 | !! |
---|
471 | !! ** Method : Read the nampislim and nampisquota namelists and check |
---|
472 | !! the parameters called at the first timestep (nittrc000) |
---|
473 | !! |
---|
474 | !! ** input : Namelist nampislim |
---|
475 | !! |
---|
476 | !!---------------------------------------------------------------------- |
---|
477 | INTEGER :: ios ! Local integer output status for namelist read |
---|
478 | !! |
---|
479 | NAMELIST/namp5zlim/ concnno3, concpno3, concdno3, concnnh4, concpnh4, concdnh4, & |
---|
480 | & concnfer, concpfer, concdfer, concbfe, concnpo4, concppo4, & |
---|
481 | & concdpo4, concbno3, concbnh4, concbpo4, xsizedia, xsizepic, & |
---|
482 | & xsizephy, xsizern, xsizerp, xsizerd, xksi1, xksi2, xkdoc, & |
---|
483 | & caco3r, oxymin |
---|
484 | ! |
---|
485 | NAMELIST/namp5zquota/ qnnmin, qnnmax, qpnmin, qpnmax, qnpmin, qnpmax, qppmin, & |
---|
486 | & qppmax, qndmin, qndmax, qpdmin, qpdmax, qfnmax, qfpmax, qfdmax, & |
---|
487 | & qfnopt, qfpopt, qfdopt |
---|
488 | !!---------------------------------------------------------------------- |
---|
489 | ! |
---|
490 | REWIND( numnatp_ref ) ! Namelist nampislim in reference namelist : Pisces nutrient limitation parameters |
---|
491 | READ ( numnatp_ref, namp5zlim, IOSTAT = ios, ERR = 901) |
---|
492 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampislim in reference namelist' ) |
---|
493 | ! |
---|
494 | REWIND( numnatp_cfg ) ! Namelist nampislim in configuration namelist : Pisces nutrient limitation parameters |
---|
495 | READ ( numnatp_cfg, namp5zlim, IOSTAT = ios, ERR = 902 ) |
---|
496 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'nampislim in configuration namelist' ) |
---|
497 | IF(lwm) WRITE ( numonp, namp5zlim ) |
---|
498 | ! |
---|
499 | IF(lwp) THEN ! control print |
---|
500 | WRITE(numout,*) ' ' |
---|
501 | WRITE(numout,*) ' Namelist parameters for nutrient limitations, namp5zlim' |
---|
502 | WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
503 | WRITE(numout,*) ' mean rainratio caco3r = ', caco3r |
---|
504 | WRITE(numout,*) ' NO3 half saturation of nanophyto concnno3 = ', concnno3 |
---|
505 | WRITE(numout,*) ' NO3 half saturation of picophyto concpno3 = ', concpno3 |
---|
506 | WRITE(numout,*) ' NO3 half saturation of diatoms concdno3 = ', concdno3 |
---|
507 | WRITE(numout,*) ' NH4 half saturation for phyto concnnh4 = ', concnnh4 |
---|
508 | WRITE(numout,*) ' NH4 half saturation for pico concpnh4 = ', concpnh4 |
---|
509 | WRITE(numout,*) ' NH4 half saturation for diatoms concdnh4 = ', concdnh4 |
---|
510 | WRITE(numout,*) ' PO4 half saturation for phyto concnpo4 = ', concnpo4 |
---|
511 | WRITE(numout,*) ' PO4 half saturation for pico concppo4 = ', concppo4 |
---|
512 | WRITE(numout,*) ' PO4 half saturation for diatoms concdpo4 = ', concdpo4 |
---|
513 | WRITE(numout,*) ' half saturation constant for Si uptake xksi1 = ', xksi1 |
---|
514 | WRITE(numout,*) ' half saturation constant for Si/C xksi2 = ', xksi2 |
---|
515 | WRITE(numout,*) ' half-sat. of DOC remineralization xkdoc = ', xkdoc |
---|
516 | WRITE(numout,*) ' Iron half saturation for nanophyto concnfer = ', concnfer |
---|
517 | WRITE(numout,*) ' Iron half saturation for picophyto concpfer = ', concpfer |
---|
518 | WRITE(numout,*) ' Iron half saturation for diatoms concdfer = ', concdfer |
---|
519 | WRITE(numout,*) ' size ratio for nanophytoplankton xsizern = ', xsizern |
---|
520 | WRITE(numout,*) ' size ratio for picophytoplankton xsizerp = ', xsizerp |
---|
521 | WRITE(numout,*) ' size ratio for diatoms xsizerd = ', xsizerd |
---|
522 | WRITE(numout,*) ' NO3 half saturation of bacteria concbno3 = ', concbno3 |
---|
523 | WRITE(numout,*) ' NH4 half saturation for bacteria concbnh4 = ', concbnh4 |
---|
524 | WRITE(numout,*) ' Minimum size criteria for diatoms xsizedia = ', xsizedia |
---|
525 | WRITE(numout,*) ' Minimum size criteria for picophyto xsizepic = ', xsizepic |
---|
526 | WRITE(numout,*) ' Minimum size criteria for nanophyto xsizephy = ', xsizephy |
---|
527 | WRITE(numout,*) ' Fe half saturation for bacteria concbfe = ', concbfe |
---|
528 | WRITE(numout,*) ' halk saturation constant for anoxia oxymin =' , oxymin |
---|
529 | ENDIF |
---|
530 | |
---|
531 | REWIND( numnatp_ref ) ! Namelist nampislim in reference namelist : Pisces nutrient limitation parameters |
---|
532 | READ ( numnatp_ref, namp5zquota, IOSTAT = ios, ERR = 903) |
---|
533 | 903 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisquota in reference namelist' ) |
---|
534 | ! |
---|
535 | REWIND( numnatp_cfg ) ! Namelist nampislim in configuration namelist : Pisces nutrient limitation parameters |
---|
536 | READ ( numnatp_cfg, namp5zquota, IOSTAT = ios, ERR = 904 ) |
---|
537 | 904 IF( ios > 0 ) CALL ctl_nam ( ios , 'nampisquota in configuration namelist' ) |
---|
538 | IF(lwm) WRITE ( numonp, namp5zquota ) |
---|
539 | ! |
---|
540 | IF(lwp) THEN ! control print |
---|
541 | WRITE(numout,*) ' ' |
---|
542 | WRITE(numout,*) ' Namelist parameters for nutrient limitations, namp5zquota' |
---|
543 | WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
544 | WRITE(numout,*) ' optimal Fe quota for nano. qfnopt = ', qfnopt |
---|
545 | WRITE(numout,*) ' optimal Fe quota for pico. qfpopt = ', qfpopt |
---|
546 | WRITE(numout,*) ' Optimal Fe quota for diatoms qfdopt = ', qfdopt |
---|
547 | WRITE(numout,*) ' Minimal N quota for nano qnnmin = ', qnnmin |
---|
548 | WRITE(numout,*) ' Maximal N quota for nano qnnmax = ', qnnmax |
---|
549 | WRITE(numout,*) ' Minimal P quota for nano qpnmin = ', qpnmin |
---|
550 | WRITE(numout,*) ' Maximal P quota for nano qpnmax = ', qpnmax |
---|
551 | WRITE(numout,*) ' Minimal N quota for pico qnpmin = ', qnpmin |
---|
552 | WRITE(numout,*) ' Maximal N quota for pico qnpmax = ', qnpmax |
---|
553 | WRITE(numout,*) ' Minimal P quota for pico qppmin = ', qppmin |
---|
554 | WRITE(numout,*) ' Maximal P quota for pico qppmax = ', qppmax |
---|
555 | WRITE(numout,*) ' Minimal N quota for diatoms qndmin = ', qndmin |
---|
556 | WRITE(numout,*) ' Maximal N quota for diatoms qndmax = ', qndmax |
---|
557 | WRITE(numout,*) ' Minimal P quota for diatoms qpdmin = ', qpdmin |
---|
558 | WRITE(numout,*) ' Maximal P quota for diatoms qpdmax = ', qpdmax |
---|
559 | WRITE(numout,*) ' Maximal Fe quota for nanophyto. qfnmax = ', qfnmax |
---|
560 | WRITE(numout,*) ' Maximal Fe quota for picophyto. qfpmax = ', qfpmax |
---|
561 | WRITE(numout,*) ' Maximal Fe quota for diatoms qfdmax = ', qfdmax |
---|
562 | ENDIF |
---|
563 | ! |
---|
564 | zpsino3 = 2.3 * rno3 |
---|
565 | zpsinh4 = 1.8 * rno3 |
---|
566 | zpsiuptk = 1.0 / 6.625 |
---|
567 | ! |
---|
568 | nitrfac (:,:,:) = 0._wp |
---|
569 | ! |
---|
570 | END SUBROUTINE p5z_lim_init |
---|
571 | |
---|
572 | |
---|
573 | INTEGER FUNCTION p5z_lim_alloc() |
---|
574 | !!---------------------------------------------------------------------- |
---|
575 | !! *** ROUTINE p5z_lim_alloc *** |
---|
576 | !!---------------------------------------------------------------------- |
---|
577 | USE lib_mpp , ONLY: ctl_stop |
---|
578 | INTEGER :: ierr(2) ! Local variables |
---|
579 | !!---------------------------------------------------------------------- |
---|
580 | ierr(:) = 0 |
---|
581 | ! |
---|
582 | !* Biological arrays for phytoplankton growth |
---|
583 | ALLOCATE( xpicono3(jpi,jpj,jpk), xpiconh4(jpi,jpj,jpk), & |
---|
584 | & xpicopo4(jpi,jpj,jpk), xpicodop(jpi,jpj,jpk), & |
---|
585 | & xnanodop(jpi,jpj,jpk), xdiatdop(jpi,jpj,jpk), & |
---|
586 | & xnanofer(jpi,jpj,jpk), xdiatfer(jpi,jpj,jpk), & |
---|
587 | & xpicofer(jpi,jpj,jpk), xlimpfe (jpi,jpj,jpk), & |
---|
588 | & fvnuptk (jpi,jpj,jpk), fvduptk (jpi,jpj,jpk), & |
---|
589 | & xlimphys(jpi,jpj,jpk), xlimdias(jpi,jpj,jpk), & |
---|
590 | & xlimpics(jpi,jpj,jpk), & |
---|
591 | & fvpuptk (jpi,jpj,jpk), xlimpic (jpi,jpj,jpk), STAT=ierr(1) ) |
---|
592 | ! |
---|
593 | !* Minimum/maximum quotas of phytoplankton |
---|
594 | ALLOCATE( xqnnmin (jpi,jpj,jpk), xqnnmax(jpi,jpj,jpk), & |
---|
595 | & xqpnmin (jpi,jpj,jpk), xqpnmax(jpi,jpj,jpk), & |
---|
596 | & xqnpmin (jpi,jpj,jpk), xqnpmax(jpi,jpj,jpk), & |
---|
597 | & xqppmin (jpi,jpj,jpk), xqppmax(jpi,jpj,jpk), & |
---|
598 | & xqndmin (jpi,jpj,jpk), xqndmax(jpi,jpj,jpk), & |
---|
599 | & xqpdmin (jpi,jpj,jpk), xqpdmax(jpi,jpj,jpk), STAT=ierr(2) ) |
---|
600 | ! |
---|
601 | p5z_lim_alloc = MAXVAL( ierr ) |
---|
602 | ! |
---|
603 | IF( p5z_lim_alloc /= 0 ) CALL ctl_stop( 'STOP', 'p5z_lim_alloc : failed to allocate arrays.' ) |
---|
604 | ! |
---|
605 | END FUNCTION p5z_lim_alloc |
---|
606 | !!====================================================================== |
---|
607 | END MODULE p5zlim |
---|