1 | MODULE eosbn2 |
---|
2 | !!============================================================================== |
---|
3 | !! *** MODULE eosbn2 *** |
---|
4 | !! Equation Of Seawater : in situ density - Brunt-Vaisala frequency |
---|
5 | !!============================================================================== |
---|
6 | !! History : OPA ! 1989-03 (O. Marti) Original code |
---|
7 | !! 6.0 ! 1994-07 (G. Madec, M. Imbard) add bn2 |
---|
8 | !! 6.0 ! 1994-08 (G. Madec) Add Jackett & McDougall eos |
---|
9 | !! 7.0 ! 1996-01 (G. Madec) statement function for e3 |
---|
10 | !! 8.1 ! 1997-07 (G. Madec) density instead of volumic mass |
---|
11 | !! - ! 1999-02 (G. Madec, N. Grima) semi-implicit pressure gradient |
---|
12 | !! 8.2 ! 2001-09 (M. Ben Jelloul) bugfix on linear eos |
---|
13 | !! NEMO 1.0 ! 2002-10 (G. Madec) add eos_init |
---|
14 | !! - ! 2002-11 (G. Madec, A. Bozec) partial step, eos_insitu_2d |
---|
15 | !! - ! 2003-08 (G. Madec) F90, free form |
---|
16 | !! 3.0 ! 2006-08 (G. Madec) add tfreez function (now eos_fzp function) |
---|
17 | !! 3.3 ! 2010-05 (C. Ethe, G. Madec) merge TRC-TRA |
---|
18 | !! - ! 2010-10 (G. Nurser, G. Madec) add alpha/beta used in ldfslp |
---|
19 | !! 3.7 ! 2012-03 (F. Roquet, G. Madec) add primitive of alpha and beta used in PE computation |
---|
20 | !! - ! 2012-05 (F. Roquet) add Vallis and original JM95 equation of state |
---|
21 | !! - ! 2013-04 (F. Roquet, G. Madec) add eos_rab, change bn2 computation and reorganize the module |
---|
22 | !! - ! 2014-09 (F. Roquet) add TEOS-10, S-EOS, and modify EOS-80 |
---|
23 | !! - ! 2015-06 (P.A. Bouttier) eos_fzp functions changed to subroutines for AGRIF |
---|
24 | !!---------------------------------------------------------------------- |
---|
25 | |
---|
26 | !!---------------------------------------------------------------------- |
---|
27 | !! eos : generic interface of the equation of state |
---|
28 | !! eos_insitu : Compute the in situ density |
---|
29 | !! eos_insitu_pot: Compute the insitu and surface referenced potential volumic mass |
---|
30 | !! eos_insitu_2d : Compute the in situ density for 2d fields |
---|
31 | !! bn2 : compute the Brunt-Vaisala frequency |
---|
32 | !! eos_pt_from_ct: compute the potential temperature from the Conservative Temperature |
---|
33 | !! eos_rab : generic interface of in situ thermal/haline expansion ratio |
---|
34 | !! eos_rab_3d : compute in situ thermal/haline expansion ratio |
---|
35 | !! eos_rab_2d : compute in situ thermal/haline expansion ratio for 2d fields |
---|
36 | !! eos_fzp_2d : freezing temperature for 2d fields |
---|
37 | !! eos_fzp_0d : freezing temperature for scalar |
---|
38 | !! eos_init : set eos parameters (namelist) |
---|
39 | !!---------------------------------------------------------------------- |
---|
40 | USE dom_oce ! ocean space and time domain |
---|
41 | USE phycst ! physical constants |
---|
42 | USE stopar ! Stochastic T/S fluctuations |
---|
43 | USE stopts ! Stochastic T/S fluctuations |
---|
44 | ! |
---|
45 | USE in_out_manager ! I/O manager |
---|
46 | USE lib_mpp ! MPP library |
---|
47 | USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) |
---|
48 | USE prtctl ! Print control |
---|
49 | USE lbclnk ! ocean lateral boundary conditions |
---|
50 | USE timing ! Timing |
---|
51 | |
---|
52 | IMPLICIT NONE |
---|
53 | PRIVATE |
---|
54 | |
---|
55 | ! !! * Interface |
---|
56 | INTERFACE eos |
---|
57 | MODULE PROCEDURE eos_insitu, eos_insitu_pot, eos_insitu_2d |
---|
58 | END INTERFACE |
---|
59 | ! |
---|
60 | INTERFACE eos_rab |
---|
61 | MODULE PROCEDURE rab_3d, rab_2d, rab_0d |
---|
62 | END INTERFACE |
---|
63 | ! |
---|
64 | INTERFACE eos_fzp |
---|
65 | MODULE PROCEDURE eos_fzp_2d, eos_fzp_0d |
---|
66 | END INTERFACE |
---|
67 | ! |
---|
68 | PUBLIC eos ! called by step, istate, tranpc and zpsgrd modules |
---|
69 | PUBLIC bn2 ! called by step module |
---|
70 | PUBLIC eos_rab ! called by ldfslp, zdfddm, trabbl |
---|
71 | PUBLIC eos_pt_from_ct ! called by sbcssm |
---|
72 | PUBLIC eos_fzp ! called by traadv_cen2 and sbcice_... modules |
---|
73 | PUBLIC eos_pen ! used for pe diagnostics in trdpen module |
---|
74 | PUBLIC eos_init ! called by istate module |
---|
75 | |
---|
76 | ! !!** Namelist nameos ** |
---|
77 | LOGICAL , PUBLIC :: ln_TEOS10 |
---|
78 | LOGICAL , PUBLIC :: ln_EOS80 |
---|
79 | LOGICAL , PUBLIC :: ln_SEOS |
---|
80 | LOGICAL , PUBLIC :: ln_LEOS ! determine if linear eos is used |
---|
81 | |
---|
82 | ! Parameters |
---|
83 | LOGICAL , PUBLIC :: l_useCT ! =T in ln_TEOS10=T (i.e. use eos_pt_from_ct to compute sst_m), =F otherwise |
---|
84 | INTEGER , PUBLIC :: neos ! Identifier for equation of state used |
---|
85 | |
---|
86 | INTEGER , PARAMETER :: np_teos10 = -1 ! parameter for using TEOS10 |
---|
87 | INTEGER , PARAMETER :: np_eos80 = 0 ! parameter for using EOS80 |
---|
88 | INTEGER , PARAMETER :: np_seos = 1 ! parameter for using Simplified Equation of state |
---|
89 | INTEGER , PARAMETER :: np_leos = 2 ! parameter for using linear equation of state (ISOMIP+) |
---|
90 | |
---|
91 | ! !!! simplified eos coefficients (default value: Vallis 2006) |
---|
92 | REAL(wp) :: rn_a0 = 1.6550e-1_wp ! thermal expansion coeff. |
---|
93 | REAL(wp) :: rn_b0 = 7.6554e-1_wp ! saline expansion coeff. |
---|
94 | REAL(wp) :: rn_lambda1 = 5.9520e-2_wp ! cabbeling coeff. in T^2 |
---|
95 | REAL(wp) :: rn_lambda2 = 5.4914e-4_wp ! cabbeling coeff. in S^2 |
---|
96 | REAL(wp) :: rn_mu1 = 1.4970e-4_wp ! thermobaric coeff. in T |
---|
97 | REAL(wp) :: rn_mu2 = 1.1090e-5_wp ! thermobaric coeff. in S |
---|
98 | REAL(wp) :: rn_nu = 2.4341e-3_wp ! cabbeling coeff. in theta*salt |
---|
99 | |
---|
100 | ! TEOS10/EOS80 parameters |
---|
101 | REAL(wp) :: r1_S0, r1_T0, r1_Z0, rdeltaS |
---|
102 | |
---|
103 | ! EOS parameters |
---|
104 | REAL(wp) :: EOS000 , EOS100 , EOS200 , EOS300 , EOS400 , EOS500 , EOS600 |
---|
105 | REAL(wp) :: EOS010 , EOS110 , EOS210 , EOS310 , EOS410 , EOS510 |
---|
106 | REAL(wp) :: EOS020 , EOS120 , EOS220 , EOS320 , EOS420 |
---|
107 | REAL(wp) :: EOS030 , EOS130 , EOS230 , EOS330 |
---|
108 | REAL(wp) :: EOS040 , EOS140 , EOS240 |
---|
109 | REAL(wp) :: EOS050 , EOS150 |
---|
110 | REAL(wp) :: EOS060 |
---|
111 | REAL(wp) :: EOS001 , EOS101 , EOS201 , EOS301 , EOS401 |
---|
112 | REAL(wp) :: EOS011 , EOS111 , EOS211 , EOS311 |
---|
113 | REAL(wp) :: EOS021 , EOS121 , EOS221 |
---|
114 | REAL(wp) :: EOS031 , EOS131 |
---|
115 | REAL(wp) :: EOS041 |
---|
116 | REAL(wp) :: EOS002 , EOS102 , EOS202 |
---|
117 | REAL(wp) :: EOS012 , EOS112 |
---|
118 | REAL(wp) :: EOS022 |
---|
119 | REAL(wp) :: EOS003 , EOS103 |
---|
120 | REAL(wp) :: EOS013 |
---|
121 | |
---|
122 | ! ALPHA parameters |
---|
123 | REAL(wp) :: ALP000 , ALP100 , ALP200 , ALP300 , ALP400 , ALP500 |
---|
124 | REAL(wp) :: ALP010 , ALP110 , ALP210 , ALP310 , ALP410 |
---|
125 | REAL(wp) :: ALP020 , ALP120 , ALP220 , ALP320 |
---|
126 | REAL(wp) :: ALP030 , ALP130 , ALP230 |
---|
127 | REAL(wp) :: ALP040 , ALP140 |
---|
128 | REAL(wp) :: ALP050 |
---|
129 | REAL(wp) :: ALP001 , ALP101 , ALP201 , ALP301 |
---|
130 | REAL(wp) :: ALP011 , ALP111 , ALP211 |
---|
131 | REAL(wp) :: ALP021 , ALP121 |
---|
132 | REAL(wp) :: ALP031 |
---|
133 | REAL(wp) :: ALP002 , ALP102 |
---|
134 | REAL(wp) :: ALP012 |
---|
135 | REAL(wp) :: ALP003 |
---|
136 | |
---|
137 | ! BETA parameters |
---|
138 | REAL(wp) :: BET000 , BET100 , BET200 , BET300 , BET400 , BET500 |
---|
139 | REAL(wp) :: BET010 , BET110 , BET210 , BET310 , BET410 |
---|
140 | REAL(wp) :: BET020 , BET120 , BET220 , BET320 |
---|
141 | REAL(wp) :: BET030 , BET130 , BET230 |
---|
142 | REAL(wp) :: BET040 , BET140 |
---|
143 | REAL(wp) :: BET050 |
---|
144 | REAL(wp) :: BET001 , BET101 , BET201 , BET301 |
---|
145 | REAL(wp) :: BET011 , BET111 , BET211 |
---|
146 | REAL(wp) :: BET021 , BET121 |
---|
147 | REAL(wp) :: BET031 |
---|
148 | REAL(wp) :: BET002 , BET102 |
---|
149 | REAL(wp) :: BET012 |
---|
150 | REAL(wp) :: BET003 |
---|
151 | |
---|
152 | ! PEN parameters |
---|
153 | REAL(wp) :: PEN000 , PEN100 , PEN200 , PEN300 , PEN400 |
---|
154 | REAL(wp) :: PEN010 , PEN110 , PEN210 , PEN310 |
---|
155 | REAL(wp) :: PEN020 , PEN120 , PEN220 |
---|
156 | REAL(wp) :: PEN030 , PEN130 |
---|
157 | REAL(wp) :: PEN040 |
---|
158 | REAL(wp) :: PEN001 , PEN101 , PEN201 |
---|
159 | REAL(wp) :: PEN011 , PEN111 |
---|
160 | REAL(wp) :: PEN021 |
---|
161 | REAL(wp) :: PEN002 , PEN102 |
---|
162 | REAL(wp) :: PEN012 |
---|
163 | |
---|
164 | ! ALPHA_PEN parameters |
---|
165 | REAL(wp) :: APE000 , APE100 , APE200 , APE300 |
---|
166 | REAL(wp) :: APE010 , APE110 , APE210 |
---|
167 | REAL(wp) :: APE020 , APE120 |
---|
168 | REAL(wp) :: APE030 |
---|
169 | REAL(wp) :: APE001 , APE101 |
---|
170 | REAL(wp) :: APE011 |
---|
171 | REAL(wp) :: APE002 |
---|
172 | |
---|
173 | ! BETA_PEN parameters |
---|
174 | REAL(wp) :: BPE000 , BPE100 , BPE200 , BPE300 |
---|
175 | REAL(wp) :: BPE010 , BPE110 , BPE210 |
---|
176 | REAL(wp) :: BPE020 , BPE120 |
---|
177 | REAL(wp) :: BPE030 |
---|
178 | REAL(wp) :: BPE001 , BPE101 |
---|
179 | REAL(wp) :: BPE011 |
---|
180 | REAL(wp) :: BPE002 |
---|
181 | |
---|
182 | !!---------------------------------------------------------------------- |
---|
183 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
184 | !! $Id: eosbn2.F90 10425 2018-12-19 21:54:16Z smasson $ |
---|
185 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
186 | !!---------------------------------------------------------------------- |
---|
187 | CONTAINS |
---|
188 | |
---|
189 | SUBROUTINE eos_insitu( pts, prd, pdep ) |
---|
190 | !!---------------------------------------------------------------------- |
---|
191 | !! *** ROUTINE eos_insitu *** |
---|
192 | !! |
---|
193 | !! ** Purpose : Compute the in situ density (ratio rho/rho0) from |
---|
194 | !! potential temperature and salinity using an equation of state |
---|
195 | !! selected in the nameos namelist |
---|
196 | !! |
---|
197 | !! ** Method : prd(t,s,z) = ( rho(t,s,z) - rho0 ) / rho0 |
---|
198 | !! with prd in situ density anomaly no units |
---|
199 | !! t TEOS10: CT or EOS80: PT Celsius |
---|
200 | !! s TEOS10: SA or EOS80: SP TEOS10: g/kg or EOS80: psu |
---|
201 | !! z depth meters |
---|
202 | !! rho in situ density kg/m^3 |
---|
203 | !! rho0 reference density kg/m^3 |
---|
204 | !! |
---|
205 | !! ln_teos10 : polynomial TEOS-10 equation of state is used for rho(t,s,z). |
---|
206 | !! Check value: rho = 1028.21993233072 kg/m^3 for z=3000 dbar, ct=3 Celsius, sa=35.5 g/kg |
---|
207 | !! |
---|
208 | !! ln_eos80 : polynomial EOS-80 equation of state is used for rho(t,s,z). |
---|
209 | !! Check value: rho = 1028.35011066567 kg/m^3 for z=3000 dbar, pt=3 Celsius, sp=35.5 psu |
---|
210 | !! |
---|
211 | !! ln_seos : simplified equation of state |
---|
212 | !! prd(t,s,z) = ( -a0*(1+lambda/2*(T-T0)+mu*z+nu*(S-S0))*(T-T0) + b0*(S-S0) ) / rho0 |
---|
213 | !! linear case function of T only: rn_alpha<>0, other coefficients = 0 |
---|
214 | !! linear eos function of T and S: rn_alpha and rn_beta<>0, other coefficients=0 |
---|
215 | !! Vallis like equation: use default values of coefficients |
---|
216 | !! |
---|
217 | !! ln_leos : linear ISOMIP equation of state |
---|
218 | !! prd(t,s,z) = ( -a0*(T-T0) + b0*(S-S0) ) / rho0 |
---|
219 | !! setup for ISOMIP linear eos |
---|
220 | !! |
---|
221 | !! ** Action : compute prd , the in situ density (no units) |
---|
222 | !! |
---|
223 | !! References : Roquet et al, Ocean Modelling, in preparation (2014) |
---|
224 | !! Vallis, Atmospheric and Oceanic Fluid Dynamics, 2006 |
---|
225 | !! TEOS-10 Manual, 2010 |
---|
226 | !!---------------------------------------------------------------------- |
---|
227 | REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in ) :: pts ! 1 : potential temperature [Celsius] |
---|
228 | ! ! 2 : salinity [psu] |
---|
229 | REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT( out) :: prd ! in situ density [-] |
---|
230 | REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ) :: pdep ! depth [m] |
---|
231 | ! |
---|
232 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
233 | REAL(wp) :: zt , zh , zs , ztm ! local scalars |
---|
234 | REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - - |
---|
235 | !!---------------------------------------------------------------------- |
---|
236 | ! |
---|
237 | IF( ln_timing ) CALL timing_start('eos-insitu') |
---|
238 | ! |
---|
239 | SELECT CASE( neos ) |
---|
240 | ! |
---|
241 | CASE( np_teos10, np_eos80 ) !== polynomial TEOS-10 / EOS-80 ==! |
---|
242 | ! |
---|
243 | DO jk = 1, jpkm1 |
---|
244 | DO jj = 1, jpj |
---|
245 | DO ji = 1, jpi |
---|
246 | ! |
---|
247 | zh = pdep(ji,jj,jk) * r1_Z0 ! depth |
---|
248 | zt = pts (ji,jj,jk,jp_tem) * r1_T0 ! temperature |
---|
249 | zs = SQRT( ABS( pts(ji,jj,jk,jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity |
---|
250 | ztm = tmask(ji,jj,jk) ! tmask |
---|
251 | ! |
---|
252 | zn3 = EOS013*zt & |
---|
253 | & + EOS103*zs+EOS003 |
---|
254 | ! |
---|
255 | zn2 = (EOS022*zt & |
---|
256 | & + EOS112*zs+EOS012)*zt & |
---|
257 | & + (EOS202*zs+EOS102)*zs+EOS002 |
---|
258 | ! |
---|
259 | zn1 = (((EOS041*zt & |
---|
260 | & + EOS131*zs+EOS031)*zt & |
---|
261 | & + (EOS221*zs+EOS121)*zs+EOS021)*zt & |
---|
262 | & + ((EOS311*zs+EOS211)*zs+EOS111)*zs+EOS011)*zt & |
---|
263 | & + (((EOS401*zs+EOS301)*zs+EOS201)*zs+EOS101)*zs+EOS001 |
---|
264 | ! |
---|
265 | zn0 = (((((EOS060*zt & |
---|
266 | & + EOS150*zs+EOS050)*zt & |
---|
267 | & + (EOS240*zs+EOS140)*zs+EOS040)*zt & |
---|
268 | & + ((EOS330*zs+EOS230)*zs+EOS130)*zs+EOS030)*zt & |
---|
269 | & + (((EOS420*zs+EOS320)*zs+EOS220)*zs+EOS120)*zs+EOS020)*zt & |
---|
270 | & + ((((EOS510*zs+EOS410)*zs+EOS310)*zs+EOS210)*zs+EOS110)*zs+EOS010)*zt & |
---|
271 | & + (((((EOS600*zs+EOS500)*zs+EOS400)*zs+EOS300)*zs+EOS200)*zs+EOS100)*zs+EOS000 |
---|
272 | ! |
---|
273 | zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0 |
---|
274 | ! |
---|
275 | prd(ji,jj,jk) = ( zn * r1_rho0 - 1._wp ) * ztm ! density anomaly (masked) |
---|
276 | ! |
---|
277 | END DO |
---|
278 | END DO |
---|
279 | END DO |
---|
280 | ! |
---|
281 | CASE( np_seos ) !== simplified EOS ==! |
---|
282 | ! |
---|
283 | DO jk = 1, jpkm1 |
---|
284 | DO jj = 1, jpj |
---|
285 | DO ji = 1, jpi |
---|
286 | zt = pts (ji,jj,jk,jp_tem) - 10._wp |
---|
287 | zs = pts (ji,jj,jk,jp_sal) - 35._wp |
---|
288 | zh = pdep (ji,jj,jk) |
---|
289 | ztm = tmask(ji,jj,jk) |
---|
290 | ! |
---|
291 | zn = - rn_a0 * ( 1._wp + 0.5_wp*rn_lambda1*zt + rn_mu1*zh ) * zt & |
---|
292 | & + rn_b0 * ( 1._wp - 0.5_wp*rn_lambda2*zs - rn_mu2*zh ) * zs & |
---|
293 | & - rn_nu * zt * zs |
---|
294 | ! |
---|
295 | prd(ji,jj,jk) = zn * r1_rho0 * ztm ! density anomaly (masked) |
---|
296 | END DO |
---|
297 | END DO |
---|
298 | END DO |
---|
299 | ! |
---|
300 | CASE( np_leos ) !== linear ISOMIP EOS ==! |
---|
301 | ! |
---|
302 | DO jk = 1, jpkm1 |
---|
303 | DO jj = 1, jpj |
---|
304 | DO ji = 1, jpi |
---|
305 | zt = pts (ji,jj,jk,jp_tem) - (-1._wp) |
---|
306 | zs = pts (ji,jj,jk,jp_sal) - 34.2_wp |
---|
307 | zh = pdep (ji,jj,jk) |
---|
308 | ztm = tmask(ji,jj,jk) |
---|
309 | ! |
---|
310 | zn = rho0 * ( - rn_a0 * zt + rn_b0 * zs ) |
---|
311 | ! |
---|
312 | prd(ji,jj,jk) = zn * r1_rho0 * ztm ! density anomaly (masked) |
---|
313 | END DO |
---|
314 | END DO |
---|
315 | END DO |
---|
316 | ! |
---|
317 | END SELECT |
---|
318 | ! |
---|
319 | IF(ln_ctl) CALL prt_ctl( tab3d_1=prd, clinfo1=' eos-insitu : ', kdim=jpk ) |
---|
320 | ! |
---|
321 | IF( ln_timing ) CALL timing_stop('eos-insitu') |
---|
322 | ! |
---|
323 | END SUBROUTINE eos_insitu |
---|
324 | |
---|
325 | |
---|
326 | SUBROUTINE eos_insitu_pot( pts, prd, prhop, pdep ) |
---|
327 | !!---------------------------------------------------------------------- |
---|
328 | !! *** ROUTINE eos_insitu_pot *** |
---|
329 | !! |
---|
330 | !! ** Purpose : Compute the in situ density (ratio rho/rho0) and the |
---|
331 | !! potential volumic mass (Kg/m3) from potential temperature and |
---|
332 | !! salinity fields using an equation of state selected in the |
---|
333 | !! namelist. |
---|
334 | !! |
---|
335 | !! ** Action : - prd , the in situ density (no units) |
---|
336 | !! - prhop, the potential volumic mass (Kg/m3) |
---|
337 | !! |
---|
338 | !!---------------------------------------------------------------------- |
---|
339 | REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in ) :: pts ! 1 : potential temperature [Celsius] |
---|
340 | ! ! 2 : salinity [psu] |
---|
341 | REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT( out) :: prd ! in situ density [-] |
---|
342 | REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT( out) :: prhop ! potential density (surface referenced) |
---|
343 | REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ) :: pdep ! depth [m] |
---|
344 | ! |
---|
345 | INTEGER :: ji, jj, jk, jsmp ! dummy loop indices |
---|
346 | INTEGER :: jdof |
---|
347 | REAL(wp) :: zt , zh , zstemp, zs , ztm ! local scalars |
---|
348 | REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - - |
---|
349 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zn0_sto, zn_sto, zsign ! local vectors |
---|
350 | !!---------------------------------------------------------------------- |
---|
351 | ! |
---|
352 | IF( ln_timing ) CALL timing_start('eos-pot') |
---|
353 | ! |
---|
354 | SELECT CASE ( neos ) |
---|
355 | ! |
---|
356 | CASE( np_teos10, np_eos80 ) !== polynomial TEOS-10 / EOS-80 ==! |
---|
357 | ! |
---|
358 | ! Stochastic equation of state |
---|
359 | IF ( ln_sto_eos ) THEN |
---|
360 | ALLOCATE(zn0_sto(1:2*nn_sto_eos)) |
---|
361 | ALLOCATE(zn_sto(1:2*nn_sto_eos)) |
---|
362 | ALLOCATE(zsign(1:2*nn_sto_eos)) |
---|
363 | DO jsmp = 1, 2*nn_sto_eos, 2 |
---|
364 | zsign(jsmp) = 1._wp |
---|
365 | zsign(jsmp+1) = -1._wp |
---|
366 | END DO |
---|
367 | ! |
---|
368 | DO jk = 1, jpkm1 |
---|
369 | DO jj = 1, jpj |
---|
370 | DO ji = 1, jpi |
---|
371 | ! |
---|
372 | ! compute density (2*nn_sto_eos) times: |
---|
373 | ! (1) for t+dt, s+ds (with the random TS fluctutation computed in sto_pts) |
---|
374 | ! (2) for t-dt, s-ds (with the opposite fluctuation) |
---|
375 | DO jsmp = 1, nn_sto_eos*2 |
---|
376 | jdof = (jsmp + 1) / 2 |
---|
377 | zh = pdep(ji,jj,jk) * r1_Z0 ! depth |
---|
378 | zt = (pts (ji,jj,jk,jp_tem) + pts_ran(ji,jj,jk,jp_tem,jdof) * zsign(jsmp)) * r1_T0 ! temperature |
---|
379 | zstemp = pts (ji,jj,jk,jp_sal) + pts_ran(ji,jj,jk,jp_sal,jdof) * zsign(jsmp) |
---|
380 | zs = SQRT( ABS( zstemp + rdeltaS ) * r1_S0 ) ! square root salinity |
---|
381 | ztm = tmask(ji,jj,jk) ! tmask |
---|
382 | ! |
---|
383 | zn3 = EOS013*zt & |
---|
384 | & + EOS103*zs+EOS003 |
---|
385 | ! |
---|
386 | zn2 = (EOS022*zt & |
---|
387 | & + EOS112*zs+EOS012)*zt & |
---|
388 | & + (EOS202*zs+EOS102)*zs+EOS002 |
---|
389 | ! |
---|
390 | zn1 = (((EOS041*zt & |
---|
391 | & + EOS131*zs+EOS031)*zt & |
---|
392 | & + (EOS221*zs+EOS121)*zs+EOS021)*zt & |
---|
393 | & + ((EOS311*zs+EOS211)*zs+EOS111)*zs+EOS011)*zt & |
---|
394 | & + (((EOS401*zs+EOS301)*zs+EOS201)*zs+EOS101)*zs+EOS001 |
---|
395 | ! |
---|
396 | zn0_sto(jsmp) = (((((EOS060*zt & |
---|
397 | & + EOS150*zs+EOS050)*zt & |
---|
398 | & + (EOS240*zs+EOS140)*zs+EOS040)*zt & |
---|
399 | & + ((EOS330*zs+EOS230)*zs+EOS130)*zs+EOS030)*zt & |
---|
400 | & + (((EOS420*zs+EOS320)*zs+EOS220)*zs+EOS120)*zs+EOS020)*zt & |
---|
401 | & + ((((EOS510*zs+EOS410)*zs+EOS310)*zs+EOS210)*zs+EOS110)*zs+EOS010)*zt & |
---|
402 | & + (((((EOS600*zs+EOS500)*zs+EOS400)*zs+EOS300)*zs+EOS200)*zs+EOS100)*zs+EOS000 |
---|
403 | ! |
---|
404 | zn_sto(jsmp) = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0_sto(jsmp) |
---|
405 | END DO |
---|
406 | ! |
---|
407 | ! compute stochastic density as the mean of the (2*nn_sto_eos) densities |
---|
408 | prhop(ji,jj,jk) = 0._wp ; prd(ji,jj,jk) = 0._wp |
---|
409 | DO jsmp = 1, nn_sto_eos*2 |
---|
410 | prhop(ji,jj,jk) = prhop(ji,jj,jk) + zn0_sto(jsmp) ! potential density referenced at the surface |
---|
411 | ! |
---|
412 | prd(ji,jj,jk) = prd(ji,jj,jk) + ( zn_sto(jsmp) * r1_rho0 - 1._wp ) ! density anomaly (masked) |
---|
413 | END DO |
---|
414 | prhop(ji,jj,jk) = 0.5_wp * prhop(ji,jj,jk) * ztm / nn_sto_eos |
---|
415 | prd (ji,jj,jk) = 0.5_wp * prd (ji,jj,jk) * ztm / nn_sto_eos |
---|
416 | END DO |
---|
417 | END DO |
---|
418 | END DO |
---|
419 | DEALLOCATE(zn0_sto,zn_sto,zsign) |
---|
420 | ! Non-stochastic equation of state |
---|
421 | ELSE |
---|
422 | DO jk = 1, jpkm1 |
---|
423 | DO jj = 1, jpj |
---|
424 | DO ji = 1, jpi |
---|
425 | ! |
---|
426 | zh = pdep(ji,jj,jk) * r1_Z0 ! depth |
---|
427 | zt = pts (ji,jj,jk,jp_tem) * r1_T0 ! temperature |
---|
428 | zs = SQRT( ABS( pts(ji,jj,jk,jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity |
---|
429 | ztm = tmask(ji,jj,jk) ! tmask |
---|
430 | ! |
---|
431 | zn3 = EOS013*zt & |
---|
432 | & + EOS103*zs+EOS003 |
---|
433 | ! |
---|
434 | zn2 = (EOS022*zt & |
---|
435 | & + EOS112*zs+EOS012)*zt & |
---|
436 | & + (EOS202*zs+EOS102)*zs+EOS002 |
---|
437 | ! |
---|
438 | zn1 = (((EOS041*zt & |
---|
439 | & + EOS131*zs+EOS031)*zt & |
---|
440 | & + (EOS221*zs+EOS121)*zs+EOS021)*zt & |
---|
441 | & + ((EOS311*zs+EOS211)*zs+EOS111)*zs+EOS011)*zt & |
---|
442 | & + (((EOS401*zs+EOS301)*zs+EOS201)*zs+EOS101)*zs+EOS001 |
---|
443 | ! |
---|
444 | zn0 = (((((EOS060*zt & |
---|
445 | & + EOS150*zs+EOS050)*zt & |
---|
446 | & + (EOS240*zs+EOS140)*zs+EOS040)*zt & |
---|
447 | & + ((EOS330*zs+EOS230)*zs+EOS130)*zs+EOS030)*zt & |
---|
448 | & + (((EOS420*zs+EOS320)*zs+EOS220)*zs+EOS120)*zs+EOS020)*zt & |
---|
449 | & + ((((EOS510*zs+EOS410)*zs+EOS310)*zs+EOS210)*zs+EOS110)*zs+EOS010)*zt & |
---|
450 | & + (((((EOS600*zs+EOS500)*zs+EOS400)*zs+EOS300)*zs+EOS200)*zs+EOS100)*zs+EOS000 |
---|
451 | ! |
---|
452 | zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0 |
---|
453 | ! |
---|
454 | prhop(ji,jj,jk) = zn0 * ztm ! potential density referenced at the surface |
---|
455 | ! |
---|
456 | prd(ji,jj,jk) = ( zn * r1_rho0 - 1._wp ) * ztm ! density anomaly (masked) |
---|
457 | END DO |
---|
458 | END DO |
---|
459 | END DO |
---|
460 | ENDIF |
---|
461 | |
---|
462 | CASE( np_seos ) !== simplified EOS ==! |
---|
463 | ! |
---|
464 | DO jk = 1, jpkm1 |
---|
465 | DO jj = 1, jpj |
---|
466 | DO ji = 1, jpi |
---|
467 | zt = pts (ji,jj,jk,jp_tem) - 10._wp |
---|
468 | zs = pts (ji,jj,jk,jp_sal) - 35._wp |
---|
469 | zh = pdep (ji,jj,jk) |
---|
470 | ztm = tmask(ji,jj,jk) |
---|
471 | ! ! potential density referenced at the surface |
---|
472 | zn = - rn_a0 * ( 1._wp + 0.5_wp*rn_lambda1*zt ) * zt & |
---|
473 | & + rn_b0 * ( 1._wp - 0.5_wp*rn_lambda2*zs ) * zs & |
---|
474 | & - rn_nu * zt * zs |
---|
475 | prhop(ji,jj,jk) = ( rho0 + zn ) * ztm |
---|
476 | ! ! density anomaly (masked) |
---|
477 | zn = zn - ( rn_a0 * rn_mu1 * zt + rn_b0 * rn_mu2 * zs ) * zh |
---|
478 | prd(ji,jj,jk) = zn * r1_rho0 * ztm |
---|
479 | ! |
---|
480 | END DO |
---|
481 | END DO |
---|
482 | END DO |
---|
483 | ! |
---|
484 | CASE( np_leos ) !== linear ISOMIP EOS ==! |
---|
485 | ! |
---|
486 | DO jk = 1, jpkm1 |
---|
487 | DO jj = 1, jpj |
---|
488 | DO ji = 1, jpi |
---|
489 | zt = pts (ji,jj,jk,jp_tem) - (-1._wp) |
---|
490 | zs = pts (ji,jj,jk,jp_sal) - 34.2_wp |
---|
491 | zh = pdep (ji,jj,jk) |
---|
492 | ztm = tmask(ji,jj,jk) |
---|
493 | ! ! potential density referenced at the surface |
---|
494 | zn = rho0 * ( - rn_a0 * zt + rn_b0 * zs ) |
---|
495 | prhop(ji,jj,jk) = ( rho0 + zn ) * ztm |
---|
496 | ! ! density anomaly (masked) |
---|
497 | prd(ji,jj,jk) = zn * r1_rho0 * ztm |
---|
498 | ! |
---|
499 | END DO |
---|
500 | END DO |
---|
501 | END DO |
---|
502 | ! |
---|
503 | END SELECT |
---|
504 | ! |
---|
505 | IF(ln_ctl) CALL prt_ctl( tab3d_1=prd, clinfo1=' eos-pot: ', tab3d_2=prhop, clinfo2=' pot : ', kdim=jpk ) |
---|
506 | ! |
---|
507 | IF( ln_timing ) CALL timing_stop('eos-pot') |
---|
508 | ! |
---|
509 | END SUBROUTINE eos_insitu_pot |
---|
510 | |
---|
511 | |
---|
512 | SUBROUTINE eos_insitu_2d( pts, pdep, prd ) |
---|
513 | !!---------------------------------------------------------------------- |
---|
514 | !! *** ROUTINE eos_insitu_2d *** |
---|
515 | !! |
---|
516 | !! ** Purpose : Compute the in situ density (ratio rho/rho0) from |
---|
517 | !! potential temperature and salinity using an equation of state |
---|
518 | !! selected in the nameos namelist. * 2D field case |
---|
519 | !! |
---|
520 | !! ** Action : - prd , the in situ density (no units) (unmasked) |
---|
521 | !! |
---|
522 | !!---------------------------------------------------------------------- |
---|
523 | REAL(wp), DIMENSION(jpi,jpj,jpts), INTENT(in ) :: pts ! 1 : potential temperature [Celsius] |
---|
524 | ! ! 2 : salinity [psu] |
---|
525 | REAL(wp), DIMENSION(jpi,jpj) , INTENT(in ) :: pdep ! depth [m] |
---|
526 | REAL(wp), DIMENSION(jpi,jpj) , INTENT( out) :: prd ! in situ density |
---|
527 | ! |
---|
528 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
529 | REAL(wp) :: zt , zh , zs ! local scalars |
---|
530 | REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - - |
---|
531 | !!---------------------------------------------------------------------- |
---|
532 | ! |
---|
533 | IF( ln_timing ) CALL timing_start('eos2d') |
---|
534 | ! |
---|
535 | prd(:,:) = 0._wp |
---|
536 | ! |
---|
537 | SELECT CASE( neos ) |
---|
538 | ! |
---|
539 | CASE( np_teos10, np_eos80 ) !== polynomial TEOS-10 / EOS-80 ==! |
---|
540 | ! |
---|
541 | DO jj = 1, jpjm1 |
---|
542 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
543 | ! |
---|
544 | zh = pdep(ji,jj) * r1_Z0 ! depth |
---|
545 | zt = pts (ji,jj,jp_tem) * r1_T0 ! temperature |
---|
546 | zs = SQRT( ABS( pts(ji,jj,jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity |
---|
547 | ! |
---|
548 | zn3 = EOS013*zt & |
---|
549 | & + EOS103*zs+EOS003 |
---|
550 | ! |
---|
551 | zn2 = (EOS022*zt & |
---|
552 | & + EOS112*zs+EOS012)*zt & |
---|
553 | & + (EOS202*zs+EOS102)*zs+EOS002 |
---|
554 | ! |
---|
555 | zn1 = (((EOS041*zt & |
---|
556 | & + EOS131*zs+EOS031)*zt & |
---|
557 | & + (EOS221*zs+EOS121)*zs+EOS021)*zt & |
---|
558 | & + ((EOS311*zs+EOS211)*zs+EOS111)*zs+EOS011)*zt & |
---|
559 | & + (((EOS401*zs+EOS301)*zs+EOS201)*zs+EOS101)*zs+EOS001 |
---|
560 | ! |
---|
561 | zn0 = (((((EOS060*zt & |
---|
562 | & + EOS150*zs+EOS050)*zt & |
---|
563 | & + (EOS240*zs+EOS140)*zs+EOS040)*zt & |
---|
564 | & + ((EOS330*zs+EOS230)*zs+EOS130)*zs+EOS030)*zt & |
---|
565 | & + (((EOS420*zs+EOS320)*zs+EOS220)*zs+EOS120)*zs+EOS020)*zt & |
---|
566 | & + ((((EOS510*zs+EOS410)*zs+EOS310)*zs+EOS210)*zs+EOS110)*zs+EOS010)*zt & |
---|
567 | & + (((((EOS600*zs+EOS500)*zs+EOS400)*zs+EOS300)*zs+EOS200)*zs+EOS100)*zs+EOS000 |
---|
568 | ! |
---|
569 | zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0 |
---|
570 | ! |
---|
571 | prd(ji,jj) = zn * r1_rho0 - 1._wp ! unmasked in situ density anomaly |
---|
572 | ! |
---|
573 | END DO |
---|
574 | END DO |
---|
575 | ! |
---|
576 | CALL lbc_lnk( 'eosbn2', prd, 'T', 1. ) ! Lateral boundary conditions |
---|
577 | ! |
---|
578 | CASE( np_seos ) !== simplified EOS ==! |
---|
579 | ! |
---|
580 | DO jj = 1, jpjm1 |
---|
581 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
582 | ! |
---|
583 | zt = pts (ji,jj,jp_tem) - 10._wp |
---|
584 | zs = pts (ji,jj,jp_sal) - 35._wp |
---|
585 | zh = pdep (ji,jj) ! depth at the partial step level |
---|
586 | ! |
---|
587 | zn = - rn_a0 * ( 1._wp + 0.5_wp*rn_lambda1*zt + rn_mu1*zh ) * zt & |
---|
588 | & + rn_b0 * ( 1._wp - 0.5_wp*rn_lambda2*zs - rn_mu2*zh ) * zs & |
---|
589 | & - rn_nu * zt * zs |
---|
590 | ! |
---|
591 | prd(ji,jj) = zn * r1_rho0 ! unmasked in situ density anomaly |
---|
592 | ! |
---|
593 | END DO |
---|
594 | END DO |
---|
595 | ! |
---|
596 | CALL lbc_lnk( 'eosbn2', prd, 'T', 1. ) ! Lateral boundary conditions |
---|
597 | ! |
---|
598 | CASE( np_leos ) !== ISOMIP EOS ==! |
---|
599 | ! |
---|
600 | DO jj = 1, jpjm1 |
---|
601 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
602 | ! |
---|
603 | zt = pts (ji,jj,jp_tem) - (-1._wp) |
---|
604 | zs = pts (ji,jj,jp_sal) - 34.2_wp |
---|
605 | zh = pdep (ji,jj) ! depth at the partial step level |
---|
606 | ! |
---|
607 | zn = rho0 * ( - rn_a0 * zt + rn_b0 * zs ) |
---|
608 | ! |
---|
609 | prd(ji,jj) = zn * r1_rho0 ! unmasked in situ density anomaly |
---|
610 | ! |
---|
611 | END DO |
---|
612 | END DO |
---|
613 | ! |
---|
614 | CALL lbc_lnk( 'eosbn2', prd, 'T', 1. ) ! Lateral boundary conditions |
---|
615 | ! |
---|
616 | END SELECT |
---|
617 | ! |
---|
618 | IF(ln_ctl) CALL prt_ctl( tab2d_1=prd, clinfo1=' eos2d: ' ) |
---|
619 | ! |
---|
620 | IF( ln_timing ) CALL timing_stop('eos2d') |
---|
621 | ! |
---|
622 | END SUBROUTINE eos_insitu_2d |
---|
623 | |
---|
624 | |
---|
625 | SUBROUTINE rab_3d( pts, pab, Kmm ) |
---|
626 | !!---------------------------------------------------------------------- |
---|
627 | !! *** ROUTINE rab_3d *** |
---|
628 | !! |
---|
629 | !! ** Purpose : Calculates thermal/haline expansion ratio at T-points |
---|
630 | !! |
---|
631 | !! ** Method : calculates alpha / beta at T-points |
---|
632 | !! |
---|
633 | !! ** Action : - pab : thermal/haline expansion ratio at T-points |
---|
634 | !!---------------------------------------------------------------------- |
---|
635 | INTEGER , INTENT(in ) :: Kmm ! time level index |
---|
636 | REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in ) :: pts ! pot. temperature & salinity |
---|
637 | REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT( out) :: pab ! thermal/haline expansion ratio |
---|
638 | ! |
---|
639 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
640 | REAL(wp) :: zt , zh , zs , ztm ! local scalars |
---|
641 | REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - - |
---|
642 | !!---------------------------------------------------------------------- |
---|
643 | ! |
---|
644 | IF( ln_timing ) CALL timing_start('rab_3d') |
---|
645 | ! |
---|
646 | SELECT CASE ( neos ) |
---|
647 | ! |
---|
648 | CASE( np_teos10, np_eos80 ) !== polynomial TEOS-10 / EOS-80 ==! |
---|
649 | ! |
---|
650 | DO jk = 1, jpkm1 |
---|
651 | DO jj = 1, jpj |
---|
652 | DO ji = 1, jpi |
---|
653 | ! |
---|
654 | zh = gdept(ji,jj,jk,Kmm) * r1_Z0 ! depth |
---|
655 | zt = pts (ji,jj,jk,jp_tem) * r1_T0 ! temperature |
---|
656 | zs = SQRT( ABS( pts(ji,jj,jk,jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity |
---|
657 | ztm = tmask(ji,jj,jk) ! tmask |
---|
658 | ! |
---|
659 | ! alpha |
---|
660 | zn3 = ALP003 |
---|
661 | ! |
---|
662 | zn2 = ALP012*zt + ALP102*zs+ALP002 |
---|
663 | ! |
---|
664 | zn1 = ((ALP031*zt & |
---|
665 | & + ALP121*zs+ALP021)*zt & |
---|
666 | & + (ALP211*zs+ALP111)*zs+ALP011)*zt & |
---|
667 | & + ((ALP301*zs+ALP201)*zs+ALP101)*zs+ALP001 |
---|
668 | ! |
---|
669 | zn0 = ((((ALP050*zt & |
---|
670 | & + ALP140*zs+ALP040)*zt & |
---|
671 | & + (ALP230*zs+ALP130)*zs+ALP030)*zt & |
---|
672 | & + ((ALP320*zs+ALP220)*zs+ALP120)*zs+ALP020)*zt & |
---|
673 | & + (((ALP410*zs+ALP310)*zs+ALP210)*zs+ALP110)*zs+ALP010)*zt & |
---|
674 | & + ((((ALP500*zs+ALP400)*zs+ALP300)*zs+ALP200)*zs+ALP100)*zs+ALP000 |
---|
675 | ! |
---|
676 | zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0 |
---|
677 | ! |
---|
678 | pab(ji,jj,jk,jp_tem) = zn * r1_rho0 * ztm |
---|
679 | ! |
---|
680 | ! beta |
---|
681 | zn3 = BET003 |
---|
682 | ! |
---|
683 | zn2 = BET012*zt + BET102*zs+BET002 |
---|
684 | ! |
---|
685 | zn1 = ((BET031*zt & |
---|
686 | & + BET121*zs+BET021)*zt & |
---|
687 | & + (BET211*zs+BET111)*zs+BET011)*zt & |
---|
688 | & + ((BET301*zs+BET201)*zs+BET101)*zs+BET001 |
---|
689 | ! |
---|
690 | zn0 = ((((BET050*zt & |
---|
691 | & + BET140*zs+BET040)*zt & |
---|
692 | & + (BET230*zs+BET130)*zs+BET030)*zt & |
---|
693 | & + ((BET320*zs+BET220)*zs+BET120)*zs+BET020)*zt & |
---|
694 | & + (((BET410*zs+BET310)*zs+BET210)*zs+BET110)*zs+BET010)*zt & |
---|
695 | & + ((((BET500*zs+BET400)*zs+BET300)*zs+BET200)*zs+BET100)*zs+BET000 |
---|
696 | ! |
---|
697 | zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0 |
---|
698 | ! |
---|
699 | pab(ji,jj,jk,jp_sal) = zn / zs * r1_rho0 * ztm |
---|
700 | ! |
---|
701 | END DO |
---|
702 | END DO |
---|
703 | END DO |
---|
704 | ! |
---|
705 | CASE( np_seos ) !== simplified EOS ==! |
---|
706 | ! |
---|
707 | DO jk = 1, jpkm1 |
---|
708 | DO jj = 1, jpj |
---|
709 | DO ji = 1, jpi |
---|
710 | zt = pts (ji,jj,jk,jp_tem) - 10._wp ! pot. temperature anomaly (t-T0) |
---|
711 | zs = pts (ji,jj,jk,jp_sal) - 35._wp ! abs. salinity anomaly (s-S0) |
---|
712 | zh = gdept(ji,jj,jk,Kmm) ! depth in meters at t-point |
---|
713 | ztm = tmask(ji,jj,jk) ! land/sea bottom mask = surf. mask |
---|
714 | ! |
---|
715 | zn = rn_a0 * ( 1._wp + rn_lambda1*zt + rn_mu1*zh ) + rn_nu*zs |
---|
716 | pab(ji,jj,jk,jp_tem) = zn * r1_rho0 * ztm ! alpha |
---|
717 | ! |
---|
718 | zn = rn_b0 * ( 1._wp - rn_lambda2*zs - rn_mu2*zh ) - rn_nu*zt |
---|
719 | pab(ji,jj,jk,jp_sal) = zn * r1_rho0 * ztm ! beta |
---|
720 | ! |
---|
721 | END DO |
---|
722 | END DO |
---|
723 | END DO |
---|
724 | ! |
---|
725 | CASE( np_leos ) !== linear ISOMIP EOS ==! |
---|
726 | ! |
---|
727 | DO jk = 1, jpkm1 |
---|
728 | DO jj = 1, jpj |
---|
729 | DO ji = 1, jpi |
---|
730 | zt = pts (ji,jj,jk,jp_tem) - (-1._wp) |
---|
731 | zs = pts (ji,jj,jk,jp_sal) - 34.2_wp ! abs. salinity anomaly (s-S0) |
---|
732 | zh = gdept(ji,jj,jk,Kmm) ! depth in meters at t-point |
---|
733 | ztm = tmask(ji,jj,jk) ! land/sea bottom mask = surf. mask |
---|
734 | ! |
---|
735 | zn = rn_a0 * rho0 |
---|
736 | pab(ji,jj,jk,jp_tem) = zn * r1_rho0 * ztm ! alpha |
---|
737 | ! |
---|
738 | zn = rn_b0 * rho0 |
---|
739 | pab(ji,jj,jk,jp_sal) = zn * r1_rho0 * ztm ! beta |
---|
740 | ! |
---|
741 | END DO |
---|
742 | END DO |
---|
743 | END DO |
---|
744 | ! |
---|
745 | CASE DEFAULT |
---|
746 | WRITE(ctmp1,*) ' bad flag value for neos = ', neos |
---|
747 | CALL ctl_stop( 'rab_3d:', ctmp1 ) |
---|
748 | ! |
---|
749 | END SELECT |
---|
750 | ! |
---|
751 | IF(ln_ctl) CALL prt_ctl( tab3d_1=pab(:,:,:,jp_tem), clinfo1=' rab_3d_t: ', & |
---|
752 | & tab3d_2=pab(:,:,:,jp_sal), clinfo2=' rab_3d_s : ', kdim=jpk ) |
---|
753 | ! |
---|
754 | IF( ln_timing ) CALL timing_stop('rab_3d') |
---|
755 | ! |
---|
756 | END SUBROUTINE rab_3d |
---|
757 | |
---|
758 | |
---|
759 | SUBROUTINE rab_2d( pts, pdep, pab, Kmm ) |
---|
760 | !!---------------------------------------------------------------------- |
---|
761 | !! *** ROUTINE rab_2d *** |
---|
762 | !! |
---|
763 | !! ** Purpose : Calculates thermal/haline expansion ratio for a 2d field (unmasked) |
---|
764 | !! |
---|
765 | !! ** Action : - pab : thermal/haline expansion ratio at T-points |
---|
766 | !!---------------------------------------------------------------------- |
---|
767 | INTEGER , INTENT(in ) :: Kmm ! time level index |
---|
768 | REAL(wp), DIMENSION(jpi,jpj,jpts) , INTENT(in ) :: pts ! pot. temperature & salinity |
---|
769 | REAL(wp), DIMENSION(jpi,jpj) , INTENT(in ) :: pdep ! depth [m] |
---|
770 | REAL(wp), DIMENSION(jpi,jpj,jpts) , INTENT( out) :: pab ! thermal/haline expansion ratio |
---|
771 | ! |
---|
772 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
773 | REAL(wp) :: zt , zh , zs ! local scalars |
---|
774 | REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - - |
---|
775 | !!---------------------------------------------------------------------- |
---|
776 | ! |
---|
777 | IF( ln_timing ) CALL timing_start('rab_2d') |
---|
778 | ! |
---|
779 | pab(:,:,:) = 0._wp |
---|
780 | ! |
---|
781 | SELECT CASE ( neos ) |
---|
782 | ! |
---|
783 | CASE( np_teos10, np_eos80 ) !== polynomial TEOS-10 / EOS-80 ==! |
---|
784 | ! |
---|
785 | DO jj = 1, jpjm1 |
---|
786 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
787 | ! |
---|
788 | zh = pdep(ji,jj) * r1_Z0 ! depth |
---|
789 | zt = pts (ji,jj,jp_tem) * r1_T0 ! temperature |
---|
790 | zs = SQRT( ABS( pts(ji,jj,jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity |
---|
791 | ! |
---|
792 | ! alpha |
---|
793 | zn3 = ALP003 |
---|
794 | ! |
---|
795 | zn2 = ALP012*zt + ALP102*zs+ALP002 |
---|
796 | ! |
---|
797 | zn1 = ((ALP031*zt & |
---|
798 | & + ALP121*zs+ALP021)*zt & |
---|
799 | & + (ALP211*zs+ALP111)*zs+ALP011)*zt & |
---|
800 | & + ((ALP301*zs+ALP201)*zs+ALP101)*zs+ALP001 |
---|
801 | ! |
---|
802 | zn0 = ((((ALP050*zt & |
---|
803 | & + ALP140*zs+ALP040)*zt & |
---|
804 | & + (ALP230*zs+ALP130)*zs+ALP030)*zt & |
---|
805 | & + ((ALP320*zs+ALP220)*zs+ALP120)*zs+ALP020)*zt & |
---|
806 | & + (((ALP410*zs+ALP310)*zs+ALP210)*zs+ALP110)*zs+ALP010)*zt & |
---|
807 | & + ((((ALP500*zs+ALP400)*zs+ALP300)*zs+ALP200)*zs+ALP100)*zs+ALP000 |
---|
808 | ! |
---|
809 | zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0 |
---|
810 | ! |
---|
811 | pab(ji,jj,jp_tem) = zn * r1_rho0 |
---|
812 | ! |
---|
813 | ! beta |
---|
814 | zn3 = BET003 |
---|
815 | ! |
---|
816 | zn2 = BET012*zt + BET102*zs+BET002 |
---|
817 | ! |
---|
818 | zn1 = ((BET031*zt & |
---|
819 | & + BET121*zs+BET021)*zt & |
---|
820 | & + (BET211*zs+BET111)*zs+BET011)*zt & |
---|
821 | & + ((BET301*zs+BET201)*zs+BET101)*zs+BET001 |
---|
822 | ! |
---|
823 | zn0 = ((((BET050*zt & |
---|
824 | & + BET140*zs+BET040)*zt & |
---|
825 | & + (BET230*zs+BET130)*zs+BET030)*zt & |
---|
826 | & + ((BET320*zs+BET220)*zs+BET120)*zs+BET020)*zt & |
---|
827 | & + (((BET410*zs+BET310)*zs+BET210)*zs+BET110)*zs+BET010)*zt & |
---|
828 | & + ((((BET500*zs+BET400)*zs+BET300)*zs+BET200)*zs+BET100)*zs+BET000 |
---|
829 | ! |
---|
830 | zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0 |
---|
831 | ! |
---|
832 | pab(ji,jj,jp_sal) = zn / zs * r1_rho0 |
---|
833 | ! |
---|
834 | ! |
---|
835 | END DO |
---|
836 | END DO |
---|
837 | ! ! Lateral boundary conditions |
---|
838 | CALL lbc_lnk_multi( 'eosbn2', pab(:,:,jp_tem), 'T', 1. , pab(:,:,jp_sal), 'T', 1. ) |
---|
839 | ! |
---|
840 | CASE( np_seos ) !== simplified EOS ==! |
---|
841 | ! |
---|
842 | DO jj = 1, jpjm1 |
---|
843 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
844 | ! |
---|
845 | zt = pts (ji,jj,jp_tem) - 10._wp ! pot. temperature anomaly (t-T0) |
---|
846 | zs = pts (ji,jj,jp_sal) - 35._wp ! abs. salinity anomaly (s-S0) |
---|
847 | zh = pdep (ji,jj) ! depth at the partial step level |
---|
848 | ! |
---|
849 | zn = rn_a0 * ( 1._wp + rn_lambda1*zt + rn_mu1*zh ) + rn_nu*zs |
---|
850 | pab(ji,jj,jp_tem) = zn * r1_rho0 ! alpha |
---|
851 | ! |
---|
852 | zn = rn_b0 * ( 1._wp - rn_lambda2*zs - rn_mu2*zh ) - rn_nu*zt |
---|
853 | pab(ji,jj,jp_sal) = zn * r1_rho0 ! beta |
---|
854 | ! |
---|
855 | END DO |
---|
856 | END DO |
---|
857 | ! ! Lateral boundary conditions |
---|
858 | CALL lbc_lnk_multi( 'eosbn2', pab(:,:,jp_tem), 'T', 1. , pab(:,:,jp_sal), 'T', 1. ) |
---|
859 | ! |
---|
860 | CASE( np_leos ) !== linear ISOMIP EOS ==! |
---|
861 | ! |
---|
862 | DO jj = 1, jpjm1 |
---|
863 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
864 | ! |
---|
865 | zt = pts (ji,jj,jp_tem) - (-1._wp) ! pot. temperature anomaly (t-T0) |
---|
866 | zs = pts (ji,jj,jp_sal) - 34.2_wp ! abs. salinity anomaly (s-S0) |
---|
867 | zh = pdep (ji,jj) ! depth at the partial step level |
---|
868 | ! |
---|
869 | zn = rn_a0 * rho0 |
---|
870 | pab(ji,jj,jp_tem) = zn * r1_rho0 ! alpha |
---|
871 | ! |
---|
872 | zn = rn_b0 * rho0 |
---|
873 | pab(ji,jj,jp_sal) = zn * r1_rho0 ! beta |
---|
874 | ! |
---|
875 | END DO |
---|
876 | END DO |
---|
877 | ! |
---|
878 | CALL lbc_lnk_multi( 'eosbn2', pab(:,:,jp_tem), 'T', 1. , pab(:,:,jp_sal), 'T', 1. ) ! Lateral boundary conditions |
---|
879 | ! |
---|
880 | CASE DEFAULT |
---|
881 | WRITE(ctmp1,*) ' bad flag value for neos = ', neos |
---|
882 | CALL ctl_stop( 'rab_2d:', ctmp1 ) |
---|
883 | ! |
---|
884 | END SELECT |
---|
885 | ! |
---|
886 | IF(ln_ctl) CALL prt_ctl( tab2d_1=pab(:,:,jp_tem), clinfo1=' rab_2d_t: ', & |
---|
887 | & tab2d_2=pab(:,:,jp_sal), clinfo2=' rab_2d_s : ' ) |
---|
888 | ! |
---|
889 | IF( ln_timing ) CALL timing_stop('rab_2d') |
---|
890 | ! |
---|
891 | END SUBROUTINE rab_2d |
---|
892 | |
---|
893 | |
---|
894 | SUBROUTINE rab_0d( pts, pdep, pab, Kmm ) |
---|
895 | !!---------------------------------------------------------------------- |
---|
896 | !! *** ROUTINE rab_0d *** |
---|
897 | !! |
---|
898 | !! ** Purpose : Calculates thermal/haline expansion ratio for a 2d field (unmasked) |
---|
899 | !! |
---|
900 | !! ** Action : - pab : thermal/haline expansion ratio at T-points |
---|
901 | !!---------------------------------------------------------------------- |
---|
902 | INTEGER , INTENT(in ) :: Kmm ! time level index |
---|
903 | REAL(wp), DIMENSION(jpts) , INTENT(in ) :: pts ! pot. temperature & salinity |
---|
904 | REAL(wp), INTENT(in ) :: pdep ! depth [m] |
---|
905 | REAL(wp), DIMENSION(jpts) , INTENT( out) :: pab ! thermal/haline expansion ratio |
---|
906 | ! |
---|
907 | REAL(wp) :: zt , zh , zs ! local scalars |
---|
908 | REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - - |
---|
909 | !!---------------------------------------------------------------------- |
---|
910 | ! |
---|
911 | IF( ln_timing ) CALL timing_start('rab_0d') |
---|
912 | ! |
---|
913 | pab(:) = 0._wp |
---|
914 | ! |
---|
915 | SELECT CASE ( neos ) |
---|
916 | ! |
---|
917 | CASE( np_teos10, np_eos80 ) !== polynomial TEOS-10 / EOS-80 ==! |
---|
918 | ! |
---|
919 | ! |
---|
920 | zh = pdep * r1_Z0 ! depth |
---|
921 | zt = pts (jp_tem) * r1_T0 ! temperature |
---|
922 | zs = SQRT( ABS( pts(jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity |
---|
923 | ! |
---|
924 | ! alpha |
---|
925 | zn3 = ALP003 |
---|
926 | ! |
---|
927 | zn2 = ALP012*zt + ALP102*zs+ALP002 |
---|
928 | ! |
---|
929 | zn1 = ((ALP031*zt & |
---|
930 | & + ALP121*zs+ALP021)*zt & |
---|
931 | & + (ALP211*zs+ALP111)*zs+ALP011)*zt & |
---|
932 | & + ((ALP301*zs+ALP201)*zs+ALP101)*zs+ALP001 |
---|
933 | ! |
---|
934 | zn0 = ((((ALP050*zt & |
---|
935 | & + ALP140*zs+ALP040)*zt & |
---|
936 | & + (ALP230*zs+ALP130)*zs+ALP030)*zt & |
---|
937 | & + ((ALP320*zs+ALP220)*zs+ALP120)*zs+ALP020)*zt & |
---|
938 | & + (((ALP410*zs+ALP310)*zs+ALP210)*zs+ALP110)*zs+ALP010)*zt & |
---|
939 | & + ((((ALP500*zs+ALP400)*zs+ALP300)*zs+ALP200)*zs+ALP100)*zs+ALP000 |
---|
940 | ! |
---|
941 | zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0 |
---|
942 | ! |
---|
943 | pab(jp_tem) = zn * r1_rho0 |
---|
944 | ! |
---|
945 | ! beta |
---|
946 | zn3 = BET003 |
---|
947 | ! |
---|
948 | zn2 = BET012*zt + BET102*zs+BET002 |
---|
949 | ! |
---|
950 | zn1 = ((BET031*zt & |
---|
951 | & + BET121*zs+BET021)*zt & |
---|
952 | & + (BET211*zs+BET111)*zs+BET011)*zt & |
---|
953 | & + ((BET301*zs+BET201)*zs+BET101)*zs+BET001 |
---|
954 | ! |
---|
955 | zn0 = ((((BET050*zt & |
---|
956 | & + BET140*zs+BET040)*zt & |
---|
957 | & + (BET230*zs+BET130)*zs+BET030)*zt & |
---|
958 | & + ((BET320*zs+BET220)*zs+BET120)*zs+BET020)*zt & |
---|
959 | & + (((BET410*zs+BET310)*zs+BET210)*zs+BET110)*zs+BET010)*zt & |
---|
960 | & + ((((BET500*zs+BET400)*zs+BET300)*zs+BET200)*zs+BET100)*zs+BET000 |
---|
961 | ! |
---|
962 | zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0 |
---|
963 | ! |
---|
964 | pab(jp_sal) = zn / zs * r1_rho0 |
---|
965 | ! |
---|
966 | ! |
---|
967 | ! |
---|
968 | CASE( np_seos ) !== simplified EOS ==! |
---|
969 | ! |
---|
970 | zt = pts(jp_tem) - 10._wp ! pot. temperature anomaly (t-T0) |
---|
971 | zs = pts(jp_sal) - 35._wp ! abs. salinity anomaly (s-S0) |
---|
972 | zh = pdep ! depth at the partial step level |
---|
973 | ! |
---|
974 | zn = rn_a0 * ( 1._wp + rn_lambda1*zt + rn_mu1*zh ) + rn_nu*zs |
---|
975 | pab(jp_tem) = zn * r1_rho0 ! alpha |
---|
976 | ! |
---|
977 | zn = rn_b0 * ( 1._wp - rn_lambda2*zs - rn_mu2*zh ) - rn_nu*zt |
---|
978 | pab(jp_sal) = zn * r1_rho0 ! beta |
---|
979 | ! |
---|
980 | CASE( np_leos ) !== linear ISOMIP EOS ==! |
---|
981 | ! |
---|
982 | zt = pts(jp_tem) - (-1._wp) ! pot. temperature anomaly (t-T0) |
---|
983 | zs = pts(jp_sal) - 34.2_wp ! abs. salinity anomaly (s-S0) |
---|
984 | zh = pdep ! depth at the partial step level |
---|
985 | ! |
---|
986 | zn = rn_a0 * rho0 |
---|
987 | pab(jp_tem) = zn * r1_rho0 ! alpha |
---|
988 | ! |
---|
989 | zn = rn_b0 * rho0 |
---|
990 | pab(jp_sal) = zn * r1_rho0 ! beta |
---|
991 | ! |
---|
992 | CASE DEFAULT |
---|
993 | WRITE(ctmp1,*) ' bad flag value for neos = ', neos |
---|
994 | CALL ctl_stop( 'rab_0d:', ctmp1 ) |
---|
995 | ! |
---|
996 | END SELECT |
---|
997 | ! |
---|
998 | IF( ln_timing ) CALL timing_stop('rab_0d') |
---|
999 | ! |
---|
1000 | END SUBROUTINE rab_0d |
---|
1001 | |
---|
1002 | |
---|
1003 | SUBROUTINE bn2( pts, pab, pn2, Kmm ) |
---|
1004 | !!---------------------------------------------------------------------- |
---|
1005 | !! *** ROUTINE bn2 *** |
---|
1006 | !! |
---|
1007 | !! ** Purpose : Compute the local Brunt-Vaisala frequency at the |
---|
1008 | !! time-step of the input arguments |
---|
1009 | !! |
---|
1010 | !! ** Method : pn2 = grav * (alpha dk[T] + beta dk[S] ) / e3w |
---|
1011 | !! where alpha and beta are given in pab, and computed on T-points. |
---|
1012 | !! N.B. N^2 is set one for all to zero at jk=1 in istate module. |
---|
1013 | !! |
---|
1014 | !! ** Action : pn2 : square of the brunt-vaisala frequency at w-point |
---|
1015 | !! |
---|
1016 | !!---------------------------------------------------------------------- |
---|
1017 | INTEGER , INTENT(in ) :: Kmm ! time level index |
---|
1018 | REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in ) :: pts ! pot. temperature and salinity [Celsius,psu] |
---|
1019 | REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in ) :: pab ! thermal/haline expansion coef. [Celsius-1,psu-1] |
---|
1020 | REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT( out) :: pn2 ! Brunt-Vaisala frequency squared [1/s^2] |
---|
1021 | ! |
---|
1022 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
1023 | REAL(wp) :: zaw, zbw, zrw ! local scalars |
---|
1024 | !!---------------------------------------------------------------------- |
---|
1025 | ! |
---|
1026 | IF( ln_timing ) CALL timing_start('bn2') |
---|
1027 | ! |
---|
1028 | DO jk = 2, jpkm1 ! interior points only (2=< jk =< jpkm1 ) |
---|
1029 | DO jj = 1, jpj ! surface and bottom value set to zero one for all in istate.F90 |
---|
1030 | DO ji = 1, jpi |
---|
1031 | zrw = ( gdepw(ji,jj,jk ,Kmm) - gdept(ji,jj,jk,Kmm) ) & |
---|
1032 | & / ( gdept(ji,jj,jk-1,Kmm) - gdept(ji,jj,jk,Kmm) ) |
---|
1033 | ! |
---|
1034 | zaw = pab(ji,jj,jk,jp_tem) * (1. - zrw) + pab(ji,jj,jk-1,jp_tem) * zrw |
---|
1035 | zbw = pab(ji,jj,jk,jp_sal) * (1. - zrw) + pab(ji,jj,jk-1,jp_sal) * zrw |
---|
1036 | ! |
---|
1037 | pn2(ji,jj,jk) = grav * ( zaw * ( pts(ji,jj,jk-1,jp_tem) - pts(ji,jj,jk,jp_tem) ) & |
---|
1038 | & - zbw * ( pts(ji,jj,jk-1,jp_sal) - pts(ji,jj,jk,jp_sal) ) ) & |
---|
1039 | & / e3w(ji,jj,jk,Kmm) * wmask(ji,jj,jk) |
---|
1040 | END DO |
---|
1041 | END DO |
---|
1042 | END DO |
---|
1043 | ! |
---|
1044 | IF(ln_ctl) CALL prt_ctl( tab3d_1=pn2, clinfo1=' bn2 : ', kdim=jpk ) |
---|
1045 | ! |
---|
1046 | IF( ln_timing ) CALL timing_stop('bn2') |
---|
1047 | ! |
---|
1048 | END SUBROUTINE bn2 |
---|
1049 | |
---|
1050 | |
---|
1051 | FUNCTION eos_pt_from_ct( ctmp, psal ) RESULT( ptmp ) |
---|
1052 | !!---------------------------------------------------------------------- |
---|
1053 | !! *** ROUTINE eos_pt_from_ct *** |
---|
1054 | !! |
---|
1055 | !! ** Purpose : Compute pot.temp. from cons. temp. [Celsius] |
---|
1056 | !! |
---|
1057 | !! ** Method : rational approximation (5/3th order) of TEOS-10 algorithm |
---|
1058 | !! checkvalue: pt=20.02391895 Celsius for sa=35.7g/kg, ct=20degC |
---|
1059 | !! |
---|
1060 | !! Reference : TEOS-10, UNESCO |
---|
1061 | !! Rational approximation to TEOS10 algorithm (rms error on WOA13 values: 4.0e-5 degC) |
---|
1062 | !!---------------------------------------------------------------------- |
---|
1063 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: ctmp ! Cons. Temp [Celsius] |
---|
1064 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: psal ! salinity [psu] |
---|
1065 | ! Leave result array automatic rather than making explicitly allocated |
---|
1066 | REAL(wp), DIMENSION(jpi,jpj) :: ptmp ! potential temperature [Celsius] |
---|
1067 | ! |
---|
1068 | INTEGER :: ji, jj ! dummy loop indices |
---|
1069 | REAL(wp) :: zt , zs , ztm ! local scalars |
---|
1070 | REAL(wp) :: zn , zd ! local scalars |
---|
1071 | REAL(wp) :: zdeltaS , z1_S0 , z1_T0 |
---|
1072 | !!---------------------------------------------------------------------- |
---|
1073 | ! |
---|
1074 | IF( ln_timing ) CALL timing_start('eos_pt_from_ct') |
---|
1075 | ! |
---|
1076 | zdeltaS = 5._wp |
---|
1077 | z1_S0 = 0.875_wp/35.16504_wp |
---|
1078 | z1_T0 = 1._wp/40._wp |
---|
1079 | ! |
---|
1080 | DO jj = 1, jpj |
---|
1081 | DO ji = 1, jpi |
---|
1082 | ! |
---|
1083 | zt = ctmp (ji,jj) * z1_T0 |
---|
1084 | zs = SQRT( ABS( psal(ji,jj) + zdeltaS ) * r1_S0 ) |
---|
1085 | ztm = tmask(ji,jj,1) |
---|
1086 | ! |
---|
1087 | zn = ((((-2.1385727895e-01_wp*zt & |
---|
1088 | & - 2.7674419971e-01_wp*zs+1.0728094330_wp)*zt & |
---|
1089 | & + (2.6366564313_wp*zs+3.3546960647_wp)*zs-7.8012209473_wp)*zt & |
---|
1090 | & + ((1.8835586562_wp*zs+7.3949191679_wp)*zs-3.3937395875_wp)*zs-5.6414948432_wp)*zt & |
---|
1091 | & + (((3.5737370589_wp*zs-1.5512427389e+01_wp)*zs+2.4625741105e+01_wp)*zs & |
---|
1092 | & +1.9912291000e+01_wp)*zs-3.2191146312e+01_wp)*zt & |
---|
1093 | & + ((((5.7153204649e-01_wp*zs-3.0943149543_wp)*zs+9.3052495181_wp)*zs & |
---|
1094 | & -9.4528934807_wp)*zs+3.1066408996_wp)*zs-4.3504021262e-01_wp |
---|
1095 | ! |
---|
1096 | zd = (2.0035003456_wp*zt & |
---|
1097 | & -3.4570358592e-01_wp*zs+5.6471810638_wp)*zt & |
---|
1098 | & + (1.5393993508_wp*zs-6.9394762624_wp)*zs+1.2750522650e+01_wp |
---|
1099 | ! |
---|
1100 | ptmp(ji,jj) = ( zt / z1_T0 + zn / zd ) * ztm |
---|
1101 | ! |
---|
1102 | END DO |
---|
1103 | END DO |
---|
1104 | ! |
---|
1105 | IF( ln_timing ) CALL timing_stop('eos_pt_from_ct') |
---|
1106 | ! |
---|
1107 | END FUNCTION eos_pt_from_ct |
---|
1108 | |
---|
1109 | |
---|
1110 | SUBROUTINE eos_fzp_2d( psal, ptf, pdep ) |
---|
1111 | !!---------------------------------------------------------------------- |
---|
1112 | !! *** ROUTINE eos_fzp *** |
---|
1113 | !! |
---|
1114 | !! ** Purpose : Compute the freezing point temperature [Celsius] |
---|
1115 | !! |
---|
1116 | !! ** Method : UNESCO freezing point (ptf) in Celsius is given by |
---|
1117 | !! ptf(t,z) = (-.0575+1.710523e-3*sqrt(abs(s))-2.154996e-4*s)*s - 7.53e-4*z |
---|
1118 | !! checkvalue: tf=-2.588567 Celsius for s=40psu, z=500m |
---|
1119 | !! |
---|
1120 | !! Reference : UNESCO tech. papers in the marine science no. 28. 1978 |
---|
1121 | !!---------------------------------------------------------------------- |
---|
1122 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: psal ! salinity [psu] |
---|
1123 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ), OPTIONAL :: pdep ! depth [m] |
---|
1124 | REAL(wp), DIMENSION(jpi,jpj), INTENT(out ) :: ptf ! freezing temperature [Celsius] |
---|
1125 | ! |
---|
1126 | INTEGER :: ji, jj ! dummy loop indices |
---|
1127 | REAL(wp) :: zt, zs, z1_S0 ! local scalars |
---|
1128 | !!---------------------------------------------------------------------- |
---|
1129 | ! |
---|
1130 | SELECT CASE ( neos ) |
---|
1131 | ! |
---|
1132 | CASE ( np_teos10, np_seos ) !== CT,SA (TEOS-10 and S-EOS formulations) ==! |
---|
1133 | ! |
---|
1134 | z1_S0 = 1._wp / 35.16504_wp |
---|
1135 | DO jj = 1, jpj |
---|
1136 | DO ji = 1, jpi |
---|
1137 | zs= SQRT( ABS( psal(ji,jj) ) * z1_S0 ) ! square root salinity |
---|
1138 | ptf(ji,jj) = ((((1.46873e-03_wp*zs-9.64972e-03_wp)*zs+2.28348e-02_wp)*zs & |
---|
1139 | & - 3.12775e-02_wp)*zs+2.07679e-02_wp)*zs-5.87701e-02_wp |
---|
1140 | END DO |
---|
1141 | END DO |
---|
1142 | ptf(:,:) = ptf(:,:) * psal(:,:) |
---|
1143 | ! |
---|
1144 | IF( PRESENT( pdep ) ) ptf(:,:) = ptf(:,:) - 7.53e-4 * pdep(:,:) |
---|
1145 | ! |
---|
1146 | CASE ( np_eos80, np_leos ) !== PT,SP (UNESCO formulation) ==! |
---|
1147 | ! |
---|
1148 | ptf(:,:) = ( - 0.0575_wp + 1.710523e-3_wp * SQRT( psal(:,:) ) & |
---|
1149 | & - 2.154996e-4_wp * psal(:,:) ) * psal(:,:) |
---|
1150 | ! |
---|
1151 | IF( PRESENT( pdep ) ) ptf(:,:) = ptf(:,:) - 7.53e-4 * pdep(:,:) |
---|
1152 | ! |
---|
1153 | CASE DEFAULT |
---|
1154 | WRITE(ctmp1,*) ' bad flag value for neos = ', neos |
---|
1155 | CALL ctl_stop( 'eos_fzp_2d:', ctmp1 ) |
---|
1156 | ! |
---|
1157 | END SELECT |
---|
1158 | ! |
---|
1159 | END SUBROUTINE eos_fzp_2d |
---|
1160 | |
---|
1161 | |
---|
1162 | SUBROUTINE eos_fzp_0d( psal, ptf, pdep ) |
---|
1163 | !!---------------------------------------------------------------------- |
---|
1164 | !! *** ROUTINE eos_fzp *** |
---|
1165 | !! |
---|
1166 | !! ** Purpose : Compute the freezing point temperature [Celsius] |
---|
1167 | !! |
---|
1168 | !! ** Method : UNESCO freezing point (ptf) in Celsius is given by |
---|
1169 | !! ptf(t,z) = (-.0575+1.710523e-3*sqrt(abs(s))-2.154996e-4*s)*s - 7.53e-4*z |
---|
1170 | !! checkvalue: tf=-2.588567 Celsius for s=40psu, z=500m |
---|
1171 | !! |
---|
1172 | !! Reference : UNESCO tech. papers in the marine science no. 28. 1978 |
---|
1173 | !!---------------------------------------------------------------------- |
---|
1174 | REAL(wp), INTENT(in ) :: psal ! salinity [psu] |
---|
1175 | REAL(wp), INTENT(in ), OPTIONAL :: pdep ! depth [m] |
---|
1176 | REAL(wp), INTENT(out) :: ptf ! freezing temperature [Celsius] |
---|
1177 | ! |
---|
1178 | REAL(wp) :: zs ! local scalars |
---|
1179 | !!---------------------------------------------------------------------- |
---|
1180 | ! |
---|
1181 | SELECT CASE ( neos ) |
---|
1182 | ! |
---|
1183 | CASE ( np_teos10, np_seos ) !== CT,SA (TEOS-10 and S-EOS formulations) ==! |
---|
1184 | ! |
---|
1185 | zs = SQRT( ABS( psal ) / 35.16504_wp ) ! square root salinity |
---|
1186 | ptf = ((((1.46873e-03_wp*zs-9.64972e-03_wp)*zs+2.28348e-02_wp)*zs & |
---|
1187 | & - 3.12775e-02_wp)*zs+2.07679e-02_wp)*zs-5.87701e-02_wp |
---|
1188 | ptf = ptf * psal |
---|
1189 | ! |
---|
1190 | IF( PRESENT( pdep ) ) ptf = ptf - 7.53e-4 * pdep |
---|
1191 | ! |
---|
1192 | CASE ( np_eos80, np_leos ) !== PT,SP (UNESCO formulation) ==! |
---|
1193 | ! |
---|
1194 | ptf = ( - 0.0575_wp + 1.710523e-3_wp * SQRT( psal ) & |
---|
1195 | & - 2.154996e-4_wp * psal ) * psal |
---|
1196 | ! |
---|
1197 | IF( PRESENT( pdep ) ) ptf = ptf - 7.53e-4 * pdep |
---|
1198 | ! |
---|
1199 | CASE DEFAULT |
---|
1200 | WRITE(ctmp1,*) ' bad flag value for neos = ', neos |
---|
1201 | CALL ctl_stop( 'eos_fzp_0d:', ctmp1 ) |
---|
1202 | ! |
---|
1203 | END SELECT |
---|
1204 | ! |
---|
1205 | END SUBROUTINE eos_fzp_0d |
---|
1206 | |
---|
1207 | |
---|
1208 | SUBROUTINE eos_pen( pts, pab_pe, ppen, Kmm ) |
---|
1209 | !!---------------------------------------------------------------------- |
---|
1210 | !! *** ROUTINE eos_pen *** |
---|
1211 | !! |
---|
1212 | !! ** Purpose : Calculates nonlinear anomalies of alpha_PE, beta_PE and PE at T-points |
---|
1213 | !! |
---|
1214 | !! ** Method : PE is defined analytically as the vertical |
---|
1215 | !! primitive of EOS times -g integrated between 0 and z>0. |
---|
1216 | !! pen is the nonlinear bsq-PE anomaly: pen = ( PE - rho0 gz ) / rho0 gz - rd |
---|
1217 | !! = 1/z * /int_0^z rd dz - rd |
---|
1218 | !! where rd is the density anomaly (see eos_rhd function) |
---|
1219 | !! ab_pe are partial derivatives of PE anomaly with respect to T and S: |
---|
1220 | !! ab_pe(1) = - 1/(rho0 gz) * dPE/dT + drd/dT = - d(pen)/dT |
---|
1221 | !! ab_pe(2) = 1/(rho0 gz) * dPE/dS + drd/dS = d(pen)/dS |
---|
1222 | !! |
---|
1223 | !! ** Action : - pen : PE anomaly given at T-points |
---|
1224 | !! : - pab_pe : given at T-points |
---|
1225 | !! pab_pe(:,:,:,jp_tem) is alpha_pe |
---|
1226 | !! pab_pe(:,:,:,jp_sal) is beta_pe |
---|
1227 | !!---------------------------------------------------------------------- |
---|
1228 | INTEGER , INTENT(in ) :: Kmm ! time level index |
---|
1229 | REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in ) :: pts ! pot. temperature & salinity |
---|
1230 | REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT( out) :: pab_pe ! alpha_pe and beta_pe |
---|
1231 | REAL(wp), DIMENSION(jpi,jpj,jpk) , INTENT( out) :: ppen ! potential energy anomaly |
---|
1232 | ! |
---|
1233 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
1234 | REAL(wp) :: zt , zh , zs , ztm ! local scalars |
---|
1235 | REAL(wp) :: zn , zn0, zn1, zn2 ! - - |
---|
1236 | !!---------------------------------------------------------------------- |
---|
1237 | ! |
---|
1238 | IF( ln_timing ) CALL timing_start('eos_pen') |
---|
1239 | ! |
---|
1240 | SELECT CASE ( neos ) |
---|
1241 | ! |
---|
1242 | CASE( np_teos10, np_eos80 ) !== polynomial TEOS-10 / EOS-80 ==! |
---|
1243 | ! |
---|
1244 | DO jk = 1, jpkm1 |
---|
1245 | DO jj = 1, jpj |
---|
1246 | DO ji = 1, jpi |
---|
1247 | ! |
---|
1248 | zh = gdept(ji,jj,jk,Kmm) * r1_Z0 ! depth |
---|
1249 | zt = pts (ji,jj,jk,jp_tem) * r1_T0 ! temperature |
---|
1250 | zs = SQRT( ABS( pts(ji,jj,jk,jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity |
---|
1251 | ztm = tmask(ji,jj,jk) ! tmask |
---|
1252 | ! |
---|
1253 | ! potential energy non-linear anomaly |
---|
1254 | zn2 = (PEN012)*zt & |
---|
1255 | & + PEN102*zs+PEN002 |
---|
1256 | ! |
---|
1257 | zn1 = ((PEN021)*zt & |
---|
1258 | & + PEN111*zs+PEN011)*zt & |
---|
1259 | & + (PEN201*zs+PEN101)*zs+PEN001 |
---|
1260 | ! |
---|
1261 | zn0 = ((((PEN040)*zt & |
---|
1262 | & + PEN130*zs+PEN030)*zt & |
---|
1263 | & + (PEN220*zs+PEN120)*zs+PEN020)*zt & |
---|
1264 | & + ((PEN310*zs+PEN210)*zs+PEN110)*zs+PEN010)*zt & |
---|
1265 | & + (((PEN400*zs+PEN300)*zs+PEN200)*zs+PEN100)*zs+PEN000 |
---|
1266 | ! |
---|
1267 | zn = ( zn2 * zh + zn1 ) * zh + zn0 |
---|
1268 | ! |
---|
1269 | ppen(ji,jj,jk) = zn * zh * r1_rho0 * ztm |
---|
1270 | ! |
---|
1271 | ! alphaPE non-linear anomaly |
---|
1272 | zn2 = APE002 |
---|
1273 | ! |
---|
1274 | zn1 = (APE011)*zt & |
---|
1275 | & + APE101*zs+APE001 |
---|
1276 | ! |
---|
1277 | zn0 = (((APE030)*zt & |
---|
1278 | & + APE120*zs+APE020)*zt & |
---|
1279 | & + (APE210*zs+APE110)*zs+APE010)*zt & |
---|
1280 | & + ((APE300*zs+APE200)*zs+APE100)*zs+APE000 |
---|
1281 | ! |
---|
1282 | zn = ( zn2 * zh + zn1 ) * zh + zn0 |
---|
1283 | ! |
---|
1284 | pab_pe(ji,jj,jk,jp_tem) = zn * zh * r1_rho0 * ztm |
---|
1285 | ! |
---|
1286 | ! betaPE non-linear anomaly |
---|
1287 | zn2 = BPE002 |
---|
1288 | ! |
---|
1289 | zn1 = (BPE011)*zt & |
---|
1290 | & + BPE101*zs+BPE001 |
---|
1291 | ! |
---|
1292 | zn0 = (((BPE030)*zt & |
---|
1293 | & + BPE120*zs+BPE020)*zt & |
---|
1294 | & + (BPE210*zs+BPE110)*zs+BPE010)*zt & |
---|
1295 | & + ((BPE300*zs+BPE200)*zs+BPE100)*zs+BPE000 |
---|
1296 | ! |
---|
1297 | zn = ( zn2 * zh + zn1 ) * zh + zn0 |
---|
1298 | ! |
---|
1299 | pab_pe(ji,jj,jk,jp_sal) = zn / zs * zh * r1_rho0 * ztm |
---|
1300 | ! |
---|
1301 | END DO |
---|
1302 | END DO |
---|
1303 | END DO |
---|
1304 | ! |
---|
1305 | CASE( np_seos ) !== Vallis (2006) simplified EOS ==! |
---|
1306 | ! |
---|
1307 | DO jk = 1, jpkm1 |
---|
1308 | DO jj = 1, jpj |
---|
1309 | DO ji = 1, jpi |
---|
1310 | zt = pts(ji,jj,jk,jp_tem) - 10._wp ! temperature anomaly (t-T0) |
---|
1311 | zs = pts (ji,jj,jk,jp_sal) - 35._wp ! abs. salinity anomaly (s-S0) |
---|
1312 | zh = gdept(ji,jj,jk,Kmm) ! depth in meters at t-point |
---|
1313 | ztm = tmask(ji,jj,jk) ! tmask |
---|
1314 | zn = 0.5_wp * zh * r1_rho0 * ztm |
---|
1315 | ! ! Potential Energy |
---|
1316 | ppen(ji,jj,jk) = ( rn_a0 * rn_mu1 * zt + rn_b0 * rn_mu2 * zs ) * zn |
---|
1317 | ! ! alphaPE |
---|
1318 | pab_pe(ji,jj,jk,jp_tem) = - rn_a0 * rn_mu1 * zn |
---|
1319 | pab_pe(ji,jj,jk,jp_sal) = rn_b0 * rn_mu2 * zn |
---|
1320 | ! |
---|
1321 | END DO |
---|
1322 | END DO |
---|
1323 | END DO |
---|
1324 | ! |
---|
1325 | CASE( np_leos ) !== linear ISOMIP EOS ==! |
---|
1326 | ! |
---|
1327 | DO jk = 1, jpkm1 |
---|
1328 | DO jj = 1, jpj |
---|
1329 | DO ji = 1, jpi |
---|
1330 | zt = pts(ji,jj,jk,jp_tem) - (-1._wp) ! temperature anomaly (t-T0) |
---|
1331 | zs = pts (ji,jj,jk,jp_sal) - 34.2_wp ! abs. salinity anomaly (s-S0) |
---|
1332 | zh = gdept(ji,jj,jk,Kmm) ! depth in meters at t-point |
---|
1333 | ztm = tmask(ji,jj,jk) ! tmask |
---|
1334 | zn = 0.5_wp * zh * r1_rho0 * ztm |
---|
1335 | ! ! Potential Energy |
---|
1336 | ppen(ji,jj,jk) = 0. |
---|
1337 | ! ! alphaPE |
---|
1338 | pab_pe(ji,jj,jk,jp_tem) = 0. |
---|
1339 | pab_pe(ji,jj,jk,jp_sal) = 0. |
---|
1340 | ! |
---|
1341 | END DO |
---|
1342 | END DO |
---|
1343 | END DO |
---|
1344 | ! |
---|
1345 | CASE DEFAULT |
---|
1346 | WRITE(ctmp1,*) ' bad flag value for neos = ', neos |
---|
1347 | CALL ctl_stop( 'eos_pen:', ctmp1 ) |
---|
1348 | ! |
---|
1349 | END SELECT |
---|
1350 | ! |
---|
1351 | IF( ln_timing ) CALL timing_stop('eos_pen') |
---|
1352 | ! |
---|
1353 | END SUBROUTINE eos_pen |
---|
1354 | |
---|
1355 | |
---|
1356 | SUBROUTINE eos_init |
---|
1357 | !!---------------------------------------------------------------------- |
---|
1358 | !! *** ROUTINE eos_init *** |
---|
1359 | !! |
---|
1360 | !! ** Purpose : initializations for the equation of state |
---|
1361 | !! |
---|
1362 | !! ** Method : Read the namelist nameos and control the parameters |
---|
1363 | !!---------------------------------------------------------------------- |
---|
1364 | INTEGER :: ios ! local integer |
---|
1365 | INTEGER :: ioptio ! local integer |
---|
1366 | !! |
---|
1367 | NAMELIST/nameos/ ln_TEOS10, ln_EOS80, ln_SEOS , ln_LEOS, & |
---|
1368 | & rn_a0 , rn_b0 , rn_lambda1, rn_mu1 , & |
---|
1369 | & rn_lambda2, rn_mu2 , rn_nu |
---|
1370 | !!---------------------------------------------------------------------- |
---|
1371 | ! |
---|
1372 | REWIND( numnam_ref ) ! Namelist nameos in reference namelist : equation of state |
---|
1373 | READ ( numnam_ref, nameos, IOSTAT = ios, ERR = 901 ) |
---|
1374 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nameos in reference namelist' ) |
---|
1375 | ! |
---|
1376 | REWIND( numnam_cfg ) ! Namelist nameos in configuration namelist : equation of state |
---|
1377 | READ ( numnam_cfg, nameos, IOSTAT = ios, ERR = 902 ) |
---|
1378 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'nameos in configuration namelist' ) |
---|
1379 | IF(lwm) WRITE( numond, nameos ) |
---|
1380 | ! |
---|
1381 | rho0 = 1027.51_wp !: volumic mass of reference [kg/m3] |
---|
1382 | rcp = 3974.00_wp !: heat capacity [J/K] |
---|
1383 | ! |
---|
1384 | IF(lwp) THEN ! Control print |
---|
1385 | WRITE(numout,*) |
---|
1386 | WRITE(numout,*) 'eos_init : equation of state' |
---|
1387 | WRITE(numout,*) '~~~~~~~~' |
---|
1388 | WRITE(numout,*) ' Namelist nameos : Chosen the Equation Of Seawater (EOS)' |
---|
1389 | WRITE(numout,*) ' TEOS-10 : rho=F(Conservative Temperature, Absolute Salinity, depth) ln_TEOS10 = ', ln_TEOS10 |
---|
1390 | WRITE(numout,*) ' EOS-80 : rho=F(Potential Temperature, Practical Salinity, depth) ln_EOS80 = ', ln_EOS80 |
---|
1391 | WRITE(numout,*) ' S-EOS : rho=F(Conservative Temperature, Absolute Salinity, depth) ln_SEOS = ', ln_SEOS |
---|
1392 | WRITE(numout,*) ' L-EOS : rho=F(Potential Temperature, Practical Salinity, depth) ln_LEOS = ', ln_LEOS |
---|
1393 | ENDIF |
---|
1394 | |
---|
1395 | ! Check options for equation of state & set neos based on logical flags |
---|
1396 | ioptio = 0 |
---|
1397 | IF( ln_TEOS10 ) THEN ; ioptio = ioptio+1 ; neos = np_teos10 ; ENDIF |
---|
1398 | IF( ln_EOS80 ) THEN ; ioptio = ioptio+1 ; neos = np_eos80 ; ENDIF |
---|
1399 | IF( ln_SEOS ) THEN ; ioptio = ioptio+1 ; neos = np_seos ; ENDIF |
---|
1400 | IF( ln_LEOS ) THEN ; ioptio = ioptio+1 ; neos = np_leos ; ENDIF |
---|
1401 | IF( ioptio /= 1 ) CALL ctl_stop("Exactly one equation of state option must be selected") |
---|
1402 | ! |
---|
1403 | SELECT CASE( neos ) ! check option |
---|
1404 | ! |
---|
1405 | CASE( np_teos10 ) !== polynomial TEOS-10 ==! |
---|
1406 | IF(lwp) WRITE(numout,*) |
---|
1407 | IF(lwp) WRITE(numout,*) ' ==>>> use of TEOS-10 equation of state (cons. temp. and abs. salinity)' |
---|
1408 | ! |
---|
1409 | l_useCT = .TRUE. ! model temperature is Conservative temperature |
---|
1410 | ! |
---|
1411 | rdeltaS = 32._wp |
---|
1412 | r1_S0 = 0.875_wp/35.16504_wp |
---|
1413 | r1_T0 = 1._wp/40._wp |
---|
1414 | r1_Z0 = 1.e-4_wp |
---|
1415 | ! |
---|
1416 | EOS000 = 8.0189615746e+02_wp |
---|
1417 | EOS100 = 8.6672408165e+02_wp |
---|
1418 | EOS200 = -1.7864682637e+03_wp |
---|
1419 | EOS300 = 2.0375295546e+03_wp |
---|
1420 | EOS400 = -1.2849161071e+03_wp |
---|
1421 | EOS500 = 4.3227585684e+02_wp |
---|
1422 | EOS600 = -6.0579916612e+01_wp |
---|
1423 | EOS010 = 2.6010145068e+01_wp |
---|
1424 | EOS110 = -6.5281885265e+01_wp |
---|
1425 | EOS210 = 8.1770425108e+01_wp |
---|
1426 | EOS310 = -5.6888046321e+01_wp |
---|
1427 | EOS410 = 1.7681814114e+01_wp |
---|
1428 | EOS510 = -1.9193502195_wp |
---|
1429 | EOS020 = -3.7074170417e+01_wp |
---|
1430 | EOS120 = 6.1548258127e+01_wp |
---|
1431 | EOS220 = -6.0362551501e+01_wp |
---|
1432 | EOS320 = 2.9130021253e+01_wp |
---|
1433 | EOS420 = -5.4723692739_wp |
---|
1434 | EOS030 = 2.1661789529e+01_wp |
---|
1435 | EOS130 = -3.3449108469e+01_wp |
---|
1436 | EOS230 = 1.9717078466e+01_wp |
---|
1437 | EOS330 = -3.1742946532_wp |
---|
1438 | EOS040 = -8.3627885467_wp |
---|
1439 | EOS140 = 1.1311538584e+01_wp |
---|
1440 | EOS240 = -5.3563304045_wp |
---|
1441 | EOS050 = 5.4048723791e-01_wp |
---|
1442 | EOS150 = 4.8169980163e-01_wp |
---|
1443 | EOS060 = -1.9083568888e-01_wp |
---|
1444 | EOS001 = 1.9681925209e+01_wp |
---|
1445 | EOS101 = -4.2549998214e+01_wp |
---|
1446 | EOS201 = 5.0774768218e+01_wp |
---|
1447 | EOS301 = -3.0938076334e+01_wp |
---|
1448 | EOS401 = 6.6051753097_wp |
---|
1449 | EOS011 = -1.3336301113e+01_wp |
---|
1450 | EOS111 = -4.4870114575_wp |
---|
1451 | EOS211 = 5.0042598061_wp |
---|
1452 | EOS311 = -6.5399043664e-01_wp |
---|
1453 | EOS021 = 6.7080479603_wp |
---|
1454 | EOS121 = 3.5063081279_wp |
---|
1455 | EOS221 = -1.8795372996_wp |
---|
1456 | EOS031 = -2.4649669534_wp |
---|
1457 | EOS131 = -5.5077101279e-01_wp |
---|
1458 | EOS041 = 5.5927935970e-01_wp |
---|
1459 | EOS002 = 2.0660924175_wp |
---|
1460 | EOS102 = -4.9527603989_wp |
---|
1461 | EOS202 = 2.5019633244_wp |
---|
1462 | EOS012 = 2.0564311499_wp |
---|
1463 | EOS112 = -2.1311365518e-01_wp |
---|
1464 | EOS022 = -1.2419983026_wp |
---|
1465 | EOS003 = -2.3342758797e-02_wp |
---|
1466 | EOS103 = -1.8507636718e-02_wp |
---|
1467 | EOS013 = 3.7969820455e-01_wp |
---|
1468 | ! |
---|
1469 | ALP000 = -6.5025362670e-01_wp |
---|
1470 | ALP100 = 1.6320471316_wp |
---|
1471 | ALP200 = -2.0442606277_wp |
---|
1472 | ALP300 = 1.4222011580_wp |
---|
1473 | ALP400 = -4.4204535284e-01_wp |
---|
1474 | ALP500 = 4.7983755487e-02_wp |
---|
1475 | ALP010 = 1.8537085209_wp |
---|
1476 | ALP110 = -3.0774129064_wp |
---|
1477 | ALP210 = 3.0181275751_wp |
---|
1478 | ALP310 = -1.4565010626_wp |
---|
1479 | ALP410 = 2.7361846370e-01_wp |
---|
1480 | ALP020 = -1.6246342147_wp |
---|
1481 | ALP120 = 2.5086831352_wp |
---|
1482 | ALP220 = -1.4787808849_wp |
---|
1483 | ALP320 = 2.3807209899e-01_wp |
---|
1484 | ALP030 = 8.3627885467e-01_wp |
---|
1485 | ALP130 = -1.1311538584_wp |
---|
1486 | ALP230 = 5.3563304045e-01_wp |
---|
1487 | ALP040 = -6.7560904739e-02_wp |
---|
1488 | ALP140 = -6.0212475204e-02_wp |
---|
1489 | ALP050 = 2.8625353333e-02_wp |
---|
1490 | ALP001 = 3.3340752782e-01_wp |
---|
1491 | ALP101 = 1.1217528644e-01_wp |
---|
1492 | ALP201 = -1.2510649515e-01_wp |
---|
1493 | ALP301 = 1.6349760916e-02_wp |
---|
1494 | ALP011 = -3.3540239802e-01_wp |
---|
1495 | ALP111 = -1.7531540640e-01_wp |
---|
1496 | ALP211 = 9.3976864981e-02_wp |
---|
1497 | ALP021 = 1.8487252150e-01_wp |
---|
1498 | ALP121 = 4.1307825959e-02_wp |
---|
1499 | ALP031 = -5.5927935970e-02_wp |
---|
1500 | ALP002 = -5.1410778748e-02_wp |
---|
1501 | ALP102 = 5.3278413794e-03_wp |
---|
1502 | ALP012 = 6.2099915132e-02_wp |
---|
1503 | ALP003 = -9.4924551138e-03_wp |
---|
1504 | ! |
---|
1505 | BET000 = 1.0783203594e+01_wp |
---|
1506 | BET100 = -4.4452095908e+01_wp |
---|
1507 | BET200 = 7.6048755820e+01_wp |
---|
1508 | BET300 = -6.3944280668e+01_wp |
---|
1509 | BET400 = 2.6890441098e+01_wp |
---|
1510 | BET500 = -4.5221697773_wp |
---|
1511 | BET010 = -8.1219372432e-01_wp |
---|
1512 | BET110 = 2.0346663041_wp |
---|
1513 | BET210 = -2.1232895170_wp |
---|
1514 | BET310 = 8.7994140485e-01_wp |
---|
1515 | BET410 = -1.1939638360e-01_wp |
---|
1516 | BET020 = 7.6574242289e-01_wp |
---|
1517 | BET120 = -1.5019813020_wp |
---|
1518 | BET220 = 1.0872489522_wp |
---|
1519 | BET320 = -2.7233429080e-01_wp |
---|
1520 | BET030 = -4.1615152308e-01_wp |
---|
1521 | BET130 = 4.9061350869e-01_wp |
---|
1522 | BET230 = -1.1847737788e-01_wp |
---|
1523 | BET040 = 1.4073062708e-01_wp |
---|
1524 | BET140 = -1.3327978879e-01_wp |
---|
1525 | BET050 = 5.9929880134e-03_wp |
---|
1526 | BET001 = -5.2937873009e-01_wp |
---|
1527 | BET101 = 1.2634116779_wp |
---|
1528 | BET201 = -1.1547328025_wp |
---|
1529 | BET301 = 3.2870876279e-01_wp |
---|
1530 | BET011 = -5.5824407214e-02_wp |
---|
1531 | BET111 = 1.2451933313e-01_wp |
---|
1532 | BET211 = -2.4409539932e-02_wp |
---|
1533 | BET021 = 4.3623149752e-02_wp |
---|
1534 | BET121 = -4.6767901790e-02_wp |
---|
1535 | BET031 = -6.8523260060e-03_wp |
---|
1536 | BET002 = -6.1618945251e-02_wp |
---|
1537 | BET102 = 6.2255521644e-02_wp |
---|
1538 | BET012 = -2.6514181169e-03_wp |
---|
1539 | BET003 = -2.3025968587e-04_wp |
---|
1540 | ! |
---|
1541 | PEN000 = -9.8409626043_wp |
---|
1542 | PEN100 = 2.1274999107e+01_wp |
---|
1543 | PEN200 = -2.5387384109e+01_wp |
---|
1544 | PEN300 = 1.5469038167e+01_wp |
---|
1545 | PEN400 = -3.3025876549_wp |
---|
1546 | PEN010 = 6.6681505563_wp |
---|
1547 | PEN110 = 2.2435057288_wp |
---|
1548 | PEN210 = -2.5021299030_wp |
---|
1549 | PEN310 = 3.2699521832e-01_wp |
---|
1550 | PEN020 = -3.3540239802_wp |
---|
1551 | PEN120 = -1.7531540640_wp |
---|
1552 | PEN220 = 9.3976864981e-01_wp |
---|
1553 | PEN030 = 1.2324834767_wp |
---|
1554 | PEN130 = 2.7538550639e-01_wp |
---|
1555 | PEN040 = -2.7963967985e-01_wp |
---|
1556 | PEN001 = -1.3773949450_wp |
---|
1557 | PEN101 = 3.3018402659_wp |
---|
1558 | PEN201 = -1.6679755496_wp |
---|
1559 | PEN011 = -1.3709540999_wp |
---|
1560 | PEN111 = 1.4207577012e-01_wp |
---|
1561 | PEN021 = 8.2799886843e-01_wp |
---|
1562 | PEN002 = 1.7507069098e-02_wp |
---|
1563 | PEN102 = 1.3880727538e-02_wp |
---|
1564 | PEN012 = -2.8477365341e-01_wp |
---|
1565 | ! |
---|
1566 | APE000 = -1.6670376391e-01_wp |
---|
1567 | APE100 = -5.6087643219e-02_wp |
---|
1568 | APE200 = 6.2553247576e-02_wp |
---|
1569 | APE300 = -8.1748804580e-03_wp |
---|
1570 | APE010 = 1.6770119901e-01_wp |
---|
1571 | APE110 = 8.7657703198e-02_wp |
---|
1572 | APE210 = -4.6988432490e-02_wp |
---|
1573 | APE020 = -9.2436260751e-02_wp |
---|
1574 | APE120 = -2.0653912979e-02_wp |
---|
1575 | APE030 = 2.7963967985e-02_wp |
---|
1576 | APE001 = 3.4273852498e-02_wp |
---|
1577 | APE101 = -3.5518942529e-03_wp |
---|
1578 | APE011 = -4.1399943421e-02_wp |
---|
1579 | APE002 = 7.1193413354e-03_wp |
---|
1580 | ! |
---|
1581 | BPE000 = 2.6468936504e-01_wp |
---|
1582 | BPE100 = -6.3170583896e-01_wp |
---|
1583 | BPE200 = 5.7736640125e-01_wp |
---|
1584 | BPE300 = -1.6435438140e-01_wp |
---|
1585 | BPE010 = 2.7912203607e-02_wp |
---|
1586 | BPE110 = -6.2259666565e-02_wp |
---|
1587 | BPE210 = 1.2204769966e-02_wp |
---|
1588 | BPE020 = -2.1811574876e-02_wp |
---|
1589 | BPE120 = 2.3383950895e-02_wp |
---|
1590 | BPE030 = 3.4261630030e-03_wp |
---|
1591 | BPE001 = 4.1079296834e-02_wp |
---|
1592 | BPE101 = -4.1503681096e-02_wp |
---|
1593 | BPE011 = 1.7676120780e-03_wp |
---|
1594 | BPE002 = 1.7269476440e-04_wp |
---|
1595 | ! |
---|
1596 | CASE( np_eos80 ) !== polynomial EOS-80 formulation ==! |
---|
1597 | ! |
---|
1598 | IF(lwp) WRITE(numout,*) |
---|
1599 | IF(lwp) WRITE(numout,*) ' ==>>> use of EOS-80 equation of state (pot. temp. and pract. salinity)' |
---|
1600 | ! |
---|
1601 | l_useCT = .FALSE. ! model temperature is Potential temperature |
---|
1602 | rdeltaS = 20._wp |
---|
1603 | r1_S0 = 1._wp/40._wp |
---|
1604 | r1_T0 = 1._wp/40._wp |
---|
1605 | r1_Z0 = 1.e-4_wp |
---|
1606 | ! |
---|
1607 | EOS000 = 9.5356891948e+02_wp |
---|
1608 | EOS100 = 1.7136499189e+02_wp |
---|
1609 | EOS200 = -3.7501039454e+02_wp |
---|
1610 | EOS300 = 5.1856810420e+02_wp |
---|
1611 | EOS400 = -3.7264470465e+02_wp |
---|
1612 | EOS500 = 1.4302533998e+02_wp |
---|
1613 | EOS600 = -2.2856621162e+01_wp |
---|
1614 | EOS010 = 1.0087518651e+01_wp |
---|
1615 | EOS110 = -1.3647741861e+01_wp |
---|
1616 | EOS210 = 8.8478359933_wp |
---|
1617 | EOS310 = -7.2329388377_wp |
---|
1618 | EOS410 = 1.4774410611_wp |
---|
1619 | EOS510 = 2.0036720553e-01_wp |
---|
1620 | EOS020 = -2.5579830599e+01_wp |
---|
1621 | EOS120 = 2.4043512327e+01_wp |
---|
1622 | EOS220 = -1.6807503990e+01_wp |
---|
1623 | EOS320 = 8.3811577084_wp |
---|
1624 | EOS420 = -1.9771060192_wp |
---|
1625 | EOS030 = 1.6846451198e+01_wp |
---|
1626 | EOS130 = -2.1482926901e+01_wp |
---|
1627 | EOS230 = 1.0108954054e+01_wp |
---|
1628 | EOS330 = -6.2675951440e-01_wp |
---|
1629 | EOS040 = -8.0812310102_wp |
---|
1630 | EOS140 = 1.0102374985e+01_wp |
---|
1631 | EOS240 = -4.8340368631_wp |
---|
1632 | EOS050 = 1.2079167803_wp |
---|
1633 | EOS150 = 1.1515380987e-01_wp |
---|
1634 | EOS060 = -2.4520288837e-01_wp |
---|
1635 | EOS001 = 1.0748601068e+01_wp |
---|
1636 | EOS101 = -1.7817043500e+01_wp |
---|
1637 | EOS201 = 2.2181366768e+01_wp |
---|
1638 | EOS301 = -1.6750916338e+01_wp |
---|
1639 | EOS401 = 4.1202230403_wp |
---|
1640 | EOS011 = -1.5852644587e+01_wp |
---|
1641 | EOS111 = -7.6639383522e-01_wp |
---|
1642 | EOS211 = 4.1144627302_wp |
---|
1643 | EOS311 = -6.6955877448e-01_wp |
---|
1644 | EOS021 = 9.9994861860_wp |
---|
1645 | EOS121 = -1.9467067787e-01_wp |
---|
1646 | EOS221 = -1.2177554330_wp |
---|
1647 | EOS031 = -3.4866102017_wp |
---|
1648 | EOS131 = 2.2229155620e-01_wp |
---|
1649 | EOS041 = 5.9503008642e-01_wp |
---|
1650 | EOS002 = 1.0375676547_wp |
---|
1651 | EOS102 = -3.4249470629_wp |
---|
1652 | EOS202 = 2.0542026429_wp |
---|
1653 | EOS012 = 2.1836324814_wp |
---|
1654 | EOS112 = -3.4453674320e-01_wp |
---|
1655 | EOS022 = -1.2548163097_wp |
---|
1656 | EOS003 = 1.8729078427e-02_wp |
---|
1657 | EOS103 = -5.7238495240e-02_wp |
---|
1658 | EOS013 = 3.8306136687e-01_wp |
---|
1659 | ! |
---|
1660 | ALP000 = -2.5218796628e-01_wp |
---|
1661 | ALP100 = 3.4119354654e-01_wp |
---|
1662 | ALP200 = -2.2119589983e-01_wp |
---|
1663 | ALP300 = 1.8082347094e-01_wp |
---|
1664 | ALP400 = -3.6936026529e-02_wp |
---|
1665 | ALP500 = -5.0091801383e-03_wp |
---|
1666 | ALP010 = 1.2789915300_wp |
---|
1667 | ALP110 = -1.2021756164_wp |
---|
1668 | ALP210 = 8.4037519952e-01_wp |
---|
1669 | ALP310 = -4.1905788542e-01_wp |
---|
1670 | ALP410 = 9.8855300959e-02_wp |
---|
1671 | ALP020 = -1.2634838399_wp |
---|
1672 | ALP120 = 1.6112195176_wp |
---|
1673 | ALP220 = -7.5817155402e-01_wp |
---|
1674 | ALP320 = 4.7006963580e-02_wp |
---|
1675 | ALP030 = 8.0812310102e-01_wp |
---|
1676 | ALP130 = -1.0102374985_wp |
---|
1677 | ALP230 = 4.8340368631e-01_wp |
---|
1678 | ALP040 = -1.5098959754e-01_wp |
---|
1679 | ALP140 = -1.4394226233e-02_wp |
---|
1680 | ALP050 = 3.6780433255e-02_wp |
---|
1681 | ALP001 = 3.9631611467e-01_wp |
---|
1682 | ALP101 = 1.9159845880e-02_wp |
---|
1683 | ALP201 = -1.0286156825e-01_wp |
---|
1684 | ALP301 = 1.6738969362e-02_wp |
---|
1685 | ALP011 = -4.9997430930e-01_wp |
---|
1686 | ALP111 = 9.7335338937e-03_wp |
---|
1687 | ALP211 = 6.0887771651e-02_wp |
---|
1688 | ALP021 = 2.6149576513e-01_wp |
---|
1689 | ALP121 = -1.6671866715e-02_wp |
---|
1690 | ALP031 = -5.9503008642e-02_wp |
---|
1691 | ALP002 = -5.4590812035e-02_wp |
---|
1692 | ALP102 = 8.6134185799e-03_wp |
---|
1693 | ALP012 = 6.2740815484e-02_wp |
---|
1694 | ALP003 = -9.5765341718e-03_wp |
---|
1695 | ! |
---|
1696 | BET000 = 2.1420623987_wp |
---|
1697 | BET100 = -9.3752598635_wp |
---|
1698 | BET200 = 1.9446303907e+01_wp |
---|
1699 | BET300 = -1.8632235232e+01_wp |
---|
1700 | BET400 = 8.9390837485_wp |
---|
1701 | BET500 = -1.7142465871_wp |
---|
1702 | BET010 = -1.7059677327e-01_wp |
---|
1703 | BET110 = 2.2119589983e-01_wp |
---|
1704 | BET210 = -2.7123520642e-01_wp |
---|
1705 | BET310 = 7.3872053057e-02_wp |
---|
1706 | BET410 = 1.2522950346e-02_wp |
---|
1707 | BET020 = 3.0054390409e-01_wp |
---|
1708 | BET120 = -4.2018759976e-01_wp |
---|
1709 | BET220 = 3.1429341406e-01_wp |
---|
1710 | BET320 = -9.8855300959e-02_wp |
---|
1711 | BET030 = -2.6853658626e-01_wp |
---|
1712 | BET130 = 2.5272385134e-01_wp |
---|
1713 | BET230 = -2.3503481790e-02_wp |
---|
1714 | BET040 = 1.2627968731e-01_wp |
---|
1715 | BET140 = -1.2085092158e-01_wp |
---|
1716 | BET050 = 1.4394226233e-03_wp |
---|
1717 | BET001 = -2.2271304375e-01_wp |
---|
1718 | BET101 = 5.5453416919e-01_wp |
---|
1719 | BET201 = -6.2815936268e-01_wp |
---|
1720 | BET301 = 2.0601115202e-01_wp |
---|
1721 | BET011 = -9.5799229402e-03_wp |
---|
1722 | BET111 = 1.0286156825e-01_wp |
---|
1723 | BET211 = -2.5108454043e-02_wp |
---|
1724 | BET021 = -2.4333834734e-03_wp |
---|
1725 | BET121 = -3.0443885826e-02_wp |
---|
1726 | BET031 = 2.7786444526e-03_wp |
---|
1727 | BET002 = -4.2811838287e-02_wp |
---|
1728 | BET102 = 5.1355066072e-02_wp |
---|
1729 | BET012 = -4.3067092900e-03_wp |
---|
1730 | BET003 = -7.1548119050e-04_wp |
---|
1731 | ! |
---|
1732 | PEN000 = -5.3743005340_wp |
---|
1733 | PEN100 = 8.9085217499_wp |
---|
1734 | PEN200 = -1.1090683384e+01_wp |
---|
1735 | PEN300 = 8.3754581690_wp |
---|
1736 | PEN400 = -2.0601115202_wp |
---|
1737 | PEN010 = 7.9263222935_wp |
---|
1738 | PEN110 = 3.8319691761e-01_wp |
---|
1739 | PEN210 = -2.0572313651_wp |
---|
1740 | PEN310 = 3.3477938724e-01_wp |
---|
1741 | PEN020 = -4.9997430930_wp |
---|
1742 | PEN120 = 9.7335338937e-02_wp |
---|
1743 | PEN220 = 6.0887771651e-01_wp |
---|
1744 | PEN030 = 1.7433051009_wp |
---|
1745 | PEN130 = -1.1114577810e-01_wp |
---|
1746 | PEN040 = -2.9751504321e-01_wp |
---|
1747 | PEN001 = -6.9171176978e-01_wp |
---|
1748 | PEN101 = 2.2832980419_wp |
---|
1749 | PEN201 = -1.3694684286_wp |
---|
1750 | PEN011 = -1.4557549876_wp |
---|
1751 | PEN111 = 2.2969116213e-01_wp |
---|
1752 | PEN021 = 8.3654420645e-01_wp |
---|
1753 | PEN002 = -1.4046808820e-02_wp |
---|
1754 | PEN102 = 4.2928871430e-02_wp |
---|
1755 | PEN012 = -2.8729602515e-01_wp |
---|
1756 | ! |
---|
1757 | APE000 = -1.9815805734e-01_wp |
---|
1758 | APE100 = -9.5799229402e-03_wp |
---|
1759 | APE200 = 5.1430784127e-02_wp |
---|
1760 | APE300 = -8.3694846809e-03_wp |
---|
1761 | APE010 = 2.4998715465e-01_wp |
---|
1762 | APE110 = -4.8667669469e-03_wp |
---|
1763 | APE210 = -3.0443885826e-02_wp |
---|
1764 | APE020 = -1.3074788257e-01_wp |
---|
1765 | APE120 = 8.3359333577e-03_wp |
---|
1766 | APE030 = 2.9751504321e-02_wp |
---|
1767 | APE001 = 3.6393874690e-02_wp |
---|
1768 | APE101 = -5.7422790533e-03_wp |
---|
1769 | APE011 = -4.1827210323e-02_wp |
---|
1770 | APE002 = 7.1824006288e-03_wp |
---|
1771 | ! |
---|
1772 | BPE000 = 1.1135652187e-01_wp |
---|
1773 | BPE100 = -2.7726708459e-01_wp |
---|
1774 | BPE200 = 3.1407968134e-01_wp |
---|
1775 | BPE300 = -1.0300557601e-01_wp |
---|
1776 | BPE010 = 4.7899614701e-03_wp |
---|
1777 | BPE110 = -5.1430784127e-02_wp |
---|
1778 | BPE210 = 1.2554227021e-02_wp |
---|
1779 | BPE020 = 1.2166917367e-03_wp |
---|
1780 | BPE120 = 1.5221942913e-02_wp |
---|
1781 | BPE030 = -1.3893222263e-03_wp |
---|
1782 | BPE001 = 2.8541225524e-02_wp |
---|
1783 | BPE101 = -3.4236710714e-02_wp |
---|
1784 | BPE011 = 2.8711395266e-03_wp |
---|
1785 | BPE002 = 5.3661089288e-04_wp |
---|
1786 | ! |
---|
1787 | CASE( np_seos ) !== Simplified EOS ==! |
---|
1788 | |
---|
1789 | r1_S0 = 0.875_wp/35.16504_wp ! Used to convert CT in potential temperature when using bulk formulae (eos_pt_from_ct) |
---|
1790 | |
---|
1791 | IF(lwp) THEN |
---|
1792 | WRITE(numout,*) |
---|
1793 | WRITE(numout,*) ' ==>>> use of simplified eos: ' |
---|
1794 | WRITE(numout,*) ' rhd(dT=T-10,dS=S-35,Z) = [-a0*(1+lambda1/2*dT+mu1*Z)*dT ' |
---|
1795 | WRITE(numout,*) ' + b0*(1+lambda2/2*dT+mu2*Z)*dS - nu*dT*dS] / rho0' |
---|
1796 | WRITE(numout,*) ' with the following coefficients :' |
---|
1797 | WRITE(numout,*) ' thermal exp. coef. rn_a0 = ', rn_a0 |
---|
1798 | WRITE(numout,*) ' saline cont. coef. rn_b0 = ', rn_b0 |
---|
1799 | WRITE(numout,*) ' cabbeling coef. rn_lambda1 = ', rn_lambda1 |
---|
1800 | WRITE(numout,*) ' cabbeling coef. rn_lambda2 = ', rn_lambda2 |
---|
1801 | WRITE(numout,*) ' thermobar. coef. rn_mu1 = ', rn_mu1 |
---|
1802 | WRITE(numout,*) ' thermobar. coef. rn_mu2 = ', rn_mu2 |
---|
1803 | WRITE(numout,*) ' 2nd cabbel. coef. rn_nu = ', rn_nu |
---|
1804 | WRITE(numout,*) ' Caution: rn_beta0=0 incompatible with ddm parameterization ' |
---|
1805 | ENDIF |
---|
1806 | l_useCT = .TRUE. ! Use conservative temperature |
---|
1807 | ! |
---|
1808 | CASE( np_leos ) !== Linear ISOMIP EOS ==! |
---|
1809 | IF(lwp) THEN |
---|
1810 | WRITE(numout,*) |
---|
1811 | WRITE(numout,*) ' use of linear ISOMIP eos: rhd(dT=T-(-1),dS=S-(34.2),Z) = ' |
---|
1812 | WRITE(numout,*) ' [ -a0*dT + b0*dS ]/rho0' |
---|
1813 | WRITE(numout,*) |
---|
1814 | WRITE(numout,*) ' thermal exp. coef. rn_a0 = ', rn_a0 |
---|
1815 | WRITE(numout,*) ' saline cont. coef. rn_b0 = ', rn_b0 |
---|
1816 | ENDIF |
---|
1817 | ! |
---|
1818 | CASE DEFAULT !== ERROR in neos ==! |
---|
1819 | WRITE(ctmp1,*) ' bad flag value for neos = ', neos, '. You should never see this error' |
---|
1820 | CALL ctl_stop( ctmp1 ) |
---|
1821 | ! |
---|
1822 | END SELECT |
---|
1823 | ! |
---|
1824 | rho0_rcp = rho0 * rcp |
---|
1825 | r1_rho0 = 1._wp / rho0 |
---|
1826 | r1_rcp = 1._wp / rcp |
---|
1827 | r1_rho0_rcp = 1._wp / rho0_rcp |
---|
1828 | ! |
---|
1829 | IF(lwp) THEN |
---|
1830 | IF( l_useCT ) THEN |
---|
1831 | WRITE(numout,*) |
---|
1832 | WRITE(numout,*) ' ==>>> model uses Conservative Temperature' |
---|
1833 | WRITE(numout,*) ' Important: model must be initialized with CT and SA fields' |
---|
1834 | ELSE |
---|
1835 | WRITE(numout,*) |
---|
1836 | WRITE(numout,*) ' ==>>> model does not use Conservative Temperature' |
---|
1837 | ENDIF |
---|
1838 | ENDIF |
---|
1839 | ! |
---|
1840 | IF(lwp) WRITE(numout,*) |
---|
1841 | IF(lwp) WRITE(numout,*) ' Associated physical constant' |
---|
1842 | IF(lwp) WRITE(numout,*) ' volumic mass of reference rho0 = ', rho0 , ' kg/m^3' |
---|
1843 | IF(lwp) WRITE(numout,*) ' 1. / rho0 r1_rho0 = ', r1_rho0, ' m^3/kg' |
---|
1844 | IF(lwp) WRITE(numout,*) ' ocean specific heat rcp = ', rcp , ' J/Kelvin' |
---|
1845 | IF(lwp) WRITE(numout,*) ' rho0 * rcp rho0_rcp = ', rho0_rcp |
---|
1846 | IF(lwp) WRITE(numout,*) ' 1. / ( rho0 * rcp ) r1_rho0_rcp = ', r1_rho0_rcp |
---|
1847 | ! |
---|
1848 | END SUBROUTINE eos_init |
---|
1849 | |
---|
1850 | !!====================================================================== |
---|
1851 | END MODULE eosbn2 |
---|