1 | MODULE p5zmeso |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p5zmeso *** |
---|
4 | !! TOP : PISCES Compute the sources/sinks for mesozooplankton |
---|
5 | !!====================================================================== |
---|
6 | !! History : 1.0 ! 2002 (O. Aumont) Original code |
---|
7 | !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 |
---|
8 | !! 3.4 ! 2011-06 (O. Aumont, C. Ethe) Quota model for iron |
---|
9 | !! 3.6 ! 2015-05 (O. Aumont) PISCES quota |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | !! p5z_meso : Compute the sources/sinks for mesozooplankton |
---|
12 | !! p5z_meso_init : Initialization of the parameters for mesozooplankton |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | USE oce_trc ! shared variables between ocean and passive tracers |
---|
15 | USE trc ! passive tracers common variables |
---|
16 | USE sms_pisces ! PISCES Source Minus Sink variables |
---|
17 | USE prtctl_trc ! print control for debugging |
---|
18 | USE iom ! I/O manager |
---|
19 | |
---|
20 | IMPLICIT NONE |
---|
21 | PRIVATE |
---|
22 | |
---|
23 | PUBLIC p5z_meso ! called in p5zbio.F90 |
---|
24 | PUBLIC p5z_meso_init ! called in trcsms_pisces.F90 |
---|
25 | PUBLIC p5z_meso_alloc |
---|
26 | |
---|
27 | !! * Shared module variables |
---|
28 | REAL(wp), PUBLIC :: part2 !: part of calcite not dissolved in mesozoo guts |
---|
29 | REAL(wp), PUBLIC :: xpref2c !: mesozoo preference for POC |
---|
30 | REAL(wp), PUBLIC :: xpref2n !: mesozoo preference for nanophyto |
---|
31 | REAL(wp), PUBLIC :: xpref2z !: mesozoo preference for zooplankton |
---|
32 | REAL(wp), PUBLIC :: xpref2d !: mesozoo preference for Diatoms |
---|
33 | REAL(wp), PUBLIC :: xpref2m !: mesozoo preference for mesozoo |
---|
34 | REAL(wp), PUBLIC :: xthresh2zoo !: zoo feeding threshold for mesozooplankton |
---|
35 | REAL(wp), PUBLIC :: xthresh2dia !: diatoms feeding threshold for mesozooplankton |
---|
36 | REAL(wp), PUBLIC :: xthresh2phy !: nanophyto feeding threshold for mesozooplankton |
---|
37 | REAL(wp), PUBLIC :: xthresh2poc !: poc feeding threshold for mesozooplankton |
---|
38 | REAL(wp), PUBLIC :: xthresh2mes !: mesozoo feeding threshold for mesozooplankton |
---|
39 | REAL(wp), PUBLIC :: xthresh2 !: feeding threshold for mesozooplankton |
---|
40 | REAL(wp), PUBLIC :: resrat2 !: exsudation rate of mesozooplankton |
---|
41 | REAL(wp), PUBLIC :: mzrat2 !: microzooplankton mortality rate |
---|
42 | REAL(wp), PUBLIC :: grazrat2 !: maximal mesozoo grazing rate |
---|
43 | REAL(wp), PUBLIC :: xkgraz2 !: Half-saturation constant of assimilation |
---|
44 | REAL(wp), PUBLIC :: unass2c !: Non-assimilated fraction of food |
---|
45 | REAL(wp), PUBLIC :: unass2n !: Non-assimilated fraction of food |
---|
46 | REAL(wp), PUBLIC :: unass2p !: Non-assimilated fraction of food |
---|
47 | REAL(wp), PUBLIC :: epsher2 !: Growth efficiency of mesozoo |
---|
48 | REAL(wp), PUBLIC :: epsher2min !: Minimum growth efficiency of mesozoo |
---|
49 | REAL(wp), PUBLIC :: ssigma2 !: Fraction excreted as semi-labile DOM |
---|
50 | REAL(wp), PUBLIC :: srespir2 !: Active respiration |
---|
51 | REAL(wp), PUBLIC :: grazflux !: mesozoo flux feeding rate |
---|
52 | REAL(wp), PUBLIC :: xfracmig !: Fractional biomass of meso that performs DVM |
---|
53 | LOGICAL, PUBLIC :: bmetexc2 !: Use of excess carbon for respiration |
---|
54 | LOGICAL , PUBLIC :: ln_dvm_meso !: Boolean to activate DVM of mesozooplankton |
---|
55 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: depmig |
---|
56 | INTEGER , ALLOCATABLE, SAVE, DIMENSION(:,:) :: kmig |
---|
57 | |
---|
58 | |
---|
59 | !!---------------------------------------------------------------------- |
---|
60 | !! NEMO/TOP 4.0 , NEMO Consortium (2018) |
---|
61 | !! $Id$ |
---|
62 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
63 | !!---------------------------------------------------------------------- |
---|
64 | |
---|
65 | CONTAINS |
---|
66 | |
---|
67 | SUBROUTINE p5z_meso( kt, knt ) |
---|
68 | !!--------------------------------------------------------------------- |
---|
69 | !! *** ROUTINE p5z_meso *** |
---|
70 | !! |
---|
71 | !! ** Purpose : Compute the sources/sinks for mesozooplankton |
---|
72 | !! |
---|
73 | !! ** Method : - ??? |
---|
74 | !!--------------------------------------------------------------------- |
---|
75 | INTEGER, INTENT(in) :: kt, knt ! ocean time step |
---|
76 | INTEGER :: ji, jj, jk, jkt |
---|
77 | REAL(wp) :: zcompadi, zcompaph, zcompapoc, zcompaz, zcompam, zcompames |
---|
78 | REAL(wp) :: zgraze2, zdenom, zfact, zfood, zfoodlim, zproport |
---|
79 | REAL(wp) :: zmortzgoc, zfracc, zfracn, zfracp, zfracfe, zratio, zratio2 |
---|
80 | REAL(wp) :: zepsherf, zepshert, zepsherq, zepsherv, zrespirc, zrespirn, zrespirp, zbasresb, zbasresi |
---|
81 | REAL(wp) :: zgraztotc, zgraztotn, zgraztotp, zgraztotf, zbasresn, zbasresp, zbasresf |
---|
82 | REAL(wp) :: zgratmp, zgradoct, zgradont, zgrareft, zgradopt |
---|
83 | REAL(wp) :: zprcaca, zmortz, zexcess |
---|
84 | REAL(wp) :: zbeta, zrespz, ztortz, zgrasratp, zgrasratn, zgrasratf |
---|
85 | REAL(wp) :: ztmp1, ztmp2, ztmp3, ztmp4, ztmp5, ztmptot |
---|
86 | REAL(wp) :: zgrazdc, zgrazz, zgrazm, zgrazpof, zgrazcal, zfracal |
---|
87 | REAL(wp) :: zgraznc, zgrazpoc, zgrazpon, zgrazpop, zgraznf, zgrazdf |
---|
88 | REAL(wp) :: zgraznp, zgraznn, zgrazdn, zgrazdp |
---|
89 | REAL(wp) :: zgrazfffp, zgrazfffg, zgrazffep, zgrazffeg |
---|
90 | REAL(wp) :: zgrazffnp, zgrazffng, zgrazffpp, zgrazffpg |
---|
91 | REAL(wp) :: zmigreltime, zrum, zcodel, zargu, zval |
---|
92 | CHARACTER (len=25) :: charout |
---|
93 | REAL(wp) :: zrfact2, zmetexcess, zsigma, zdiffdn |
---|
94 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zgrazing, zfezoo2 |
---|
95 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zgrarem, zgraref, zgrapoc, zgrapof |
---|
96 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zgrarep, zgraren, zgrapon, zgrapop |
---|
97 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zgradoc, zgradon, zgradop |
---|
98 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zgramigrem, zgramigref, zgramigpoc, zgramigpof, zstrn |
---|
99 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zgramigrep, zgramigren, zgramigpop, zgramigpon |
---|
100 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zgramigdoc, zgramigdop, zgramigdon |
---|
101 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: zw3d, zz2ligprod |
---|
102 | |
---|
103 | !!--------------------------------------------------------------------- |
---|
104 | ! |
---|
105 | IF( ln_timing ) CALL timing_start('p5z_meso') |
---|
106 | ! |
---|
107 | zgrazing(:,:,:) = 0._wp |
---|
108 | zfezoo2 (:,:,:) = 0._wp |
---|
109 | ! |
---|
110 | IF (ln_ligand) THEN |
---|
111 | ALLOCATE( zz2ligprod(jpi,jpj,jpk) ) |
---|
112 | zz2ligprod(:,:,:) = 0._wp |
---|
113 | ENDIF |
---|
114 | |
---|
115 | ! |
---|
116 | ! Diurnal vertical migration of mesozooplankton |
---|
117 | ! --------------------------------------------- |
---|
118 | IF (ln_dvm_meso) CALL p5z_meso_depmig |
---|
119 | |
---|
120 | zmetexcess = 0.0 |
---|
121 | IF ( bmetexc2 ) zmetexcess = 1.0 |
---|
122 | |
---|
123 | DO jk = 1, jpkm1 |
---|
124 | DO jj = 1, jpj |
---|
125 | DO ji = 1, jpi |
---|
126 | zcompam = MAX( ( trb(ji,jj,jk,jpmes) - 1.e-9 ), 0.e0 ) |
---|
127 | zfact = xstep * tgfunc2(ji,jj,jk) * zcompam |
---|
128 | |
---|
129 | ! Michaelis-Menten mortality rates of mesozooplankton |
---|
130 | ! --------------------------------------------------- |
---|
131 | zrespz = resrat2 * zfact * ( trb(ji,jj,jk,jpmes) / ( xkmort + trb(ji,jj,jk,jpmes) ) & |
---|
132 | & + 3. * nitrfac(ji,jj,jk) ) |
---|
133 | |
---|
134 | ! Zooplankton mortality. A square function has been selected with |
---|
135 | ! no real reason except that it seems to be more stable and may mimic predation |
---|
136 | ! --------------------------------------------------------------- |
---|
137 | ztortz = mzrat2 * 1.e6 * zfact * trb(ji,jj,jk,jpmes) * (1. - nitrfac(ji,jj,jk)) |
---|
138 | |
---|
139 | ! Computation of the abundance of the preys |
---|
140 | ! A threshold can be specified in the namelist |
---|
141 | ! -------------------------------------------- |
---|
142 | zcompadi = MAX( ( trb(ji,jj,jk,jpdia) - xthresh2dia ), 0.e0 ) |
---|
143 | zcompaz = MAX( ( trb(ji,jj,jk,jpzoo) - xthresh2zoo ), 0.e0 ) |
---|
144 | zcompaph = MAX( ( trb(ji,jj,jk,jpphy) - xthresh2phy ), 0.e0 ) |
---|
145 | zcompapoc = MAX( ( trb(ji,jj,jk,jppoc) - xthresh2poc ), 0.e0 ) |
---|
146 | zcompames = MAX( ( trb(ji,jj,jk,jpmes) - xthresh2mes ), 0.e0 ) |
---|
147 | |
---|
148 | ! Mesozooplankton grazing |
---|
149 | ! ------------------------ |
---|
150 | zfood = xpref2d * zcompadi + xpref2z * zcompaz + xpref2n * zcompaph + xpref2c * zcompapoc & |
---|
151 | & + xpref2m * zcompames |
---|
152 | zfoodlim = MAX( 0., zfood - MIN( 0.5 * zfood, xthresh2 ) ) |
---|
153 | zdenom = zfoodlim / ( xkgraz2 + zfoodlim ) |
---|
154 | zgraze2 = grazrat2 * xstep * tgfunc2(ji,jj,jk) * trb(ji,jj,jk,jpmes) * (1. - nitrfac(ji,jj,jk)) |
---|
155 | |
---|
156 | ! An active switching parameterization is used here. |
---|
157 | ! We don't use the KTW parameterization proposed by |
---|
158 | ! Vallina et al. because it tends to produce too steady biomass |
---|
159 | ! composition and the variance of Chl is too low as it grazes |
---|
160 | ! too strongly on winning organisms. We use a generalized |
---|
161 | ! switching parameterization proposed by Morozov and |
---|
162 | ! Petrovskii (2013) |
---|
163 | ! ------------------------------------------------------------ |
---|
164 | zsigma = 1.0 - zdenom**2/(0.05**2+zdenom**2) |
---|
165 | zsigma = 0.5 + 1.0 * zsigma |
---|
166 | zdiffdn = exp( -ABS(log(3.0 * sizen(ji,jj,jk) / (5.0 * sized(ji,jj,jk) + rtrn )) )**2 / zsigma**2 ) |
---|
167 | ztmp1 = xpref2n * zcompaph * ( zcompaph + zdiffdn * zcompadi ) |
---|
168 | ztmp2 = xpref2m * zcompames**2 |
---|
169 | ztmp3 = xpref2c * zcompapoc**2 |
---|
170 | ztmp4 = xpref2d * zcompadi * ( zdiffdn * zcompadi + zcompaph ) |
---|
171 | ztmp5 = xpref2z * zcompaz**2 |
---|
172 | ztmptot = ztmp1 + ztmp2 + ztmp3 + ztmp4 + ztmp5 + rtrn |
---|
173 | ztmp1 = ztmp1 / ztmptot |
---|
174 | ztmp2 = ztmp2 / ztmptot |
---|
175 | ztmp3 = ztmp3 / ztmptot |
---|
176 | ztmp4 = ztmp4 / ztmptot |
---|
177 | ztmp5 = ztmp5 / ztmptot |
---|
178 | |
---|
179 | ! Mesozooplankton regular grazing on the different preys |
---|
180 | ! ------------------------------------------------------ |
---|
181 | zgrazdc = zgraze2 * ztmp4 * zdenom |
---|
182 | zgrazdn = zgrazdc * trb(ji,jj,jk,jpndi) / ( trb(ji,jj,jk,jpdia) + rtrn) |
---|
183 | zgrazdp = zgrazdc * trb(ji,jj,jk,jppdi) / ( trb(ji,jj,jk,jpdia) + rtrn) |
---|
184 | zgrazdf = zgrazdc * trb(ji,jj,jk,jpdfe) / ( trb(ji,jj,jk,jpdia) + rtrn) |
---|
185 | zgrazz = zgraze2 * ztmp5 * zdenom |
---|
186 | zgrazm = zgraze2 * ztmp2 * zdenom |
---|
187 | zgraznc = zgraze2 * ztmp1 * zdenom |
---|
188 | zgraznn = zgraznc * trb(ji,jj,jk,jpnph) / ( trb(ji,jj,jk,jpphy) + rtrn) |
---|
189 | zgraznp = zgraznc * trb(ji,jj,jk,jppph) / ( trb(ji,jj,jk,jpphy) + rtrn) |
---|
190 | zgraznf = zgraznc * trb(ji,jj,jk,jpnfe) / ( trb(ji,jj,jk,jpphy) + rtrn) |
---|
191 | zgrazpoc = zgraze2 * ztmp3 * zdenom |
---|
192 | zgrazpon = zgrazpoc * trb(ji,jj,jk,jppon) / ( trb(ji,jj,jk,jppoc) + rtrn) |
---|
193 | zgrazpop = zgrazpoc * trb(ji,jj,jk,jppop) / ( trb(ji,jj,jk,jppoc) + rtrn) |
---|
194 | zgrazpof = zgrazpoc * trb(ji,jj,jk,jpsfe) / ( trb(ji,jj,jk,jppoc) + rtrn) |
---|
195 | |
---|
196 | ! Mesozooplankton flux feeding on GOC |
---|
197 | ! ---------------------------------- |
---|
198 | zgrazffeg = grazflux * xstep * wsbio4(ji,jj,jk) & |
---|
199 | & * tgfunc2(ji,jj,jk) * trb(ji,jj,jk,jpgoc) * trb(ji,jj,jk,jpmes) & |
---|
200 | & * (1. - nitrfac(ji,jj,jk)) |
---|
201 | zgrazfffg = zgrazffeg * trb(ji,jj,jk,jpbfe) / (trb(ji,jj,jk,jpgoc) + rtrn) |
---|
202 | zgrazffng = zgrazffeg * trb(ji,jj,jk,jpgon) / (trb(ji,jj,jk,jpgoc) + rtrn) |
---|
203 | zgrazffpg = zgrazffeg * trb(ji,jj,jk,jpgop) / (trb(ji,jj,jk,jpgoc) + rtrn) |
---|
204 | zgrazffep = grazflux * xstep * wsbio3(ji,jj,jk) & |
---|
205 | & * tgfunc2(ji,jj,jk) * trb(ji,jj,jk,jppoc) * trb(ji,jj,jk,jpmes) & |
---|
206 | & * (1. - nitrfac(ji,jj,jk)) |
---|
207 | zgrazfffp = zgrazffep * trb(ji,jj,jk,jpsfe) / (trb(ji,jj,jk,jppoc) + rtrn) |
---|
208 | zgrazffnp = zgrazffep * trb(ji,jj,jk,jppon) / (trb(ji,jj,jk,jppoc) + rtrn) |
---|
209 | zgrazffpp = zgrazffep * trb(ji,jj,jk,jppop) / (trb(ji,jj,jk,jppoc) + rtrn) |
---|
210 | ! |
---|
211 | zgraztotc = zgrazdc + zgrazz + zgraznc + zgrazm + zgrazpoc + zgrazffep + zgrazffeg |
---|
212 | |
---|
213 | ! Compute the proportion of filter feeders |
---|
214 | ! ---------------------------------------- |
---|
215 | zproport = (zgrazffep + zgrazffeg)/(rtrn + zgraztotc) |
---|
216 | |
---|
217 | ! Compute fractionation of aggregates. It is assumed that |
---|
218 | ! diatoms based aggregates are more prone to fractionation |
---|
219 | ! since they are more porous (marine snow instead of fecal pellets) |
---|
220 | ! ---------------------------------------------------------------- |
---|
221 | zratio = trb(ji,jj,jk,jpgsi) / ( trb(ji,jj,jk,jpgoc) + rtrn ) |
---|
222 | zratio2 = zratio * zratio |
---|
223 | zfracc = zproport * grazflux * xstep * wsbio4(ji,jj,jk) & |
---|
224 | & * trb(ji,jj,jk,jpgoc) * trb(ji,jj,jk,jpmes) & |
---|
225 | & * ( 0.2 + 3.8 * zratio2 / ( 1.**2 + zratio2 ) ) |
---|
226 | zfracfe = zfracc * trb(ji,jj,jk,jpbfe) / (trb(ji,jj,jk,jpgoc) + rtrn) |
---|
227 | zfracn = zfracc * trb(ji,jj,jk,jpgon) / (trb(ji,jj,jk,jpgoc) + rtrn) |
---|
228 | zfracp = zfracc * trb(ji,jj,jk,jpgop) / (trb(ji,jj,jk,jpgoc) + rtrn) |
---|
229 | |
---|
230 | zgrazffep = zproport * zgrazffep ; zgrazffeg = zproport * zgrazffeg |
---|
231 | zgrazfffp = zproport * zgrazfffp ; zgrazfffg = zproport * zgrazfffg |
---|
232 | zgrazffnp = zproport * zgrazffnp ; zgrazffng = zproport * zgrazffng |
---|
233 | zgrazffpp = zproport * zgrazffpp ; zgrazffpg = zproport * zgrazffpg |
---|
234 | |
---|
235 | zgraztotc = zgrazdc + zgrazz + zgraznc + zgrazm + zgrazpoc + zgrazffep + zgrazffeg |
---|
236 | zgraztotf = zgrazdf + zgraznf + ( zgrazz + zgrazm ) * ferat3 + zgrazpof & |
---|
237 | & + zgrazfffp + zgrazfffg |
---|
238 | zgraztotn = zgrazdn + (zgrazm + zgrazz) * no3rat3 + zgraznn + zgrazpon & |
---|
239 | & + zgrazffnp + zgrazffng |
---|
240 | zgraztotp = zgrazdp + (zgrazz + zgrazm) * po4rat3 + zgraznp + zgrazpop & |
---|
241 | & + zgrazffpp + zgrazffpg |
---|
242 | |
---|
243 | |
---|
244 | ! Total grazing ( grazing by microzoo is already computed in p5zmicro ) |
---|
245 | zgrazing(ji,jj,jk) = zgraztotc |
---|
246 | |
---|
247 | ! Stoichiometruc ratios of the food ingested by zooplanton |
---|
248 | ! -------------------------------------------------------- |
---|
249 | zgrasratf = (zgraztotf + rtrn) / ( zgraztotc + rtrn ) |
---|
250 | zgrasratn = (zgraztotn + rtrn) / ( zgraztotc + rtrn ) |
---|
251 | zgrasratp = (zgraztotp + rtrn) / ( zgraztotc + rtrn ) |
---|
252 | |
---|
253 | ! Growth efficiency is made a function of the quality |
---|
254 | ! and the quantity of the preys |
---|
255 | ! --------------------------------------------------- |
---|
256 | zepshert = MIN( 1., zgrasratn/ no3rat3, zgrasratp/ po4rat3, zgrasratf / ferat3) |
---|
257 | zbeta = MAX(0., (epsher2 - epsher2min) ) |
---|
258 | zepsherf = epsher2min + zbeta / ( 1.0 + 0.04E6 * 12. * zfood * zbeta ) |
---|
259 | zepsherq = 0.5 + (1.0 - 0.5) * zepshert * ( 1.0 + 1.0 ) / ( zepshert + 1.0 ) |
---|
260 | zepsherv = zepsherf * zepshert * zepsherq |
---|
261 | ! Respiration of mesozooplankton |
---|
262 | ! Excess carbon in the food is used preferentially |
---|
263 | ! ---------------- ------------------------------ |
---|
264 | zexcess = zgraztotc * zepsherf * (1.0 - zepshert) * zmetexcess |
---|
265 | zbasresb = MAX(0., zrespz - zexcess) |
---|
266 | zbasresi = zexcess + MIN(0., zrespz - zexcess) |
---|
267 | zrespirc = srespir2 * zepsherv * zgraztotc + zbasresb |
---|
268 | |
---|
269 | ! When excess carbon is used, the other elements in excess |
---|
270 | ! are also used proportionally to their abundance |
---|
271 | ! -------------------------------------------------------- |
---|
272 | zexcess = ( zgrasratn/ no3rat3 - zepshert ) / ( 1.0 - zepshert + rtrn) |
---|
273 | zbasresn = zbasresi * zexcess * zgrasratn |
---|
274 | zexcess = ( zgrasratp/ po4rat3 - zepshert ) / ( 1.0 - zepshert + rtrn) |
---|
275 | zbasresp = zbasresi * zexcess * zgrasratp |
---|
276 | zexcess = ( zgrasratf/ ferat3 - zepshert ) / ( 1.0 - zepshert + rtrn) |
---|
277 | zbasresf = zbasresi * zexcess * zgrasratf |
---|
278 | |
---|
279 | ! Voiding of the excessive elements as organic matter |
---|
280 | ! -------------------------------------------------------- |
---|
281 | zgradoct = (1. - unass2c - zepsherv) * zgraztotc - zbasresi |
---|
282 | zgradont = (1. - unass2n) * zgraztotn - zepsherv * no3rat3 * zgraztotc - zbasresn |
---|
283 | zgradopt = (1. - unass2p) * zgraztotp - zepsherv * po4rat3 * zgraztotc - zbasresp |
---|
284 | zgrareft = (1. - unass2c) * zgraztotf - zepsherv * ferat3 * zgraztotc - zbasresf |
---|
285 | ztmp1 = ( 1. - epsher2 - unass2c ) /( 1. - 0.8 * epsher2 ) * ztortz |
---|
286 | zgradoc(ji,jj,jk) = (zgradoct + ztmp1) * ssigma2 |
---|
287 | zgradon(ji,jj,jk) = (zgradont + no3rat3 * ztmp1) * ssigma2 |
---|
288 | zgradop(ji,jj,jk) = (zgradopt + po4rat3 * ztmp1) * ssigma2 |
---|
289 | zgratmp = 0.2 * epsher2 /( 1. - 0.8 * epsher2 ) * ztortz |
---|
290 | |
---|
291 | ! Since only semilabile DOM is represented in PISCES |
---|
292 | ! part of DOM is in fact labile and is then released |
---|
293 | ! as dissolved inorganic compounds (ssigma2) |
---|
294 | ! -------------------------------------------------- |
---|
295 | zgrarem(ji,jj,jk) = zgratmp + ( zgradoct + ztmp1 ) * (1.0 - ssigma2) |
---|
296 | zgraren(ji,jj,jk) = no3rat3 * zgratmp + ( zgradont + no3rat3 * ztmp1 ) * (1.0 - ssigma2) |
---|
297 | zgrarep(ji,jj,jk) = po4rat3 * zgratmp + ( zgradopt + po4rat3 * ztmp1 ) * (1.0 - ssigma2) |
---|
298 | zgraref(ji,jj,jk) = zgrareft + ferat3 * ( ztmp1 + zgratmp ) |
---|
299 | |
---|
300 | ! Defecation as a result of non assimilated products |
---|
301 | ! -------------------------------------------------- |
---|
302 | zgrapoc(ji,jj,jk) = zgraztotc * unass2c + unass2c / ( 1. - 0.8 * epsher2 ) * ztortz |
---|
303 | zgrapon(ji,jj,jk) = zgraztotn * unass2n + no3rat3 * unass2n / ( 1. - 0.8 * epsher2 ) * ztortz |
---|
304 | zgrapop(ji,jj,jk) = zgraztotp * unass2p + po4rat3 * unass2p / ( 1. - 0.8 * epsher2 ) * ztortz |
---|
305 | zgrapof(ji,jj,jk) = zgraztotf * unass2c + ferat3 * unass2c / ( 1. - 0.8 * epsher2 ) * ztortz |
---|
306 | |
---|
307 | ! Addition of respiration to the release of inorganic nutrients |
---|
308 | ! ------------------------------------------------------------- |
---|
309 | zgrarem(ji,jj,jk) = zgrarem(ji,jj,jk) + zbasresi + zrespirc |
---|
310 | zgraren(ji,jj,jk) = zgraren(ji,jj,jk) + zbasresn + zrespirc * no3rat3 |
---|
311 | zgrarep(ji,jj,jk) = zgrarep(ji,jj,jk) + zbasresp + zrespirc * po4rat3 |
---|
312 | zgraref(ji,jj,jk) = zgraref(ji,jj,jk) + zbasresf + zrespirc * ferat3 |
---|
313 | |
---|
314 | ! Update the arrays TRA which contain the biological sources and |
---|
315 | ! sinks |
---|
316 | ! -------------------------------------------------------------- |
---|
317 | tra(ji,jj,jk,jpmes) = tra(ji,jj,jk,jpmes) + zepsherv * zgraztotc - zrespirc & |
---|
318 | & - ztortz - zgrazm |
---|
319 | tra(ji,jj,jk,jpdia) = tra(ji,jj,jk,jpdia) - zgrazdc |
---|
320 | tra(ji,jj,jk,jpndi) = tra(ji,jj,jk,jpndi) - zgrazdn |
---|
321 | tra(ji,jj,jk,jppdi) = tra(ji,jj,jk,jppdi) - zgrazdp |
---|
322 | tra(ji,jj,jk,jpdfe) = tra(ji,jj,jk,jpdfe) - zgrazdf |
---|
323 | tra(ji,jj,jk,jpzoo) = tra(ji,jj,jk,jpzoo) - zgrazz |
---|
324 | tra(ji,jj,jk,jpphy) = tra(ji,jj,jk,jpphy) - zgraznc |
---|
325 | tra(ji,jj,jk,jpnph) = tra(ji,jj,jk,jpnph) - zgraznn |
---|
326 | tra(ji,jj,jk,jppph) = tra(ji,jj,jk,jppph) - zgraznp |
---|
327 | tra(ji,jj,jk,jpnfe) = tra(ji,jj,jk,jpnfe) - zgraznf |
---|
328 | tra(ji,jj,jk,jpnch) = tra(ji,jj,jk,jpnch) - zgraznc * trb(ji,jj,jk,jpnch) / ( trb(ji,jj,jk,jpphy) + rtrn ) |
---|
329 | tra(ji,jj,jk,jpdch) = tra(ji,jj,jk,jpdch) - zgrazdc * trb(ji,jj,jk,jpdch) / ( trb(ji,jj,jk,jpdia) + rtrn ) |
---|
330 | tra(ji,jj,jk,jpdsi) = tra(ji,jj,jk,jpdsi) - zgrazdc * trb(ji,jj,jk,jpdsi) / ( trb(ji,jj,jk,jpdia) + rtrn ) |
---|
331 | tra(ji,jj,jk,jpgsi) = tra(ji,jj,jk,jpgsi) + zgrazdc * trb(ji,jj,jk,jpdsi) / ( trb(ji,jj,jk,jpdia) + rtrn ) |
---|
332 | |
---|
333 | tra(ji,jj,jk,jppoc) = tra(ji,jj,jk,jppoc) - zgrazpoc - zgrazffep + zfracc |
---|
334 | prodpoc(ji,jj,jk) = prodpoc(ji,jj,jk) + zfracc |
---|
335 | conspoc(ji,jj,jk) = conspoc(ji,jj,jk) - zgrazpoc - zgrazffep |
---|
336 | tra(ji,jj,jk,jppon) = tra(ji,jj,jk,jppon) - zgrazpon - zgrazffnp + zfracn |
---|
337 | tra(ji,jj,jk,jppop) = tra(ji,jj,jk,jppop) - zgrazpop - zgrazffpp + zfracp |
---|
338 | tra(ji,jj,jk,jpgoc) = tra(ji,jj,jk,jpgoc) - zgrazffeg - zfracc |
---|
339 | consgoc(ji,jj,jk) = consgoc(ji,jj,jk) - zgrazffeg - zfracc |
---|
340 | tra(ji,jj,jk,jpgon) = tra(ji,jj,jk,jpgon) - zgrazffng - zfracn |
---|
341 | tra(ji,jj,jk,jpgop) = tra(ji,jj,jk,jpgop) - zgrazffpg - zfracp |
---|
342 | tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) - zgrazpof - zgrazfffp + zfracfe |
---|
343 | tra(ji,jj,jk,jpbfe) = tra(ji,jj,jk,jpbfe) - zgrazfffg - zfracfe |
---|
344 | zfracal = trb(ji,jj,jk,jpcal) / ( trb(ji,jj,jk,jpgoc) + rtrn ) |
---|
345 | zgrazcal = zgrazffeg * (1. - part2) * zfracal |
---|
346 | ! calcite production |
---|
347 | ! ------------------ |
---|
348 | zprcaca = xfracal(ji,jj,jk) * zgraznc |
---|
349 | prodcal(ji,jj,jk) = prodcal(ji,jj,jk) + zprcaca ! prodcal=prodcal(nanophy)+prodcal(microzoo)+prodcal(mesozoo) |
---|
350 | zprcaca = part2 * zprcaca |
---|
351 | tra(ji,jj,jk,jpdic) = tra(ji,jj,jk,jpdic) + zgrazcal - zprcaca |
---|
352 | tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) + 2. * ( zgrazcal - zprcaca ) |
---|
353 | tra(ji,jj,jk,jpcal) = tra(ji,jj,jk,jpcal) - zgrazcal + zprcaca |
---|
354 | END DO |
---|
355 | END DO |
---|
356 | END DO |
---|
357 | |
---|
358 | IF (ln_dvm_meso) THEN |
---|
359 | ALLOCATE( zgramigrem(jpi,jpj), zgramigref(jpi,jpj), zgramigpoc(jpi,jpj), zgramigpof(jpi,jpj) ) |
---|
360 | ALLOCATE( zgramigrep(jpi,jpj), zgramigren(jpi,jpj), zgramigpop(jpi,jpj), zgramigpon(jpi,jpj) ) |
---|
361 | ALLOCATE( zgramigdoc(jpi,jpj), zgramigdon(jpi,jpj), zgramigdop(jpi,jpj) ) |
---|
362 | |
---|
363 | ALLOCATE( zstrn(jpi,jpj) ) |
---|
364 | zgramigrem(:,:) = 0.0 ; zgramigref(:,:) = 0.0 |
---|
365 | zgramigrep(:,:) = 0.0 ; zgramigren(:,:) = 0.0 |
---|
366 | zgramigpoc(:,:) = 0.0 ; zgramigpof(:,:) = 0.0 |
---|
367 | zgramigpop(:,:) = 0.0 ; zgramigpon(:,:) = 0.0 |
---|
368 | zgramigdoc(:,:) = 0.0 ; zgramigdon(:,:) = 0.0 |
---|
369 | zgramigdop(:,:) = 0.0 |
---|
370 | |
---|
371 | ! compute the day length depending on latitude and the day |
---|
372 | zrum = REAL( nday_year - 80, wp ) / REAL( nyear_len(1), wp ) |
---|
373 | zcodel = ASIN( SIN( zrum * rpi * 2._wp ) * SIN( rad * 23.5_wp ) ) |
---|
374 | |
---|
375 | ! day length in hours |
---|
376 | zstrn(:,:) = 0. |
---|
377 | DO jj = 1, jpj |
---|
378 | DO ji = 1, jpi |
---|
379 | zargu = TAN( zcodel ) * TAN( gphit(ji,jj) * rad ) |
---|
380 | zargu = MAX( -1., MIN( 1., zargu ) ) |
---|
381 | zstrn(ji,jj) = MAX( 0.0, 24. - 2. * ACOS( zargu ) / rad / 15. ) |
---|
382 | zstrn(ji,jj) = MIN(0.75, MAX( 0.25, zstrn(ji,jj) / 24.) ) |
---|
383 | END DO |
---|
384 | END DO |
---|
385 | |
---|
386 | |
---|
387 | DO jk = 1, jpk |
---|
388 | DO jj = 1, jpj |
---|
389 | DO ji = 1, jpi |
---|
390 | |
---|
391 | ! Compute the amount of materials that will go into vertical migration |
---|
392 | zmigreltime = (1. - zstrn(ji,jj)) |
---|
393 | IF ( gdept_n(ji,jj,jk) <= heup(ji,jj) ) THEN |
---|
394 | zgramigrem(ji,jj) = zgramigrem(ji,jj) + xfracmig * zgrarem(ji,jj,jk) * (1. - zmigreltime ) & |
---|
395 | & * e3t_n(ji,jj,jk) * tmask(ji,jj,jk) |
---|
396 | zgramigrep(ji,jj) = zgramigrep(ji,jj) + xfracmig * zgrarep(ji,jj,jk) * (1. - zmigreltime ) & |
---|
397 | & * e3t_n(ji,jj,jk) * tmask(ji,jj,jk) |
---|
398 | zgramigrep(ji,jj) = zgramigren(ji,jj) + xfracmig * zgrarep(ji,jj,jk) * (1. - zmigreltime ) & |
---|
399 | & * e3t_n(ji,jj,jk) * tmask(ji,jj,jk) |
---|
400 | zgramigref(ji,jj) = zgramigref(ji,jj) + xfracmig * zgraref(ji,jj,jk) * (1. - zmigreltime ) & |
---|
401 | & * e3t_n(ji,jj,jk) * tmask(ji,jj,jk) |
---|
402 | zgramigpoc(ji,jj) = zgramigpoc(ji,jj) + xfracmig * zgrapoc(ji,jj,jk) * (1. - zmigreltime ) & |
---|
403 | & * e3t_n(ji,jj,jk) * tmask(ji,jj,jk) |
---|
404 | zgramigpop(ji,jj) = zgramigpop(ji,jj) + xfracmig * zgrapop(ji,jj,jk) * (1. - zmigreltime ) & |
---|
405 | & * e3t_n(ji,jj,jk) * tmask(ji,jj,jk) |
---|
406 | zgramigpon(ji,jj) = zgramigpon(ji,jj) + xfracmig * zgrapon(ji,jj,jk) * (1. - zmigreltime ) & |
---|
407 | & * e3t_n(ji,jj,jk) * tmask(ji,jj,jk) |
---|
408 | zgramigpof(ji,jj) = zgramigpof(ji,jj) + xfracmig * zgrapof(ji,jj,jk) * (1. - zmigreltime ) & |
---|
409 | & * e3t_n(ji,jj,jk) * tmask(ji,jj,jk) |
---|
410 | zgramigdoc(ji,jj) = zgramigdoc(ji,jj) + xfracmig * zgradoc(ji,jj,jk) * (1. - zmigreltime ) & |
---|
411 | & * e3t_n(ji,jj,jk) * tmask(ji,jj,jk) |
---|
412 | zgramigdop(ji,jj) = zgramigdop(ji,jj) + xfracmig * zgradop(ji,jj,jk) * (1. - zmigreltime ) & |
---|
413 | & * e3t_n(ji,jj,jk) * tmask(ji,jj,jk) |
---|
414 | zgramigdon(ji,jj) = zgramigdon(ji,jj) + xfracmig * zgradon(ji,jj,jk) * (1. - zmigreltime ) & |
---|
415 | & * e3t_n(ji,jj,jk) * tmask(ji,jj,jk) |
---|
416 | |
---|
417 | zgrarem(ji,jj,jk) = zgrarem(ji,jj,jk) * ( (1.0 - xfracmig) + xfracmig * zmigreltime ) |
---|
418 | zgrarep(ji,jj,jk) = zgrarep(ji,jj,jk) * ( (1.0 - xfracmig) + xfracmig * zmigreltime ) |
---|
419 | zgraren(ji,jj,jk) = zgraren(ji,jj,jk) * ( (1.0 - xfracmig) + xfracmig * zmigreltime ) |
---|
420 | zgraref(ji,jj,jk) = zgraref(ji,jj,jk) * ( (1.0 - xfracmig) + xfracmig * zmigreltime ) |
---|
421 | zgrapoc(ji,jj,jk) = zgrapoc(ji,jj,jk) * ( (1.0 - xfracmig) + xfracmig * zmigreltime ) |
---|
422 | zgrapop(ji,jj,jk) = zgrapop(ji,jj,jk) * ( (1.0 - xfracmig) + xfracmig * zmigreltime ) |
---|
423 | zgrapon(ji,jj,jk) = zgrapon(ji,jj,jk) * ( (1.0 - xfracmig) + xfracmig * zmigreltime ) |
---|
424 | zgrapof(ji,jj,jk) = zgrapof(ji,jj,jk) * ( (1.0 - xfracmig) + xfracmig * zmigreltime ) |
---|
425 | zgradoc(ji,jj,jk) = zgradoc(ji,jj,jk) * ( (1.0 - xfracmig) + xfracmig * zmigreltime ) |
---|
426 | zgradop(ji,jj,jk) = zgradop(ji,jj,jk) * ( (1.0 - xfracmig) + xfracmig * zmigreltime ) |
---|
427 | zgradon(ji,jj,jk) = zgradon(ji,jj,jk) * ( (1.0 - xfracmig) + xfracmig * zmigreltime ) |
---|
428 | ENDIF |
---|
429 | END DO |
---|
430 | END DO |
---|
431 | END DO |
---|
432 | |
---|
433 | DO jj = 1, jpj |
---|
434 | DO ji = 1, jpi |
---|
435 | IF (tmask(ji,jj,1) == 1.) THEN |
---|
436 | jkt = kmig(ji,jj) |
---|
437 | zgrarem(ji,jj,jkt) = zgrarem(ji,jj,jkt) + zgramigrem(ji,jj) / e3t_n(ji,jj,jkt) |
---|
438 | zgrarep(ji,jj,jkt) = zgrarep(ji,jj,jkt) + zgramigrep(ji,jj) / e3t_n(ji,jj,jkt) |
---|
439 | zgraren(ji,jj,jkt) = zgraren(ji,jj,jkt) + zgramigren(ji,jj) / e3t_n(ji,jj,jkt) |
---|
440 | zgraref(ji,jj,jkt) = zgraref(ji,jj,jkt) + zgramigref(ji,jj) / e3t_n(ji,jj,jkt) |
---|
441 | zgrapoc(ji,jj,jkt) = zgrapoc(ji,jj,jkt) + zgramigpoc(ji,jj) / e3t_n(ji,jj,jkt) |
---|
442 | zgrapop(ji,jj,jkt) = zgrapop(ji,jj,jkt) + zgramigpop(ji,jj) / e3t_n(ji,jj,jkt) |
---|
443 | zgrapon(ji,jj,jkt) = zgrapon(ji,jj,jkt) + zgramigpon(ji,jj) / e3t_n(ji,jj,jkt) |
---|
444 | zgrapof(ji,jj,jkt) = zgrapof(ji,jj,jkt) + zgramigpof(ji,jj) / e3t_n(ji,jj,jkt) |
---|
445 | zgradoc(ji,jj,jkt) = zgradoc(ji,jj,jkt) + zgramigdoc(ji,jj) / e3t_n(ji,jj,jkt) |
---|
446 | zgradop(ji,jj,jkt) = zgradop(ji,jj,jkt) + zgramigdop(ji,jj) / e3t_n(ji,jj,jkt) |
---|
447 | zgradon(ji,jj,jkt) = zgradon(ji,jj,jkt) + zgramigdon(ji,jj) / e3t_n(ji,jj,jkt) |
---|
448 | ENDIF |
---|
449 | END DO |
---|
450 | END DO |
---|
451 | ! |
---|
452 | ! Deallocate temporary variables |
---|
453 | ! ------------------------------ |
---|
454 | DEALLOCATE( zgramigrem, zgramigref, zgramigpoc, zgramigpof ) |
---|
455 | DEALLOCATE( zgramigrep, zgramigren, zgramigpop, zgramigpon ) |
---|
456 | DEALLOCATE( zgramigdoc, zgramigdon, zgramigdop ) |
---|
457 | DEALLOCATE( zstrn ) |
---|
458 | |
---|
459 | ENDIF |
---|
460 | |
---|
461 | DO jk = 1, jpk |
---|
462 | DO jj = 1, jpj |
---|
463 | DO ji = 1, jpi |
---|
464 | ! Update the arrays TRA which contain the biological sources and sinks |
---|
465 | tra(ji,jj,jk,jppo4) = tra(ji,jj,jk,jppo4) + zgrarep(ji,jj,jk) |
---|
466 | tra(ji,jj,jk,jpnh4) = tra(ji,jj,jk,jpnh4) + zgraren(ji,jj,jk) |
---|
467 | tra(ji,jj,jk,jpdoc) = tra(ji,jj,jk,jpdoc) + zgradoc(ji,jj,jk) |
---|
468 | ! |
---|
469 | IF( ln_ligand ) THEN |
---|
470 | tra(ji,jj,jk,jplgw) = tra(ji,jj,jk,jplgw) + zgradoc(ji,jj,jk) * ldocz |
---|
471 | zz2ligprod(ji,jj,jk) = zgradoc(ji,jj,jk) * ldocz |
---|
472 | ENDIF |
---|
473 | ! |
---|
474 | tra(ji,jj,jk,jpdon) = tra(ji,jj,jk,jpdon) + zgradon(ji,jj,jk) |
---|
475 | tra(ji,jj,jk,jpdop) = tra(ji,jj,jk,jpdop) + zgradop(ji,jj,jk) |
---|
476 | tra(ji,jj,jk,jpoxy) = tra(ji,jj,jk,jpoxy) - o2ut * zgrarem(ji,jj,jk) |
---|
477 | tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) + zgraref(ji,jj,jk) |
---|
478 | zfezoo2(ji,jj,jk) = zgraref(ji,jj,jk) |
---|
479 | tra(ji,jj,jk,jpdic) = tra(ji,jj,jk,jpdic) + zgrarem(ji,jj,jk) |
---|
480 | tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) + rno3 * zgraren(ji,jj,jk) |
---|
481 | tra(ji,jj,jk,jpgoc) = tra(ji,jj,jk,jpgoc) + zgrapoc(ji,jj,jk) |
---|
482 | prodgoc(ji,jj,jk) = prodgoc(ji,jj,jk) + zgrapoc(ji,jj,jk) |
---|
483 | tra(ji,jj,jk,jpgon) = tra(ji,jj,jk,jpgon) + zgrapon(ji,jj,jk) |
---|
484 | tra(ji,jj,jk,jpgop) = tra(ji,jj,jk,jpgop) + zgrapop(ji,jj,jk) |
---|
485 | tra(ji,jj,jk,jpbfe) = tra(ji,jj,jk,jpbfe) + zgrapof(ji,jj,jk) |
---|
486 | END DO |
---|
487 | END DO |
---|
488 | END DO |
---|
489 | ! |
---|
490 | IF( lk_iomput .AND. knt == nrdttrc ) THEN |
---|
491 | ALLOCATE( zw3d(jpi,jpj,jpk) ) |
---|
492 | IF( iom_use( "GRAZ2" ) ) THEN |
---|
493 | zw3d(:,:,:) = zgrazing(:,:,:) * 1.e+3 * rfact2r * tmask(:,:,:) ! Total grazing of phyto by zooplankton |
---|
494 | CALL iom_put( "GRAZ2", zw3d ) |
---|
495 | ENDIF |
---|
496 | IF( iom_use( "PCAL" ) ) THEN |
---|
497 | zw3d(:,:,:) = prodcal(:,:,:) * 1.e+3 * rfact2r * tmask(:,:,:) ! Calcite production |
---|
498 | CALL iom_put( "PCAL", zw3d ) |
---|
499 | ENDIF |
---|
500 | IF( iom_use( "FEZOO2" ) ) THEN |
---|
501 | zw3d(:,:,:) = zfezoo2(:,:,:) * 1e9 * 1.e+3 * rfact2r * tmask(:,:,:) ! |
---|
502 | CALL iom_put( "FEZOO2", zw3d ) |
---|
503 | ENDIF |
---|
504 | IF( iom_use( "LPRODZ2" ) .AND. ln_ligand ) THEN |
---|
505 | zw3d(:,:,:) = zz2ligprod(:,:,:) * 1e9 * 1.e+3 * rfact2r * tmask(:,:,:) |
---|
506 | CALL iom_put( "LPRODZ2" , zw3d ) |
---|
507 | ENDIF |
---|
508 | DEALLOCATE( zw3d ) |
---|
509 | ENDIF |
---|
510 | ! |
---|
511 | IF(ln_ctl) THEN ! print mean trends (used for debugging) |
---|
512 | WRITE(charout, FMT="('meso')") |
---|
513 | CALL prt_ctl_trc_info(charout) |
---|
514 | CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) |
---|
515 | ENDIF |
---|
516 | ! |
---|
517 | IF( ln_timing ) CALL timing_stop('p5z_meso') |
---|
518 | ! |
---|
519 | END SUBROUTINE p5z_meso |
---|
520 | |
---|
521 | |
---|
522 | SUBROUTINE p5z_meso_init |
---|
523 | !!---------------------------------------------------------------------- |
---|
524 | !! *** ROUTINE p5z_meso_init *** |
---|
525 | !! |
---|
526 | !! ** Purpose : Initialization of mesozooplankton parameters |
---|
527 | !! |
---|
528 | !! ** Method : Read the nampismes namelist and check the parameters |
---|
529 | !! called at the first timestep (nittrc000) |
---|
530 | !! |
---|
531 | !! ** input : Namelist nampismes |
---|
532 | !! |
---|
533 | !!---------------------------------------------------------------------- |
---|
534 | INTEGER :: ios ! Local integer output status for namelist read |
---|
535 | !! |
---|
536 | NAMELIST/namp5zmes/part2, bmetexc2, grazrat2, resrat2, mzrat2, xpref2c, xpref2n, xpref2z, & |
---|
537 | & xpref2m, xpref2d, xthresh2dia, xthresh2phy, xthresh2zoo, xthresh2poc, & |
---|
538 | & xthresh2mes, xthresh2, xkgraz2, epsher2, epsher2min, ssigma2, unass2c, & |
---|
539 | & unass2n, unass2p, srespir2, grazflux, ln_dvm_meso, xfracmig |
---|
540 | !!---------------------------------------------------------------------- |
---|
541 | ! |
---|
542 | REWIND( numnatp_ref ) ! Namelist nampismes in reference namelist : Pisces mesozooplankton |
---|
543 | READ ( numnatp_ref, namp5zmes, IOSTAT = ios, ERR = 901) |
---|
544 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampismes in reference namelist' ) |
---|
545 | ! |
---|
546 | REWIND( numnatp_cfg ) ! Namelist nampismes in configuration namelist : Pisces mesozooplankton |
---|
547 | READ ( numnatp_cfg, namp5zmes, IOSTAT = ios, ERR = 902 ) |
---|
548 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'nampismes in configuration namelist' ) |
---|
549 | IF(lwm) WRITE ( numonp, namp5zmes ) |
---|
550 | ! |
---|
551 | IF(lwp) THEN ! control print |
---|
552 | WRITE(numout,*) ' ' |
---|
553 | WRITE(numout,*) ' Namelist parameters for mesozooplankton, namp5zmes' |
---|
554 | WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
555 | WRITE(numout,*) ' part of calcite not dissolved in mesozoo guts part2 = ', part2 |
---|
556 | WRITE(numout,*) ' mesozoo preference for nano. xpref2n = ', xpref2n |
---|
557 | WRITE(numout,*) ' mesozoo preference for diatoms xpref2d = ', xpref2d |
---|
558 | WRITE(numout,*) ' mesozoo preference for zoo xpref2z = ', xpref2z |
---|
559 | WRITE(numout,*) ' mesozoo preference for mesozoo xpref2m = ', xpref2m |
---|
560 | WRITE(numout,*) ' mesozoo preference for poc xpref2c = ', xpref2c |
---|
561 | WRITE(numout,*) ' microzoo feeding threshold for mesozoo xthresh2zoo = ', xthresh2zoo |
---|
562 | WRITE(numout,*) ' diatoms feeding threshold for mesozoo xthresh2dia = ', xthresh2dia |
---|
563 | WRITE(numout,*) ' nanophyto feeding threshold for mesozoo xthresh2phy = ', xthresh2phy |
---|
564 | WRITE(numout,*) ' poc feeding threshold for mesozoo xthresh2poc = ', xthresh2poc |
---|
565 | WRITE(numout,*) ' mesozoo feeding threshold for mesozoo xthresh2mes = ', xthresh2mes |
---|
566 | WRITE(numout,*) ' feeding threshold for mesozooplankton xthresh2 = ', xthresh2 |
---|
567 | WRITE(numout,*) ' exsudation rate of mesozooplankton resrat2 = ', resrat2 |
---|
568 | WRITE(numout,*) ' mesozooplankton mortality rate mzrat2 = ', mzrat2 |
---|
569 | WRITE(numout,*) ' maximal mesozoo grazing rate grazrat2 = ', grazrat2 |
---|
570 | WRITE(numout,*) ' mesozoo flux feeding rate grazflux = ', grazflux |
---|
571 | WRITE(numout,*) ' C egested fraction of food by mesozoo unass2c = ', unass2c |
---|
572 | WRITE(numout,*) ' N egested fraction of food by mesozoo unass2n = ', unass2n |
---|
573 | WRITE(numout,*) ' P egested fraction of food by mesozoo unass2p = ', unass2p |
---|
574 | WRITE(numout,*) ' Efficicency of Mesozoo growth epsher2 = ', epsher2 |
---|
575 | WRITE(numout,*) ' Minimum Efficiency of Mesozoo growth epsher2min =', epsher2min |
---|
576 | WRITE(numout,*) ' Fraction excreted as semi-labile DOM ssigma2 = ', ssigma2 |
---|
577 | WRITE(numout,*) ' Active respiration srespir2 = ', srespir2 |
---|
578 | WRITE(numout,*) ' half sturation constant for grazing 2 xkgraz2 = ', xkgraz2 |
---|
579 | WRITE(numout,*) ' Use excess carbon for respiration bmetexc2 = ', bmetexc2 |
---|
580 | WRITE(numout,*) ' Diurnal vertical migration of mesozoo. ln_dvm_meso =', ln_dvm_meso |
---|
581 | WRITE(numout,*) ' Fractional biomass of meso that performs DVM xfracmig =', xfracmig |
---|
582 | ENDIF |
---|
583 | ! |
---|
584 | END SUBROUTINE p5z_meso_init |
---|
585 | |
---|
586 | SUBROUTINE p5z_meso_depmig |
---|
587 | !!---------------------------------------------------------------------- |
---|
588 | !! *** ROUTINE p5z_meso_depmig *** |
---|
589 | !! |
---|
590 | !! ** Purpose : Computation the migration depth of mesozooplankton |
---|
591 | !! |
---|
592 | !! ** Method : Computes the DVM depth of mesozooplankton from oxygen |
---|
593 | !! temperature and chlorophylle following the parameterization |
---|
594 | !! proposed by Bianchi et al. (2013) |
---|
595 | !! |
---|
596 | !! ** input : |
---|
597 | !!---------------------------------------------------------------------- |
---|
598 | INTEGER :: ji, jj, jk |
---|
599 | ! |
---|
600 | REAL(wp) :: totchl |
---|
601 | REAL(wp), DIMENSION(jpi,jpj) :: oxymoy, tempmoy, zdepmoy |
---|
602 | |
---|
603 | !!--------------------------------------------------------------------- |
---|
604 | ! |
---|
605 | IF( ln_timing == 1 ) CALL timing_start('p5z_meso_zdepmig') |
---|
606 | ! |
---|
607 | oxymoy(:,:) = 0. |
---|
608 | tempmoy(:,:) = 0. |
---|
609 | zdepmoy(:,:) = 0. |
---|
610 | depmig (:,:) = 5. |
---|
611 | kmig (:,:) = 1 |
---|
612 | ! |
---|
613 | ! Compute the averaged values of oxygen, temperature over the domain |
---|
614 | ! 150m to 500 m depth. |
---|
615 | ! |
---|
616 | DO jk =1, jpk |
---|
617 | DO jj = 1, jpj |
---|
618 | DO ji = 1, jpi |
---|
619 | IF (tmask(ji,jj,jk) == 1.) THEN |
---|
620 | IF (gdept_n(ji,jj,jk) >= 150. .AND. gdept_n(ji,jj,jk) <= 500.) THEN |
---|
621 | oxymoy(ji,jj) = oxymoy(ji,jj) + trb(ji,jj,jk,jpoxy)*e3t_n(ji,jj,jk)*1E6 |
---|
622 | tempmoy(ji,jj) = tempmoy(ji,jj) + tsn(ji,jj,jk,jp_tem)*e3t_n(ji,jj,jk) |
---|
623 | zdepmoy(ji,jj) = zdepmoy(ji,jj) + e3t_n(ji,jj,jk) |
---|
624 | ENDIF |
---|
625 | ENDIF |
---|
626 | END DO |
---|
627 | END DO |
---|
628 | END DO |
---|
629 | |
---|
630 | DO jj = 1, jpj |
---|
631 | DO ji = 1, jpi |
---|
632 | oxymoy(ji,jj) = trb(ji,jj,1,jpoxy)*1E6 - oxymoy(ji,jj) / (zdepmoy(ji,jj) + rtrn) |
---|
633 | tempmoy(ji,jj) = tsn(ji,jj,1,jp_tem)-tempmoy(ji,jj) / (zdepmoy(ji,jj) + rtrn) |
---|
634 | END DO |
---|
635 | END DO |
---|
636 | ! |
---|
637 | ! Computation of the migration depth based on the parameterization of |
---|
638 | ! |
---|
639 | DO jj = 1, jpj |
---|
640 | DO ji = 1, jpi |
---|
641 | IF (tmask(ji,jj,1) == 1.) THEN |
---|
642 | totchl = (trb(ji,jj,1,jppch)+trb(ji,jj,1,jpnch)+trb(ji,jj,1,jpdch))*1E6 |
---|
643 | depmig(ji,jj) = 398. - 0.56 * oxymoy(ji,jj) -115. * log10(totchl) + 0.36 * hmld(ji,jj) -2.4 * tempmoy(ji,jj) |
---|
644 | ENDIF |
---|
645 | END DO |
---|
646 | END DO |
---|
647 | ! |
---|
648 | ! Computation of the corresponding jk indice |
---|
649 | ! ------------------------------------------ |
---|
650 | ! |
---|
651 | DO jk = 1, jpk-1 |
---|
652 | DO jj = 1, jpj |
---|
653 | DO ji = 1, jpi |
---|
654 | IF (depmig(ji,jj) .GE. gdepw_n(ji,jj,jk) .AND. depmig(ji,jj) .LT. gdepw_n(ji,jj,jk+1) ) THEN |
---|
655 | kmig(ji,jj) = jk |
---|
656 | ENDIF |
---|
657 | END DO |
---|
658 | END DO |
---|
659 | END DO |
---|
660 | ! |
---|
661 | ! Correction of the migration depth and indice based on O2 levels |
---|
662 | ! If O2 is too low, imposing a migration depth at this low O2 levels |
---|
663 | ! would lead to negative O2 concentrations (respiration while O2 is close |
---|
664 | ! to 0. Thus, to avoid that problem, the migration depth is adjusted so |
---|
665 | ! that it falls above the OMZ |
---|
666 | ! ----------------------------------------------------------------------- |
---|
667 | ! |
---|
668 | DO ji =1, jpi |
---|
669 | DO jj = 1, jpj |
---|
670 | IF (trb(ji,jj,kmig(ji,jj),jpoxy) < 5E-6) THEN |
---|
671 | DO jk = kmig(ji,jj),1,-1 |
---|
672 | IF (trb(ji,jj,jk,jpoxy) >= 5E-6 .AND. trb(ji,jj,jk+1,jpoxy) < 5E-6) THEN |
---|
673 | kmig(ji,jj) = jk |
---|
674 | depmig(ji,jj) = gdept_n(ji,jj,jk) |
---|
675 | ENDIF |
---|
676 | END DO |
---|
677 | ENDIF |
---|
678 | END DO |
---|
679 | END DO |
---|
680 | ! |
---|
681 | IF( ln_timing ) CALL timing_stop('p5z_meso_depmig') |
---|
682 | ! |
---|
683 | END SUBROUTINE p5z_meso_depmig |
---|
684 | |
---|
685 | INTEGER FUNCTION p5z_meso_alloc() |
---|
686 | !!---------------------------------------------------------------------- |
---|
687 | !! *** ROUTINE p4z_meso_alloc *** |
---|
688 | !!---------------------------------------------------------------------- |
---|
689 | ! |
---|
690 | ALLOCATE( depmig(jpi,jpj), kmig(jpi,jpj), STAT= p5z_meso_alloc ) |
---|
691 | ! |
---|
692 | IF( p5z_meso_alloc /= 0 ) CALL ctl_stop( 'STOP', 'p5z_meso_alloc : failed to allocate arrays.' ) |
---|
693 | ! |
---|
694 | END FUNCTION p5z_meso_alloc |
---|
695 | |
---|
696 | !!====================================================================== |
---|
697 | END MODULE p5zmeso |
---|