1 | MODULE icethd_pnd |
---|
2 | !!====================================================================== |
---|
3 | !! --- closest to CICE version |
---|
4 | !! *** MODULE icethd_pnd *** |
---|
5 | !! sea-ice: Melt ponds on top of sea ice |
---|
6 | !!====================================================================== |
---|
7 | !! history : ! 2012 (O. Lecomte) Adaptation from Flocco and Turner |
---|
8 | !! ! 2017 (M. Vancoppenolle, O. Lecomte, C. Rousset) Implementation |
---|
9 | !! 4.0 ! 2018 (many people) SI3 [aka Sea Ice cube] |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | #if defined key_si3 |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | !! 'key_si3' : SI3 sea-ice model |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | !! ice_thd_pnd_init : some initialization and namelist read |
---|
16 | !! ice_thd_pnd : main calling routine |
---|
17 | !!---------------------------------------------------------------------- |
---|
18 | USE phycst ! physical constants |
---|
19 | USE dom_oce ! ocean space and time domain |
---|
20 | USE ice ! sea-ice: variables |
---|
21 | USE ice1D ! sea-ice: thermodynamics variables |
---|
22 | USE icetab ! sea-ice: 1D <==> 2D transformation |
---|
23 | USE sbc_ice ! surface energy budget |
---|
24 | ! |
---|
25 | USE in_out_manager ! I/O manager |
---|
26 | USE lib_mpp ! MPP library |
---|
27 | USE lib_fortran ! fortran utilities (glob_sum + no signed zero) |
---|
28 | USE timing ! Timing |
---|
29 | |
---|
30 | IMPLICIT NONE |
---|
31 | PRIVATE |
---|
32 | |
---|
33 | PUBLIC ice_thd_pnd_init ! routine called by icestp.F90 |
---|
34 | PUBLIC ice_thd_pnd ! routine called by icestp.F90 |
---|
35 | |
---|
36 | INTEGER :: nice_pnd ! choice of the type of pond scheme |
---|
37 | ! ! associated indices: |
---|
38 | INTEGER, PARAMETER :: np_pndNO = 0 ! No pond scheme |
---|
39 | INTEGER, PARAMETER :: np_pndCST = 1 ! Constant ice pond scheme |
---|
40 | INTEGER, PARAMETER :: np_pndLEV = 2 ! Level ice pond scheme |
---|
41 | INTEGER, PARAMETER :: np_pndTOPO = 3 ! Level ice pond scheme |
---|
42 | |
---|
43 | REAL(wp), PARAMETER :: & ! shared parameters for topographic melt ponds |
---|
44 | zhi_min = 0.1_wp , & ! minimum ice thickness with ponds (m) |
---|
45 | zTd = 0.15_wp , & ! temperature difference for freeze-up (C) |
---|
46 | zvp_min = 1.e-4_wp ! minimum pond volume (m) |
---|
47 | |
---|
48 | !! * Substitutions |
---|
49 | # include "vectopt_loop_substitute.h90" |
---|
50 | !!---------------------------------------------------------------------- |
---|
51 | !! NEMO/ICE 4.0 , NEMO Consortium (2018) |
---|
52 | !! $Id$ |
---|
53 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
54 | !!---------------------------------------------------------------------- |
---|
55 | CONTAINS |
---|
56 | |
---|
57 | SUBROUTINE ice_thd_pnd |
---|
58 | !!------------------------------------------------------------------- |
---|
59 | !! *** ROUTINE ice_thd_pnd *** |
---|
60 | !! |
---|
61 | !! ** Purpose : change melt pond fraction and thickness |
---|
62 | !! |
---|
63 | !! Note: Melt ponds affect only radiative transfer for now |
---|
64 | !! |
---|
65 | !! No heat, no salt. |
---|
66 | !! The melt water they carry is collected but |
---|
67 | !! not removed from fw budget or released to the ocean |
---|
68 | !! |
---|
69 | !! A wfx_pnd has been coded for diagnostic purposes |
---|
70 | !! It is not fully consistent yet. |
---|
71 | !! |
---|
72 | !! The current diagnostic lacks a contribution from drainage |
---|
73 | !! |
---|
74 | !! Each time wfx_pnd is updated, wfx_sum / wfx_snw_sum must be updated |
---|
75 | !! |
---|
76 | !!------------------------------------------------------------------- |
---|
77 | ! |
---|
78 | SELECT CASE ( nice_pnd ) |
---|
79 | ! |
---|
80 | CASE (np_pndCST) ; CALL pnd_CST !== Constant melt ponds ==! |
---|
81 | ! |
---|
82 | CASE (np_pndLEV) ; CALL pnd_LEV !== Level ice melt ponds ==! |
---|
83 | ! |
---|
84 | CASE (np_pndTOPO) ; CALL pnd_TOPO !& !== Topographic melt ponds ==! |
---|
85 | ! |
---|
86 | END SELECT |
---|
87 | ! |
---|
88 | END SUBROUTINE ice_thd_pnd |
---|
89 | |
---|
90 | |
---|
91 | SUBROUTINE pnd_CST |
---|
92 | !!------------------------------------------------------------------- |
---|
93 | !! *** ROUTINE pnd_CST *** |
---|
94 | !! |
---|
95 | !! ** Purpose : Compute melt pond evolution |
---|
96 | !! |
---|
97 | !! ** Method : Melt pond fraction and thickness are prescribed |
---|
98 | !! to non-zero values when t_su = 0C |
---|
99 | !! |
---|
100 | !! ** Tunable parameters : Pond fraction (rn_apnd) & depth (rn_hpnd) |
---|
101 | !! |
---|
102 | !! ** Note : Coupling with such melt ponds is only radiative |
---|
103 | !! Advection, ridging, rafting... are bypassed |
---|
104 | !! |
---|
105 | !! ** References : Bush, G.W., and Trump, D.J. (2017) |
---|
106 | !!------------------------------------------------------------------- |
---|
107 | INTEGER :: ji ! loop indices |
---|
108 | !!------------------------------------------------------------------- |
---|
109 | DO ji = 1, npti |
---|
110 | ! |
---|
111 | IF( a_i_1d(ji) > 0._wp .AND. t_su_1d(ji) >= rt0 ) THEN |
---|
112 | h_ip_1d(ji) = rn_hpnd |
---|
113 | a_ip_1d(ji) = rn_apnd * a_i_1d(ji) |
---|
114 | h_il_1d(ji) = 0._wp ! no pond lids whatsoever |
---|
115 | ELSE |
---|
116 | h_ip_1d(ji) = 0._wp |
---|
117 | a_ip_1d(ji) = 0._wp |
---|
118 | h_il_1d(ji) = 0._wp |
---|
119 | ENDIF |
---|
120 | ! |
---|
121 | END DO |
---|
122 | ! |
---|
123 | END SUBROUTINE pnd_CST |
---|
124 | |
---|
125 | |
---|
126 | SUBROUTINE pnd_LEV |
---|
127 | !!------------------------------------------------------------------- |
---|
128 | !! *** ROUTINE pnd_LEV *** |
---|
129 | !! |
---|
130 | !! ** Purpose : Compute melt pond evolution |
---|
131 | !! |
---|
132 | !! ** Method : A fraction of meltwater is accumulated in ponds and sent to ocean when surface is freezing |
---|
133 | !! We work with volumes and then redistribute changes into thickness and concentration |
---|
134 | !! assuming linear relationship between the two. |
---|
135 | !! |
---|
136 | !! ** Action : - pond growth: Vp = Vp + dVmelt --- from Holland et al 2012 --- |
---|
137 | !! dVmelt = (1-r)/rhow * ( rhoi*dh_i + rhos*dh_s ) * a_i |
---|
138 | !! dh_i = meltwater from ice surface melt |
---|
139 | !! dh_s = meltwater from snow melt |
---|
140 | !! (1-r) = fraction of melt water that is not flushed |
---|
141 | !! |
---|
142 | !! - limtations: a_ip must not exceed (1-r)*a_i |
---|
143 | !! h_ip must not exceed 0.5*h_i |
---|
144 | !! |
---|
145 | !! - pond shrinking: |
---|
146 | !! if lids: Vp = Vp -dH * a_ip |
---|
147 | !! dH = lid thickness change. Retrieved from this eq.: --- from Flocco et al 2010 --- |
---|
148 | !! |
---|
149 | !! rhoi * Lf * dH/dt = ki * MAX(Tp-Tsu,0) / H |
---|
150 | !! H = lid thickness |
---|
151 | !! Lf = latent heat of fusion |
---|
152 | !! Tp = -2C |
---|
153 | !! |
---|
154 | !! And solved implicitely as: |
---|
155 | !! H(t+dt)**2 -H(t) * H(t+dt) -ki * (Tp-Tsu) * dt / (rhoi*Lf) = 0 |
---|
156 | !! |
---|
157 | !! if no lids: Vp = Vp * exp(0.01*MAX(Tp-Tsu,0)/Tp) --- from Holland et al 2012 --- |
---|
158 | !! |
---|
159 | !! - Flushing: w = -perm/visc * rho_oce * grav * Hp / Hi --- from Flocco et al 2007 --- |
---|
160 | !! perm = permability of sea-ice |
---|
161 | !! visc = water viscosity |
---|
162 | !! Hp = height of top of the pond above sea-level |
---|
163 | !! Hi = ice thickness thru which there is flushing |
---|
164 | !! |
---|
165 | !! - Corrections: remove melt ponds when lid thickness is 10 times the pond thickness |
---|
166 | !! |
---|
167 | !! - pond thickness and area is retrieved from pond volume assuming a linear relationship between h_ip and a_ip: |
---|
168 | !! a_ip/a_i = a_ip_frac = h_ip / zaspect |
---|
169 | !! |
---|
170 | !! ** Tunable parameters : ln_pnd_lids, rn_apnd_max, rn_apnd_min |
---|
171 | !! |
---|
172 | !! ** Note : mostly stolen from CICE but not only |
---|
173 | !! |
---|
174 | !! ** References : Holland et al (J. Clim, 2012) |
---|
175 | !! |
---|
176 | !!------------------------------------------------------------------- |
---|
177 | |
---|
178 | REAL(wp), DIMENSION(nlay_i) :: ztmp ! temporary array |
---|
179 | !! |
---|
180 | REAL(wp), PARAMETER :: zaspect = 0.8_wp ! pond aspect ratio |
---|
181 | REAL(wp), PARAMETER :: zTp = -2._wp ! reference temperature |
---|
182 | REAL(wp), PARAMETER :: zvisc = 1.79e-3_wp ! water viscosity |
---|
183 | !! |
---|
184 | REAL(wp) :: zfr_mlt, zdv_mlt ! fraction and volume of available meltwater retained for melt ponding |
---|
185 | REAL(wp) :: zdv_frz, zdv_flush ! Amount of melt pond that freezes, flushes |
---|
186 | REAL(wp) :: zhp ! heigh of top of pond lid wrt ssh |
---|
187 | REAL(wp) :: zv_ip_max ! max pond volume allowed |
---|
188 | REAL(wp) :: zdT ! zTp-t_su |
---|
189 | REAL(wp) :: zsbr ! Brine salinity |
---|
190 | REAL(wp) :: zperm ! permeability of sea ice |
---|
191 | REAL(wp) :: zfac, zdum ! temporary arrays |
---|
192 | REAL(wp) :: z1_rhow, z1_aspect, z1_Tp ! inverse |
---|
193 | !! |
---|
194 | INTEGER :: ji, jj, jk, jl ! loop indices |
---|
195 | |
---|
196 | !!------------------------------------------------------------------- |
---|
197 | |
---|
198 | z1_rhow = 1._wp / rhow |
---|
199 | z1_aspect = 1._wp / zaspect |
---|
200 | z1_Tp = 1._wp / zTp |
---|
201 | |
---|
202 | !----------------------------------------------------------------------------------------------- |
---|
203 | ! Identify grid cells with ice |
---|
204 | !----------------------------------------------------------------------------------------------- |
---|
205 | at_i(:,:) = SUM( a_i, dim=3 ) |
---|
206 | ! |
---|
207 | npti = 0 ; nptidx(:) = 0 |
---|
208 | DO jj = 1, jpj |
---|
209 | DO ji = 1, jpi |
---|
210 | IF ( at_i(ji,jj) > epsi10 ) THEN |
---|
211 | npti = npti + 1 |
---|
212 | nptidx( npti ) = (jj - 1) * jpi + ji |
---|
213 | ENDIF |
---|
214 | END DO |
---|
215 | END DO |
---|
216 | |
---|
217 | !----------------------------------------------------------------------------------------------- |
---|
218 | ! Prepare 1D arrays |
---|
219 | !----------------------------------------------------------------------------------------------- |
---|
220 | |
---|
221 | IF( npti > 0 ) THEN |
---|
222 | |
---|
223 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_snw_sum_1d(1:npti), wfx_snw_sum ) |
---|
224 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_sum_1d (1:npti), wfx_sum ) |
---|
225 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_pnd_1d (1:npti), wfx_pnd ) |
---|
226 | |
---|
227 | DO jl = 1, jpl |
---|
228 | |
---|
229 | CALL tab_2d_1d( npti, nptidx(1:npti), a_i_1d (1:npti), a_i (:,:,jl) ) |
---|
230 | CALL tab_2d_1d( npti, nptidx(1:npti), h_i_1d (1:npti), h_i (:,:,jl) ) |
---|
231 | CALL tab_2d_1d( npti, nptidx(1:npti), t_su_1d (1:npti), t_su (:,:,jl) ) |
---|
232 | CALL tab_2d_1d( npti, nptidx(1:npti), a_ip_1d (1:npti), a_ip (:,:,jl) ) |
---|
233 | CALL tab_2d_1d( npti, nptidx(1:npti), h_ip_1d (1:npti), h_ip (:,:,jl) ) |
---|
234 | CALL tab_2d_1d( npti, nptidx(1:npti), h_il_1d (1:npti), h_il (:,:,jl) ) |
---|
235 | |
---|
236 | CALL tab_2d_1d( npti, nptidx(1:npti), dh_i_sum (1:npti), dh_i_sum_2d (:,:,jl) ) |
---|
237 | CALL tab_2d_1d( npti, nptidx(1:npti), dh_s_mlt (1:npti), dh_s_mlt_2d (:,:,jl) ) |
---|
238 | |
---|
239 | DO jk = 1, nlay_i |
---|
240 | CALL tab_2d_1d( npti, nptidx(1:npti), sz_i_1d(1:npti,jk), sz_i(:,:,jk,jl) ) |
---|
241 | END DO |
---|
242 | |
---|
243 | !----------------------------------------------------------------------------------------------- |
---|
244 | ! Go for ponds |
---|
245 | !----------------------------------------------------------------------------------------------- |
---|
246 | |
---|
247 | |
---|
248 | DO ji = 1, npti |
---|
249 | ! !----------------------------------------------------! |
---|
250 | IF( h_i_1d(ji) < rn_himin .OR. a_i_1d(ji) < epsi10 ) THEN ! Case ice thickness < rn_himin or tiny ice fraction ! |
---|
251 | ! !----------------------------------------------------! |
---|
252 | !--- Remove ponds on thin ice or tiny ice fractions |
---|
253 | a_ip_1d(ji) = 0._wp |
---|
254 | h_ip_1d(ji) = 0._wp |
---|
255 | h_il_1d(ji) = 0._wp |
---|
256 | ! !--------------------------------! |
---|
257 | ELSE ! Case ice thickness >= rn_himin ! |
---|
258 | ! !--------------------------------! |
---|
259 | v_ip_1d(ji) = h_ip_1d(ji) * a_ip_1d(ji) ! retrieve volume from thickness |
---|
260 | v_il_1d(ji) = h_il_1d(ji) * a_ip_1d(ji) |
---|
261 | ! |
---|
262 | !------------------! |
---|
263 | ! case ice melting ! |
---|
264 | !------------------! |
---|
265 | ! |
---|
266 | !--- available meltwater for melt ponding ---! |
---|
267 | zdum = -( dh_i_sum(ji)*rhoi + dh_s_mlt(ji)*rhos ) * z1_rhow * a_i_1d(ji) |
---|
268 | zfr_mlt = rn_apnd_min + ( rn_apnd_max - rn_apnd_min ) * at_i_1d(ji) ! = ( 1 - r ) = fraction of melt water that is not flushed |
---|
269 | zdv_mlt = MAX( 0._wp, zfr_mlt * zdum ) ! max for roundoff errors? |
---|
270 | ! |
---|
271 | !--- overflow ---! |
---|
272 | ! If pond area exceeds zfr_mlt * a_i_1d(ji) then reduce the pond volume |
---|
273 | ! a_ip_max = zfr_mlt * a_i |
---|
274 | ! => from zaspect = h_ip / (a_ip / a_i), set v_ip_max as: |
---|
275 | zv_ip_max = zfr_mlt**2 * a_i_1d(ji) * zaspect |
---|
276 | zdv_mlt = MAX( 0._wp, MIN( zdv_mlt, zv_ip_max - v_ip_1d(ji) ) ) |
---|
277 | |
---|
278 | ! If pond depth exceeds half the ice thickness then reduce the pond volume |
---|
279 | ! h_ip_max = 0.5 * h_i |
---|
280 | ! => from zaspect = h_ip / (a_ip / a_i), set v_ip_max as: |
---|
281 | zv_ip_max = z1_aspect * a_i_1d(ji) * 0.25 * h_i_1d(ji) * h_i_1d(ji) ! MV dimensions are wrong here or comment is unclear |
---|
282 | zdv_mlt = MAX( 0._wp, MIN( zdv_mlt, zv_ip_max - v_ip_1d(ji) ) ) |
---|
283 | |
---|
284 | !--- Pond growing ---! |
---|
285 | v_ip_1d(ji) = v_ip_1d(ji) + zdv_mlt |
---|
286 | ! |
---|
287 | !--- Lid melting ---! |
---|
288 | IF( ln_pnd_lids ) v_il_1d(ji) = MAX( 0._wp, v_il_1d(ji) - zdv_mlt ) ! must be bounded by 0 |
---|
289 | ! |
---|
290 | !--- mass flux ---! |
---|
291 | ! MV I would recommend to remove that |
---|
292 | ! Since melt ponds carry no freshwater there is no point in modifying water fluxes |
---|
293 | |
---|
294 | IF( zdv_mlt > 0._wp ) THEN |
---|
295 | zfac = zdv_mlt * rhow * r1_rdtice ! melt pond mass flux < 0 [kg.m-2.s-1] |
---|
296 | wfx_pnd_1d(ji) = wfx_pnd_1d(ji) - zfac |
---|
297 | ! |
---|
298 | zdum = zfac / ( wfx_snw_sum_1d(ji) + wfx_sum_1d(ji) ) ! adjust ice/snow melting flux > 0 to balance melt pond flux |
---|
299 | wfx_snw_sum_1d(ji) = wfx_snw_sum_1d(ji) * (1._wp + zdum) |
---|
300 | wfx_sum_1d(ji) = wfx_sum_1d(ji) * (1._wp + zdum) |
---|
301 | ENDIF |
---|
302 | |
---|
303 | !-------------------! |
---|
304 | ! case ice freezing ! i.e. t_su_1d(ji) < (zTp+rt0) |
---|
305 | !-------------------! |
---|
306 | ! |
---|
307 | zdT = MAX( zTp+rt0 - t_su_1d(ji), 0._wp ) |
---|
308 | ! |
---|
309 | !--- Pond contraction (due to refreezing) ---! |
---|
310 | IF( ln_pnd_lids ) THEN |
---|
311 | ! |
---|
312 | !--- Lid growing and subsequent pond shrinking ---! |
---|
313 | zdv_frz = 0.5_wp * MAX( 0._wp, -v_il_1d(ji) + & ! Flocco 2010 (eq. 5) solved implicitly as aH**2 + bH + c = 0 |
---|
314 | & SQRT( v_il_1d(ji)**2 + a_ip_1d(ji)**2 * 4._wp * rcnd_i * zdT * rdt_ice / (rLfus * rhow) ) ) ! max for roundoff errors |
---|
315 | |
---|
316 | ! Lid growing |
---|
317 | v_il_1d(ji) = MAX( 0._wp, v_il_1d(ji) + zdv_frz ) |
---|
318 | |
---|
319 | ! Pond shrinking |
---|
320 | v_ip_1d(ji) = MAX( 0._wp, v_ip_1d(ji) - zdv_frz ) |
---|
321 | |
---|
322 | ELSE |
---|
323 | ! Pond shrinking |
---|
324 | v_ip_1d(ji) = v_ip_1d(ji) * EXP( 0.01_wp * zdT * z1_Tp ) ! Holland 2012 (eq. 6) |
---|
325 | ENDIF |
---|
326 | ! |
---|
327 | !--- Set new pond area and depth ---! assuming linear relation between h_ip and a_ip_frac |
---|
328 | ! v_ip = h_ip * a_ip |
---|
329 | ! a_ip/a_i = a_ip_frac = h_ip / zaspect (cf Holland 2012, fitting SHEBA so that knowing v_ip we can distribute it to a_ip and h_ip) |
---|
330 | a_ip_1d(ji) = MIN( a_i_1d(ji), SQRT( v_ip_1d(ji) * z1_aspect * a_i_1d(ji) ) ) ! make sure a_ip < a_i |
---|
331 | h_ip_1d(ji) = zaspect * a_ip_1d(ji) / a_i_1d(ji) |
---|
332 | |
---|
333 | !---------------! |
---|
334 | ! Pond flushing ! |
---|
335 | !---------------! |
---|
336 | ! height of top of the pond above sea-level |
---|
337 | zhp = ( h_i_1d(ji) * ( rau0 - rhoi ) + h_ip_1d(ji) * ( rau0 - rhow * a_ip_1d(ji) / a_i_1d(ji) ) ) * r1_rau0 |
---|
338 | |
---|
339 | ! Calculate the permeability of the ice (Assur 1958, see Flocco 2010) |
---|
340 | DO jk = 1, nlay_i |
---|
341 | ! MV Assur is inconsistent with SI3 |
---|
342 | zsbr = - 1.2_wp & |
---|
343 | & - 21.8_wp * ( t_i_1d(ji,jk) - rt0 ) & |
---|
344 | & - 0.919_wp * ( t_i_1d(ji,jk) - rt0 )**2 & |
---|
345 | & - 0.0178_wp * ( t_i_1d(ji,jk) - rt0 )**3 |
---|
346 | ! MV linear expression more consistent & simpler zsbr = - ( t_i_1d(ji,jk) - rt0 ) / rTmlt |
---|
347 | ztmp(jk) = sz_i_1d(ji,jk) / zsbr |
---|
348 | END DO |
---|
349 | zperm = MAX( 0._wp, 3.e-08_wp * MINVAL(ztmp)**3 ) |
---|
350 | |
---|
351 | ! Do the drainage using Darcy's law |
---|
352 | zdv_flush = -zperm * rau0 * grav * zhp * rdt_ice / (zvisc * h_i_1d(ji)) * a_ip_1d(ji) |
---|
353 | zdv_flush = MAX( zdv_flush, -v_ip_1d(ji) ) |
---|
354 | zdv_flush = 0._wp ! MV remove pond drainage for now |
---|
355 | v_ip_1d(ji) = v_ip_1d(ji) + zdv_flush |
---|
356 | |
---|
357 | ! MV --- why pond drainage does not give back water into freshwater flux ? |
---|
358 | |
---|
359 | !--- Set new pond area and depth ---! assuming linear relation between h_ip and a_ip_frac |
---|
360 | a_ip_1d(ji) = MIN( a_i_1d(ji), SQRT( v_ip_1d(ji) * z1_aspect * a_i_1d(ji) ) ) ! make sure a_ip < a_i |
---|
361 | h_ip_1d(ji) = zaspect * a_ip_1d(ji) / a_i_1d(ji) |
---|
362 | |
---|
363 | !--- Corrections and lid thickness ---! |
---|
364 | IF( ln_pnd_lids ) THEN |
---|
365 | !--- retrieve lid thickness from volume ---! |
---|
366 | IF( a_ip_1d(ji) > epsi10 ) THEN ; h_il_1d(ji) = v_il_1d(ji) / a_ip_1d(ji) |
---|
367 | ELSE ; h_il_1d(ji) = 0._wp |
---|
368 | ENDIF |
---|
369 | !--- remove ponds if lids are much larger than ponds ---! |
---|
370 | IF ( h_il_1d(ji) > h_ip_1d(ji) * 10._wp ) THEN |
---|
371 | a_ip_1d(ji) = 0._wp |
---|
372 | h_ip_1d(ji) = 0._wp |
---|
373 | h_il_1d(ji) = 0._wp |
---|
374 | ENDIF |
---|
375 | ENDIF |
---|
376 | ! |
---|
377 | ENDIF |
---|
378 | |
---|
379 | END DO ! ji |
---|
380 | |
---|
381 | !----------------------------------------------------------------------------------------------- |
---|
382 | ! Retrieve 2D arrays |
---|
383 | !----------------------------------------------------------------------------------------------- |
---|
384 | |
---|
385 | v_ip_1d(1:npti) = h_ip_1d(1:npti) * a_ip_1d(1:npti) |
---|
386 | v_il_1d(1:npti) = h_il_1d(1:npti) * a_ip_1d(1:npti) |
---|
387 | CALL tab_1d_2d( npti, nptidx(1:npti), a_ip_1d (1:npti), a_ip (:,:,jl) ) |
---|
388 | CALL tab_1d_2d( npti, nptidx(1:npti), h_ip_1d (1:npti), h_ip (:,:,jl) ) |
---|
389 | CALL tab_1d_2d( npti, nptidx(1:npti), h_il_1d (1:npti), h_il (:,:,jl) ) |
---|
390 | CALL tab_1d_2d( npti, nptidx(1:npti), v_ip_1d (1:npti), v_ip (:,:,jl) ) |
---|
391 | CALL tab_1d_2d( npti, nptidx(1:npti), v_il_1d (1:npti), v_il (:,:,jl) ) |
---|
392 | DO jk = 1, nlay_i |
---|
393 | CALL tab_1d_2d( npti, nptidx(1:npti), sz_i_1d(1:npti,jk), sz_i(:,:,jk,jl) ) |
---|
394 | END DO |
---|
395 | |
---|
396 | END DO ! ji |
---|
397 | |
---|
398 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_snw_sum_1d(1:npti), wfx_snw_sum ) |
---|
399 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_sum_1d (1:npti), wfx_sum ) |
---|
400 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_pnd_1d (1:npti), wfx_pnd ) |
---|
401 | |
---|
402 | ! |
---|
403 | ENDIF |
---|
404 | |
---|
405 | END SUBROUTINE pnd_LEV |
---|
406 | |
---|
407 | SUBROUTINE pnd_TOPO |
---|
408 | |
---|
409 | !!------------------------------------------------------------------- |
---|
410 | !! *** ROUTINE pnd_TOPO *** |
---|
411 | !! |
---|
412 | !! ** Purpose : Compute melt pond evolution |
---|
413 | !! |
---|
414 | !! ** Purpose : Compute melt pond evolution based on the ice |
---|
415 | !! topography as inferred from the ice thickness |
---|
416 | !! distribution. |
---|
417 | !! |
---|
418 | !! ** Method : This code is initially based on Flocco and Feltham |
---|
419 | !! (2007) and Flocco et al. (2010). More to come... |
---|
420 | !! |
---|
421 | !! ** Tunable parameters : |
---|
422 | !! |
---|
423 | !! ** Note : |
---|
424 | !! |
---|
425 | !! ** References |
---|
426 | !! |
---|
427 | !! Flocco, D. and D. L. Feltham, 2007. A continuum model of melt pond |
---|
428 | !! evolution on Arctic sea ice. J. Geophys. Res. 112, C08016, doi: |
---|
429 | !! 10.1029/2006JC003836. |
---|
430 | !! |
---|
431 | !! Flocco, D., D. L. Feltham and A. K. Turner, 2010. Incorporation of |
---|
432 | !! a physically based melt pond scheme into the sea ice component of a |
---|
433 | !! climate model. J. Geophys. Res. 115, C08012, |
---|
434 | !! doi: 10.1029/2009JC005568. |
---|
435 | !! |
---|
436 | !!------------------------------------------------------------------- |
---|
437 | |
---|
438 | ! local variables |
---|
439 | REAL(wp) :: & |
---|
440 | zdHui, & ! change in thickness of ice lid (m) |
---|
441 | zomega, & ! conduction |
---|
442 | zdTice, & ! temperature difference across ice lid (C) |
---|
443 | zdvice, & ! change in ice volume (m) |
---|
444 | zTavg, & ! mean surface temperature across categories (C) |
---|
445 | zfsurf, & ! net heat flux, excluding conduction and transmitted radiation (W/m2) |
---|
446 | zTp, & ! pond freezing temperature (C) |
---|
447 | zrhoi_L, & ! volumetric latent heat of sea ice (J/m^3) |
---|
448 | zfr_mlt, & ! fraction and volume of available meltwater retained for melt ponding |
---|
449 | z1_rhow, & ! inverse water density |
---|
450 | zpond , & ! dummy variable |
---|
451 | zdum ! dummy variable |
---|
452 | |
---|
453 | REAL(wp), DIMENSION(jpi,jpj) :: zvolp, & !! total melt pond water available before redistribution and drainage |
---|
454 | zvolp_res |
---|
455 | |
---|
456 | REAL(wp), DIMENSION(jpi,jpj,jpl) :: z1_a_i |
---|
457 | |
---|
458 | INTEGER :: ji, jj, jk, jl ! loop indices |
---|
459 | |
---|
460 | INTEGER :: i_test |
---|
461 | |
---|
462 | ! Note |
---|
463 | ! equivalent for CICE translation |
---|
464 | ! a_ip -> apond |
---|
465 | ! a_ip_frac -> apnd |
---|
466 | |
---|
467 | !--------------------------------------------------------------- |
---|
468 | ! Initialise |
---|
469 | !--------------------------------------------------------------- |
---|
470 | |
---|
471 | ! Parameters & constants (move to parameters) |
---|
472 | zrhoi_L = rhoi * rLfus ! volumetric latent heat (J/m^3) |
---|
473 | zTp = rt0 - 0.15_wp ! pond freezing point, slightly below 0C (ponds are bid saline) |
---|
474 | z1_rhow = 1._wp / rhow |
---|
475 | |
---|
476 | ! Set required ice variables (hard-coded here for now) |
---|
477 | ! zfpond(:,:) = 0._wp ! contributing freshwater flux (?) |
---|
478 | |
---|
479 | at_i (:,:) = SUM( a_i (:,:,:), dim=3 ) ! ice fraction |
---|
480 | vt_i (:,:) = SUM( v_i (:,:,:), dim=3 ) ! volume per grid area |
---|
481 | vt_ip(:,:) = SUM( v_ip(:,:,:), dim=3 ) ! pond volume per grid area |
---|
482 | vt_il(:,:) = SUM( v_il(:,:,:), dim=3 ) ! lid volume per grid area |
---|
483 | |
---|
484 | ! thickness |
---|
485 | WHERE( a_i(:,:,:) > epsi20 ) ; z1_a_i(:,:,:) = 1._wp / a_i(:,:,:) |
---|
486 | ELSEWHERE ; z1_a_i(:,:,:) = 0._wp |
---|
487 | END WHERE |
---|
488 | h_i(:,:,:) = v_i (:,:,:) * z1_a_i(:,:,:) |
---|
489 | |
---|
490 | !--------------------------------------------------------------- |
---|
491 | ! Change 2D to 1D |
---|
492 | !--------------------------------------------------------------- |
---|
493 | |
---|
494 | !-------------------------------------------------------------- |
---|
495 | ! Collect total available pond water |
---|
496 | !-------------------------------------------------------------- |
---|
497 | |
---|
498 | zvolp(:,:) = 0._wp |
---|
499 | |
---|
500 | DO jl = 1, jpl |
---|
501 | DO jj = 1, jpj |
---|
502 | DO ji = 1, jpi |
---|
503 | |
---|
504 | IF ( a_i(ji,jj,jl) > epsi10 ) THEN |
---|
505 | |
---|
506 | !--- Available meltwater for melt ponding ---! |
---|
507 | zfr_mlt = rn_apnd_min + ( rn_apnd_max - rn_apnd_min ) * a_i(ji,jj,jl) ! = ( 1 - r ) = fraction of melt water that is not flushed |
---|
508 | zdum = -( dh_i_sum_2d(ji,jj,jl)*rhoi + dh_s_mlt_2d(ji,jj,jl)*rhos ) * z1_rhow * a_i(ji,jj,jl) |
---|
509 | zpond = zfr_mlt * zdum ! check |
---|
510 | |
---|
511 | !--- Create possible new ponds |
---|
512 | ! if pond does not exist, create new pond over full ice area |
---|
513 | IF ( a_ip_frac(ji,jj,jl) < epsi10 ) THEN |
---|
514 | h_ip(ji,jj,jl) = 0._wp |
---|
515 | a_ip_frac(ji,jj,jl) = 1.0_wp ! pond fraction of sea ice (apnd for CICE) |
---|
516 | ENDIF |
---|
517 | |
---|
518 | !--- Deepen existing ponds before redistribution and drainage(later on) |
---|
519 | h_ip(ji,jj,jl) = ( zpond + h_ip(ji,jj,jl) * a_ip_frac(ji,jj,jl) ) / a_ip_frac(ji,jj,jl) |
---|
520 | zvolp(ji,jj) = zvolp(ji,jj) + h_ip(ji,jj,jl) * a_ip_frac(ji,jj,jl) * a_i(ji,jj,jl) |
---|
521 | ! zfpond(ji,jj) = zfpond(ji,jj) + zpond * a_ip_frac(ji,jj,jl) !useless |
---|
522 | |
---|
523 | ENDIF ! a_i |
---|
524 | |
---|
525 | END DO! jl |
---|
526 | END DO ! jj |
---|
527 | END DO ! ji |
---|
528 | |
---|
529 | h_ip(:,:,:) = 0._wp ! pond thickness |
---|
530 | a_ip(:,:,:) = 0._wp ! pond fraction per grid area |
---|
531 | |
---|
532 | !-------------------------------------------------------------- |
---|
533 | ! Redistribute and drain water from ponds |
---|
534 | !-------------------------------------------------------------- |
---|
535 | CALL ice_thd_pnd_area( zvolp, zvolp_res ) |
---|
536 | |
---|
537 | !-------------------------------------------------------------- |
---|
538 | ! Freeze and melt lid |
---|
539 | !-------------------------------------------------------------- |
---|
540 | DO jj = 1, jpj |
---|
541 | DO ji = 1, jpi |
---|
542 | |
---|
543 | IF ( at_i(ji,jj) > 0.01 .AND. hm_i(ji,jj) > zhi_min .AND. vt_ip(ji,jj) > zvp_min *at_i(ji,jj) ) THEN |
---|
544 | |
---|
545 | !-------------------------- |
---|
546 | ! Pond lid growth and melt |
---|
547 | !-------------------------- |
---|
548 | ! Mean surface temperature |
---|
549 | zTavg = 0._wp |
---|
550 | DO jl = 1, jpl |
---|
551 | zTavg = zTavg + t_su(ji,jj,jl)*a_i(ji,jj,jl) |
---|
552 | END DO |
---|
553 | zTavg = zTavg / a_i(ji,jj,jl) !!! could get a division by zero here |
---|
554 | |
---|
555 | DO jl = 1, jpl-1 |
---|
556 | |
---|
557 | IF ( v_il(ji,jj,jl) > epsi10 ) THEN |
---|
558 | |
---|
559 | !---------------------------------------------------------------- |
---|
560 | ! Lid melting: floating upper ice layer melts in whole or part |
---|
561 | !---------------------------------------------------------------- |
---|
562 | ! Use Tsfc for each category |
---|
563 | IF ( t_su(ji,jj,jl) > zTp ) THEN |
---|
564 | |
---|
565 | zdvice = MIN( dh_i_sum_2d(ji,jj,jl)*a_ip(ji,jj,jl), v_il(ji,jj,jl) ) |
---|
566 | IF ( zdvice > epsi10 ) then |
---|
567 | v_il (ji,jj,jl) = v_il (ji,jj,jl) - zdvice |
---|
568 | v_ip(ji,jj,jl) = v_ip(ji,jj,jl) + zdvice |
---|
569 | ! zvolp(ji,jj) = zvolp(ji,jj) + zdvice ! pointless to calculate total volume (done in icevar) |
---|
570 | ! zfpond(ji,jj) = fpond(ji,jj) + zdvice ! pointless to follow fw budget (ponds have no fw) |
---|
571 | |
---|
572 | IF ( v_il(ji,jj,jl) < epsi10 .AND. v_ip(ji,jj,jl) > epsi10) THEN |
---|
573 | ! ice lid melted and category is pond covered |
---|
574 | v_ip(ji,jj,jl) = v_ip(ji,jj,jl) + v_il(ji,jj,jl) |
---|
575 | ! zfpond(ji,jj) = zfpond (ji,jj) + v_il(ji,jj,jl) |
---|
576 | v_il(ji,jj,jl) = 0._wp |
---|
577 | ENDIF |
---|
578 | h_ip(ji,jj,jl) = v_ip(ji,jj,jl) / a_ip(ji,jj,jl) !!! could get a division by zero here |
---|
579 | ENDIF |
---|
580 | |
---|
581 | !---------------------------------------------------------------- |
---|
582 | ! Freeze pre-existing lid |
---|
583 | !---------------------------------------------------------------- |
---|
584 | |
---|
585 | ELSE IF ( v_ip(ji,jj,jl) > epsi10 ) THEN ! Tsfcn(i,j,n) <= Tp |
---|
586 | |
---|
587 | ! differential growth of base of surface floating ice layer |
---|
588 | zdTice = MAX( - t_su(ji,jj,jl) - zTd , 0._wp ) ! > 0 |
---|
589 | zomega = rcnd_i * zdTice / zrhoi_L |
---|
590 | zdHui = SQRT( 2._wp * zomega * rdt_ice + ( v_il(ji,jj,jl) / a_i(ji,jj,jl) )**2 ) & |
---|
591 | - v_il(ji,jj,jl) / a_i(ji,jj,jl) |
---|
592 | zdvice = min( zdHui*a_ip(ji,jj,jl) , v_ip(ji,jj,jl) ) |
---|
593 | |
---|
594 | IF ( zdvice > epsi10 ) THEN |
---|
595 | v_il (ji,jj,jl) = v_il(ji,jj,jl) + zdvice |
---|
596 | v_ip(ji,jj,jl) = v_ip(ji,jj,jl) - zdvice |
---|
597 | ! zvolp(ji,jj) = zvolp(ji,jj) - zdvice |
---|
598 | ! zfpond(ji,jj) = zfpond(ji,jj) - zdvice |
---|
599 | h_ip(ji,jj,jl) = v_ip(ji,jj,jl) / a_ip(ji,jj,jl) |
---|
600 | ENDIF |
---|
601 | |
---|
602 | ENDIF ! Tsfcn(i,j,n) |
---|
603 | |
---|
604 | !---------------------------------------------------------------- |
---|
605 | ! Freeze new lids |
---|
606 | !---------------------------------------------------------------- |
---|
607 | ! upper ice layer begins to form |
---|
608 | ! note: albedo does not change |
---|
609 | |
---|
610 | ELSE ! v_il < epsi10 |
---|
611 | |
---|
612 | ! thickness of newly formed ice |
---|
613 | ! the surface temperature of a meltpond is the same as that |
---|
614 | ! of the ice underneath (0C), and the thermodynamic surface |
---|
615 | ! flux is the same |
---|
616 | |
---|
617 | !!! we need net surface energy flux, excluding conduction |
---|
618 | !!! fsurf is summed over categories in CICE |
---|
619 | !!! we have the category-dependent flux, let us use it ? |
---|
620 | zfsurf = qns_ice(ji,jj,jl) + qsr_ice(ji,jj,jl) |
---|
621 | zdHui = MAX ( -zfsurf * rdt_ice/zrhoi_L , 0._wp ) |
---|
622 | zdvice = MIN ( zdHui * a_ip(ji,jj,jl) , v_ip(ji,jj,jl) ) |
---|
623 | IF ( zdvice > epsi10 ) THEN |
---|
624 | v_il (ji,jj,jl) = v_il(ji,jj,jl) + zdvice |
---|
625 | v_ip(ji,jj,jl) = v_ip(ji,jj,jl) - zdvice |
---|
626 | ! zvolp(ji,jj) = zvolp(ji,jj) - zdvice |
---|
627 | ! zfpond(ji,jj) = zfpond(ji,jj) - zdvice |
---|
628 | h_ip(ji,jj,jl) = v_ip(ji,jj,jl) / a_ip(ji,jj,jl) ! in principle, this is useless as h_ip is computed in icevar |
---|
629 | ENDIF |
---|
630 | |
---|
631 | ENDIF ! v_il |
---|
632 | |
---|
633 | END DO ! jl |
---|
634 | |
---|
635 | ELSE ! remove ponds on thin ice |
---|
636 | |
---|
637 | v_ip(ji,jj,:) = 0._wp |
---|
638 | v_il(ji,jj,:) = 0._wp |
---|
639 | ! zfpond(ji,jj) = zfpond(ji,jj)- zvolp(ji,jj) |
---|
640 | ! zvolp(ji,jj) = 0._wp |
---|
641 | |
---|
642 | ENDIF |
---|
643 | |
---|
644 | END DO ! jj |
---|
645 | END DO ! ji |
---|
646 | |
---|
647 | !--------------------------------------------------------------- |
---|
648 | ! Clean-up variables (probably duplicates what icevar would do) |
---|
649 | !--------------------------------------------------------------- |
---|
650 | ! MV comment |
---|
651 | ! In the ideal world, the lines above should update only v_ip, a_ip, v_il |
---|
652 | ! icevar should recompute all other variables (if needed at all) |
---|
653 | |
---|
654 | DO jl = 1, jpl |
---|
655 | DO jj = 1, jpj |
---|
656 | DO ji = 1, jpi |
---|
657 | |
---|
658 | IF ( a_i(ji,jj,jl) > epsi10 .AND. v_ip(ji,jj,jl) < epsi10 & |
---|
659 | .AND. v_il (ji,jj,jl) > epsi10) THEN |
---|
660 | v_il(ji,jj,jl) = 0._wp |
---|
661 | ENDIF |
---|
662 | |
---|
663 | ! reload tracers |
---|
664 | IF ( a_ip(ji,jj,jl) > epsi10) THEN |
---|
665 | h_il(ji,jj,jl) = v_il(ji,jj,jl) / a_ip(ji,jj,jl) ! MV in principle, useless as computed in icevar |
---|
666 | ELSE |
---|
667 | v_il(ji,jj,jl) = 0._wp |
---|
668 | h_il(ji,jj,jl) = 0._wp ! MV in principle, useless as a_ip_frac computed in icevar |
---|
669 | ENDIF |
---|
670 | |
---|
671 | IF ( a_ip(ji,jj,jl) > epsi10 ) THEN |
---|
672 | a_ip_frac(ji,jj,jl) = a_ip(ji,jj,jl) / a_i(ji,jj,jl) ! MV in principle, useless as computed in icevar |
---|
673 | !h_ip(ji,jj,jl) = zhpondn(ji,jj,jl) |
---|
674 | ELSE |
---|
675 | a_ip_frac(ji,jj,jl) = 0._wp |
---|
676 | h_ip(ji,jj,jl) = 0._wp ! MV in principle, useless as computed in icevar |
---|
677 | h_il(ji,jj,jl) = 0._wp ! MV in principle, useless as omputed in icevar |
---|
678 | ENDIF |
---|
679 | |
---|
680 | END DO ! ji |
---|
681 | END DO ! jj |
---|
682 | END DO ! jl |
---|
683 | |
---|
684 | END SUBROUTINE pnd_TOPO |
---|
685 | |
---|
686 | |
---|
687 | SUBROUTINE ice_thd_pnd_area( zvolp , zdvolp ) |
---|
688 | |
---|
689 | !!------------------------------------------------------------------- |
---|
690 | !! *** ROUTINE ice_thd_pnd_area *** |
---|
691 | !! |
---|
692 | !! ** Purpose : Given the total volume of available pond water, |
---|
693 | !! redistribute and drain water |
---|
694 | !! |
---|
695 | !! ** |
---|
696 | !! |
---|
697 | !!------------------------------------------------------------------ |
---|
698 | |
---|
699 | REAL (wp), DIMENSION(jpi,jpj), INTENT(INOUT) :: & |
---|
700 | zvolp, & ! total available pond water |
---|
701 | zdvolp ! remaining meltwater after redistribution |
---|
702 | |
---|
703 | INTEGER :: & |
---|
704 | ns, & |
---|
705 | m_index, & |
---|
706 | permflag |
---|
707 | |
---|
708 | REAL (wp), DIMENSION(jpl) :: & |
---|
709 | hicen, & |
---|
710 | hsnon, & |
---|
711 | asnon, & |
---|
712 | alfan, & |
---|
713 | betan, & |
---|
714 | cum_max_vol, & |
---|
715 | reduced_aicen |
---|
716 | |
---|
717 | REAL (wp), DIMENSION(0:jpl) :: & |
---|
718 | cum_max_vol_tmp |
---|
719 | |
---|
720 | REAL (wp) :: & |
---|
721 | hpond, & |
---|
722 | drain, & |
---|
723 | floe_weight, & |
---|
724 | pressure_head, & |
---|
725 | hsl_rel, & |
---|
726 | deltah, & |
---|
727 | perm, & |
---|
728 | msno |
---|
729 | |
---|
730 | REAL (wp), parameter :: & |
---|
731 | viscosity = 1.79e-3_wp ! kinematic water viscosity in kg/m/s |
---|
732 | |
---|
733 | INTEGER :: ji, jj, jk, jl ! loop indices |
---|
734 | |
---|
735 | !-----------| |
---|
736 | ! | |
---|
737 | ! |-----------| |
---|
738 | !___________|___________|______________________________________sea-level |
---|
739 | ! | | |
---|
740 | ! | |---^--------| |
---|
741 | ! | | | | |
---|
742 | ! | | | |-----------| |------- |
---|
743 | ! | | |alfan(jl)| | | |
---|
744 | ! | | | | |--------------| |
---|
745 | ! | | | | | | |
---|
746 | !---------------------------v------------------------------------------- |
---|
747 | ! | | ^ | | | |
---|
748 | ! | | | | |--------------| |
---|
749 | ! | | |betan(jl)| | | |
---|
750 | ! | | | |-----------| |------- |
---|
751 | ! | | | | |
---|
752 | ! | |---v------- | |
---|
753 | ! | | |
---|
754 | ! |-----------| |
---|
755 | ! | |
---|
756 | !-----------| |
---|
757 | |
---|
758 | a_ip(:,:,:) = 0._wp |
---|
759 | h_ip(:,:,:) = 0._wp |
---|
760 | |
---|
761 | DO jj = 1, jpj |
---|
762 | DO ji = 1, jpi |
---|
763 | |
---|
764 | IF ( at_i(ji,jj) > 0.01 .AND. hm_i(ji,jj) > zhi_min .AND. zvolp(ji,jj) > zvp_min * at_i(ji,jj) ) THEN |
---|
765 | |
---|
766 | !------------------------------------------------------------------- |
---|
767 | ! initialize |
---|
768 | !------------------------------------------------------------------- |
---|
769 | |
---|
770 | DO jl = 1, jpl |
---|
771 | |
---|
772 | a_ip(ji,jj,jl) = 0._wp |
---|
773 | h_ip(ji,jj,jl) = 0._wp |
---|
774 | |
---|
775 | !---------------------------------------- |
---|
776 | ! compute the effective snow fraction |
---|
777 | !---------------------------------------- |
---|
778 | |
---|
779 | IF (a_i(ji,jj,jl) < epsi10) THEN |
---|
780 | hicen(jl) = 0._wp |
---|
781 | hsnon(jl) = 0._wp |
---|
782 | reduced_aicen(jl) = 0._wp |
---|
783 | asnon(jl) = 0._wp !js: in CICE 5.1.2: make sense as the compiler may not initiate the variables |
---|
784 | ELSE |
---|
785 | hicen(jl) = v_i(ji,jj,jl) / a_i(ji,jj,jl) |
---|
786 | hsnon(jl) = v_s(ji,jj,jl) / a_i(ji,jj,jl) |
---|
787 | reduced_aicen(jl) = 1._wp ! n=jpl |
---|
788 | |
---|
789 | !js: initial code in NEMO_DEV |
---|
790 | !IF (n < jpl) reduced_aicen(jl) = aicen(jl) & |
---|
791 | ! * (-0.024_wp*hicen(jl) + 0.832_wp) |
---|
792 | |
---|
793 | !js: from CICE 5.1.2: this limit reduced_aicen to 0.2 when hicen is too large |
---|
794 | IF (jl < jpl) reduced_aicen(jl) = a_i(ji,jj,jl) & |
---|
795 | * max(0.2_wp,(-0.024_wp*hicen(jl) + 0.832_wp)) |
---|
796 | |
---|
797 | asnon(jl) = reduced_aicen(jl) ! effective snow fraction (empirical) |
---|
798 | ! MV should check whether this makes sense to have the same effective snow fraction in here |
---|
799 | ! OLI: it probably doesn't |
---|
800 | END IF |
---|
801 | |
---|
802 | ! This choice for alfa and beta ignores hydrostatic equilibium of categories. |
---|
803 | ! Hydrostatic equilibium of the entire ITD is accounted for below, assuming |
---|
804 | ! a surface topography implied by alfa=0.6 and beta=0.4, and rigidity across all |
---|
805 | ! categories. alfa and beta partition the ITD - they are areas not thicknesses! |
---|
806 | ! Multiplying by hicen, alfan and betan (below) are thus volumes per unit area. |
---|
807 | ! Here, alfa = 60% of the ice area (and since hice is constant in a category, |
---|
808 | ! alfan = 60% of the ice volume) in each category lies above the reference line, |
---|
809 | ! and 40% below. Note: p6 is an arbitrary choice, but alfa+beta=1 is required. |
---|
810 | |
---|
811 | ! MV: |
---|
812 | ! Note that this choice is not in the original FF07 paper and has been adopted in CICE |
---|
813 | ! No reason why is explained in the doc, but I guess there is a reason. I'll try to investigate, maybe |
---|
814 | |
---|
815 | ! Where does that choice come from ? => OLI : Coz' Chuck Norris said so... |
---|
816 | |
---|
817 | alfan(jl) = 0.6 * hicen(jl) |
---|
818 | betan(jl) = 0.4 * hicen(jl) |
---|
819 | |
---|
820 | cum_max_vol(jl) = 0._wp |
---|
821 | cum_max_vol_tmp(jl) = 0._wp |
---|
822 | |
---|
823 | END DO ! jpl |
---|
824 | |
---|
825 | cum_max_vol_tmp(0) = 0._wp |
---|
826 | drain = 0._wp |
---|
827 | zdvolp(ji,jj) = 0._wp |
---|
828 | |
---|
829 | !---------------------------------------------------------- |
---|
830 | ! Drain overflow water, update pond fraction and volume |
---|
831 | !---------------------------------------------------------- |
---|
832 | |
---|
833 | !-------------------------------------------------------------------------- |
---|
834 | ! the maximum amount of water that can be contained up to each ice category |
---|
835 | !-------------------------------------------------------------------------- |
---|
836 | ! If melt ponds are too deep to be sustainable given the ITD (OVERFLOW) |
---|
837 | ! Then the excess volume cum_max_vol(jl) drains out of the system |
---|
838 | ! It should be added to wfx_pnd_out |
---|
839 | |
---|
840 | DO jl = 1, jpl-1 ! last category can not hold any volume |
---|
841 | |
---|
842 | IF (alfan(jl+1) >= alfan(jl) .AND. alfan(jl+1) > 0._wp ) THEN |
---|
843 | |
---|
844 | ! total volume in level including snow |
---|
845 | cum_max_vol_tmp(jl) = cum_max_vol_tmp(jl-1) + & |
---|
846 | (alfan(jl+1) - alfan(jl)) * sum(reduced_aicen(1:jl)) |
---|
847 | |
---|
848 | ! subtract snow solid volumes from lower categories in current level |
---|
849 | DO ns = 1, jl |
---|
850 | cum_max_vol_tmp(jl) = cum_max_vol_tmp(jl) & |
---|
851 | - rhos/rhow * & ! free air fraction that can be filled by water |
---|
852 | asnon(ns) * & ! effective areal fraction of snow in that category |
---|
853 | max(min(hsnon(ns)+alfan(ns)-alfan(jl), alfan(jl+1)-alfan(jl)), 0._wp) |
---|
854 | END DO |
---|
855 | |
---|
856 | ELSE ! assume higher categories unoccupied |
---|
857 | cum_max_vol_tmp(jl) = cum_max_vol_tmp(jl-1) |
---|
858 | END IF |
---|
859 | !IF (cum_max_vol_tmp(jl) < z0) THEN |
---|
860 | ! CALL abort_ice('negative melt pond volume') |
---|
861 | !END IF |
---|
862 | END DO |
---|
863 | cum_max_vol_tmp(jpl) = cum_max_vol_tmp(jpl-1) ! last category holds no volume |
---|
864 | cum_max_vol (1:jpl) = cum_max_vol_tmp(1:jpl) |
---|
865 | |
---|
866 | !---------------------------------------------------------------- |
---|
867 | ! is there more meltwater than can be held in the floe? |
---|
868 | !---------------------------------------------------------------- |
---|
869 | IF (zvolp(ji,jj) >= cum_max_vol(jpl)) THEN |
---|
870 | drain = zvolp(ji,jj) - cum_max_vol(jpl) + epsi10 |
---|
871 | zvolp(ji,jj) = zvolp(ji,jj) - drain ! update meltwater volume available |
---|
872 | zdvolp(ji,jj) = drain ! this is the drained water |
---|
873 | IF (zvolp(ji,jj) < epsi10) THEN |
---|
874 | zdvolp(ji,jj) = zdvolp(ji,jj) + zvolp(ji,jj) |
---|
875 | zvolp(ji,jj) = 0._wp |
---|
876 | END IF |
---|
877 | END IF |
---|
878 | |
---|
879 | ! height and area corresponding to the remaining volume |
---|
880 | CALL ice_thd_pnd_depth(reduced_aicen, asnon, hsnon, alfan, zvolp(ji,jj), cum_max_vol, hpond, m_index) |
---|
881 | |
---|
882 | DO jl = 1, m_index |
---|
883 | !h_ip(jl) = hpond - alfan(jl) + alfan(1) ! here oui choulde update |
---|
884 | ! ! volume instead, no ? |
---|
885 | h_ip(ji,jj,jl) = max((hpond - alfan(jl) + alfan(1)), 0._wp) !js: from CICE 5.1.2 |
---|
886 | a_ip(ji,jj,jl) = reduced_aicen(jl) |
---|
887 | ! in practise, pond fraction depends on the empirical snow fraction |
---|
888 | ! so in turn on ice thickness |
---|
889 | END DO |
---|
890 | !zapond = sum(a_ip(1:m_index)) !js: from CICE 5.1.2; not in Icepack1.1.0-6-gac6195d |
---|
891 | |
---|
892 | !------------------------------------------------------------------------ |
---|
893 | ! Drainage through brine network (permeability) |
---|
894 | !------------------------------------------------------------------------ |
---|
895 | !!! drainage due to ice permeability - Darcy's law |
---|
896 | |
---|
897 | ! sea water level |
---|
898 | msno = 0._wp |
---|
899 | DO jl = 1 , jpl |
---|
900 | msno = msno + v_s(ji,jj,jl) * rhos |
---|
901 | END DO |
---|
902 | floe_weight = ( msno + rhoi*vt_i(ji,jj) + rau0*zvolp(ji,jj) ) / at_i(ji,jj) |
---|
903 | hsl_rel = floe_weight / rau0 & |
---|
904 | - ( ( sum(betan(:)*a_i(ji,jj,:)) / at_i(ji,jj) ) + alfan(1) ) |
---|
905 | |
---|
906 | deltah = hpond - hsl_rel |
---|
907 | pressure_head = grav * rau0 * max(deltah, 0._wp) |
---|
908 | |
---|
909 | ! drain if ice is permeable |
---|
910 | permflag = 0 |
---|
911 | |
---|
912 | IF (pressure_head > 0._wp) THEN |
---|
913 | DO jl = 1, jpl-1 |
---|
914 | IF ( hicen(jl) /= 0._wp ) THEN |
---|
915 | |
---|
916 | !IF (hicen(jl) > 0._wp) THEN !js: from CICE 5.1.2 |
---|
917 | |
---|
918 | perm = 0._wp ! MV ugly dummy patch |
---|
919 | ! CALL ice_thd_pnd_perm(t_i(ji,jj,:,jl), sz_i(ji,jj,:,jl), perm) ! bof |
---|
920 | IF (perm > 0._wp) permflag = 1 |
---|
921 | |
---|
922 | drain = perm*a_ip(ji,jj,jl)*pressure_head*rdt_ice / & |
---|
923 | (viscosity*hicen(jl)) |
---|
924 | zdvolp(ji,jj) = zdvolp(ji,jj) + min(drain, zvolp(ji,jj)) |
---|
925 | zvolp(ji,jj) = max(zvolp(ji,jj) - drain, 0._wp) |
---|
926 | IF (zvolp(ji,jj) < epsi10) THEN |
---|
927 | zdvolp(ji,jj) = zdvolp(ji,jj) + zvolp(ji,jj) |
---|
928 | zvolp(ji,jj) = 0._wp |
---|
929 | END IF |
---|
930 | END IF |
---|
931 | END DO |
---|
932 | |
---|
933 | ! adjust melt pond dimensions |
---|
934 | IF (permflag > 0) THEN |
---|
935 | ! recompute pond depth |
---|
936 | CALL ice_thd_pnd_depth(reduced_aicen, asnon, hsnon, alfan, zvolp(ji,jj), cum_max_vol, hpond, m_index) |
---|
937 | DO jl = 1, m_index |
---|
938 | h_ip(ji,jj,jl) = hpond - alfan(jl) + alfan(1) |
---|
939 | a_ip(ji,jj,jl) = reduced_aicen(jl) |
---|
940 | END DO |
---|
941 | !zapond = sum(a_ip(1:m_index)) !js: from CICE 5.1.2; not in Icepack1.1.0-6-gac6195d |
---|
942 | END IF |
---|
943 | END IF ! pressure_head |
---|
944 | |
---|
945 | !------------------------------- |
---|
946 | ! remove water from the snow |
---|
947 | !------------------------------- |
---|
948 | !------------------------------------------------------------------------ |
---|
949 | ! total melt pond volume in category does not include snow volume |
---|
950 | ! snow in melt ponds is not melted |
---|
951 | !------------------------------------------------------------------------ |
---|
952 | |
---|
953 | ! Calculate pond volume for lower categories |
---|
954 | DO jl = 1,m_index-1 |
---|
955 | v_ip(ji,jj,jl) = a_ip(ji,jj,jl) * h_ip(ji,jj,jl) & ! what is not in the snow |
---|
956 | - (rhos/rhow) * asnon(jl) * min(hsnon(jl), h_ip(ji,jj,jl)) |
---|
957 | END DO |
---|
958 | |
---|
959 | ! Calculate pond volume for highest category = remaining pond volume |
---|
960 | |
---|
961 | ! The following is completely unclear to Martin at least |
---|
962 | ! Could we redefine properly and recode in a more readable way ? |
---|
963 | |
---|
964 | ! m_index = last category with melt pond |
---|
965 | |
---|
966 | IF (m_index == 1) v_ip(ji,jj,m_index) = zvolp(ji,jj) ! volume of mw in 1st category is the total volume of melt water |
---|
967 | |
---|
968 | IF (m_index > 1) THEN |
---|
969 | IF (zvolp(ji,jj) > sum( v_ip(ji,jj,1:m_index-1))) THEN |
---|
970 | v_ip(ji,jj,m_index) = zvolp(ji,jj) - sum(v_ip(ji,jj,1:m_index-1)) |
---|
971 | ELSE |
---|
972 | v_ip(ji,jj,m_index) = 0._wp |
---|
973 | h_ip(ji,jj,m_index) = 0._wp |
---|
974 | a_ip(ji,jj,m_index) = 0._wp |
---|
975 | ! If remaining pond volume is negative reduce pond volume of |
---|
976 | ! lower category |
---|
977 | IF ( zvolp(ji,jj) + epsi10 < SUM(v_ip(ji,jj,1:m_index-1))) & |
---|
978 | v_ip(ji,jj,m_index-1) = v_ip(ji,jj,m_index-1) - sum(v_ip(ji,jj,1:m_index-1)) + zvolp(ji,jj) |
---|
979 | END IF |
---|
980 | END IF |
---|
981 | |
---|
982 | DO jl = 1,m_index |
---|
983 | IF (a_ip(ji,jj,jl) > epsi10) THEN |
---|
984 | h_ip(ji,jj,jl) = v_ip(ji,jj,jl) / a_ip(ji,jj,jl) |
---|
985 | ELSE |
---|
986 | zdvolp(ji,jj) = zdvolp(ji,jj) + v_ip(ji,jj,jl) |
---|
987 | h_ip(ji,jj,jl) = 0._wp |
---|
988 | v_ip(ji,jj,jl) = 0._wp |
---|
989 | a_ip(ji,jj,jl) = 0._wp |
---|
990 | END IF |
---|
991 | END DO |
---|
992 | DO jl = m_index+1, jpl |
---|
993 | h_ip(ji,jj,jl) = 0._wp |
---|
994 | a_ip(ji,jj,jl) = 0._wp |
---|
995 | v_ip(ji,jj,jl) = 0._wp |
---|
996 | END DO |
---|
997 | |
---|
998 | ENDIF |
---|
999 | END DO ! ji |
---|
1000 | END DO ! jj |
---|
1001 | |
---|
1002 | END SUBROUTINE ice_thd_pnd_area |
---|
1003 | |
---|
1004 | |
---|
1005 | SUBROUTINE ice_thd_pnd_depth(aicen, asnon, hsnon, alfan, zvolp, cum_max_vol, hpond, m_index) |
---|
1006 | !!------------------------------------------------------------------- |
---|
1007 | !! *** ROUTINE ice_thd_pnd_depth *** |
---|
1008 | !! |
---|
1009 | !! ** Purpose : Compute melt pond depth |
---|
1010 | !!------------------------------------------------------------------- |
---|
1011 | |
---|
1012 | REAL (wp), DIMENSION(jpl), INTENT(IN) :: & |
---|
1013 | aicen, & |
---|
1014 | asnon, & |
---|
1015 | hsnon, & |
---|
1016 | alfan, & |
---|
1017 | cum_max_vol |
---|
1018 | |
---|
1019 | REAL (wp), INTENT(IN) :: & |
---|
1020 | zvolp |
---|
1021 | |
---|
1022 | REAL (wp), INTENT(OUT) :: & |
---|
1023 | hpond |
---|
1024 | |
---|
1025 | INTEGER, INTENT(OUT) :: & |
---|
1026 | m_index |
---|
1027 | |
---|
1028 | INTEGER :: n, ns |
---|
1029 | |
---|
1030 | REAL (wp), DIMENSION(0:jpl+1) :: & |
---|
1031 | hitl, & |
---|
1032 | aicetl |
---|
1033 | |
---|
1034 | REAL (wp) :: & |
---|
1035 | rem_vol, & |
---|
1036 | area, & |
---|
1037 | vol, & |
---|
1038 | tmp, & |
---|
1039 | z0 = 0.0_wp |
---|
1040 | |
---|
1041 | !---------------------------------------------------------------- |
---|
1042 | ! hpond is zero if zvolp is zero - have we fully drained? |
---|
1043 | !---------------------------------------------------------------- |
---|
1044 | |
---|
1045 | IF (zvolp < epsi10) THEN |
---|
1046 | hpond = z0 |
---|
1047 | m_index = 0 |
---|
1048 | ELSE |
---|
1049 | |
---|
1050 | !---------------------------------------------------------------- |
---|
1051 | ! Calculate the category where water fills up to |
---|
1052 | !---------------------------------------------------------------- |
---|
1053 | |
---|
1054 | !----------| |
---|
1055 | ! | |
---|
1056 | ! | |
---|
1057 | ! |----------| -- -- |
---|
1058 | !__________|__________|_________________________________________ ^ |
---|
1059 | ! | | rem_vol ^ | Semi-filled |
---|
1060 | ! | |----------|-- -- -- - ---|-- ---- -- -- --v layer |
---|
1061 | ! | | | | |
---|
1062 | ! | | | |hpond |
---|
1063 | ! | | |----------| | |------- |
---|
1064 | ! | | | | | | |
---|
1065 | ! | | | |---v-----| |
---|
1066 | ! | | m_index | | | |
---|
1067 | !------------------------------------------------------------- |
---|
1068 | |
---|
1069 | m_index = 0 ! 1:m_index categories have water in them |
---|
1070 | DO n = 1, jpl |
---|
1071 | IF (zvolp <= cum_max_vol(n)) THEN |
---|
1072 | m_index = n |
---|
1073 | IF (n == 1) THEN |
---|
1074 | rem_vol = zvolp |
---|
1075 | ELSE |
---|
1076 | rem_vol = zvolp - cum_max_vol(n-1) |
---|
1077 | END IF |
---|
1078 | exit ! to break out of the loop |
---|
1079 | END IF |
---|
1080 | END DO |
---|
1081 | m_index = min(jpl-1, m_index) |
---|
1082 | |
---|
1083 | !---------------------------------------------------------------- |
---|
1084 | ! semi-filled layer may have m_index different snow in it |
---|
1085 | !---------------------------------------------------------------- |
---|
1086 | |
---|
1087 | !----------------------------------------------------------- ^ |
---|
1088 | ! | alfan(m_index+1) |
---|
1089 | ! | |
---|
1090 | !hitl(3)--> |----------| | |
---|
1091 | !hitl(2)--> |------------| * * * * *| | |
---|
1092 | !hitl(1)--> |----------|* * * * * * |* * * * * | | |
---|
1093 | !hitl(0)-->------------------------------------------------- | ^ |
---|
1094 | ! various snow from lower categories | |alfa(m_index) |
---|
1095 | |
---|
1096 | ! hitl - heights of the snow layers from thinner and current categories |
---|
1097 | ! aicetl - area of each snow depth in this layer |
---|
1098 | |
---|
1099 | hitl(:) = z0 |
---|
1100 | aicetl(:) = z0 |
---|
1101 | DO n = 1, m_index |
---|
1102 | hitl(n) = max(min(hsnon(n) + alfan(n) - alfan(m_index), & |
---|
1103 | alfan(m_index+1) - alfan(m_index)), z0) |
---|
1104 | aicetl(n) = asnon(n) |
---|
1105 | |
---|
1106 | aicetl(0) = aicetl(0) + (aicen(n) - asnon(n)) |
---|
1107 | END DO |
---|
1108 | |
---|
1109 | hitl(m_index+1) = alfan(m_index+1) - alfan(m_index) |
---|
1110 | aicetl(m_index+1) = z0 |
---|
1111 | |
---|
1112 | !---------------------------------------------------------------- |
---|
1113 | ! reorder array according to hitl |
---|
1114 | ! snow heights not necessarily in height order |
---|
1115 | !---------------------------------------------------------------- |
---|
1116 | |
---|
1117 | DO ns = 1, m_index+1 |
---|
1118 | DO n = 0, m_index - ns + 1 |
---|
1119 | IF (hitl(n) > hitl(n+1)) THEN ! swap order |
---|
1120 | tmp = hitl(n) |
---|
1121 | hitl(n) = hitl(n+1) |
---|
1122 | hitl(n+1) = tmp |
---|
1123 | tmp = aicetl(n) |
---|
1124 | aicetl(n) = aicetl(n+1) |
---|
1125 | aicetl(n+1) = tmp |
---|
1126 | END IF |
---|
1127 | END DO |
---|
1128 | END DO |
---|
1129 | |
---|
1130 | !---------------------------------------------------------------- |
---|
1131 | ! divide semi-filled layer into set of sublayers each vertically homogenous |
---|
1132 | !---------------------------------------------------------------- |
---|
1133 | |
---|
1134 | !hitl(3)---------------------------------------------------------------- |
---|
1135 | ! | * * * * * * * * |
---|
1136 | ! |* * * * * * * * * |
---|
1137 | !hitl(2)---------------------------------------------------------------- |
---|
1138 | ! | * * * * * * * * | * * * * * * * * |
---|
1139 | ! |* * * * * * * * * |* * * * * * * * * |
---|
1140 | !hitl(1)---------------------------------------------------------------- |
---|
1141 | ! | * * * * * * * * | * * * * * * * * | * * * * * * * * |
---|
1142 | ! |* * * * * * * * * |* * * * * * * * * |* * * * * * * * * |
---|
1143 | !hitl(0)---------------------------------------------------------------- |
---|
1144 | ! aicetl(0) aicetl(1) aicetl(2) aicetl(3) |
---|
1145 | |
---|
1146 | ! move up over layers incrementing volume |
---|
1147 | DO n = 1, m_index+1 |
---|
1148 | |
---|
1149 | area = sum(aicetl(:)) - & ! total area of sub-layer |
---|
1150 | (rhos/rau0) * sum(aicetl(n:jpl+1)) ! area of sub-layer occupied by snow |
---|
1151 | |
---|
1152 | vol = (hitl(n) - hitl(n-1)) * area ! thickness of sub-layer times area |
---|
1153 | |
---|
1154 | IF (vol >= rem_vol) THEN ! have reached the sub-layer with the depth within |
---|
1155 | hpond = rem_vol / area + hitl(n-1) + alfan(m_index) - alfan(1) |
---|
1156 | |
---|
1157 | exit |
---|
1158 | ELSE ! still in sub-layer below the sub-layer with the depth |
---|
1159 | rem_vol = rem_vol - vol |
---|
1160 | END IF |
---|
1161 | |
---|
1162 | END DO |
---|
1163 | |
---|
1164 | END IF |
---|
1165 | |
---|
1166 | END SUBROUTINE ice_thd_pnd_depth |
---|
1167 | |
---|
1168 | |
---|
1169 | SUBROUTINE ice_thd_pnd_perm(ticen, salin, perm) |
---|
1170 | !!------------------------------------------------------------------- |
---|
1171 | !! *** ROUTINE ice_thd_pnd_perm *** |
---|
1172 | !! |
---|
1173 | !! ** Purpose : Determine the liquid fraction of brine in the ice |
---|
1174 | !! and its permeability |
---|
1175 | !!------------------------------------------------------------------- |
---|
1176 | |
---|
1177 | REAL (wp), DIMENSION(nlay_i), INTENT(IN) :: & |
---|
1178 | ticen, & ! internal ice temperature (K) |
---|
1179 | salin ! salinity (ppt) !js: ppt according to cice |
---|
1180 | |
---|
1181 | REAL (wp), INTENT(OUT) :: & |
---|
1182 | perm ! permeability |
---|
1183 | |
---|
1184 | REAL (wp) :: & |
---|
1185 | Sbr ! brine salinity |
---|
1186 | |
---|
1187 | REAL (wp), DIMENSION(nlay_i) :: & |
---|
1188 | Tin, & ! ice temperature |
---|
1189 | phi ! liquid fraction |
---|
1190 | |
---|
1191 | INTEGER :: k |
---|
1192 | |
---|
1193 | !----------------------------------------------------------------- |
---|
1194 | ! Compute ice temperatures from enthalpies using quadratic formula |
---|
1195 | !----------------------------------------------------------------- |
---|
1196 | |
---|
1197 | DO k = 1,nlay_i |
---|
1198 | Tin(k) = ticen(k) - rt0 !js: from K to degC |
---|
1199 | END DO |
---|
1200 | |
---|
1201 | !----------------------------------------------------------------- |
---|
1202 | ! brine salinity and liquid fraction |
---|
1203 | !----------------------------------------------------------------- |
---|
1204 | |
---|
1205 | DO k = 1, nlay_i |
---|
1206 | |
---|
1207 | Sbr = - Tin(k) / rTmlt ! Consistent expression with SI3 (linear liquidus) |
---|
1208 | ! Best expression to date is that one |
---|
1209 | Sbr = - 18.7 * Tin(k) - 0.519 * Tin(k)**2 - 0.00535 * Tin(k) **3 |
---|
1210 | phi(k) = salin(k) / Sbr |
---|
1211 | |
---|
1212 | END DO |
---|
1213 | |
---|
1214 | !----------------------------------------------------------------- |
---|
1215 | ! permeability |
---|
1216 | !----------------------------------------------------------------- |
---|
1217 | |
---|
1218 | perm = 3.0e-08_wp * (minval(phi))**3 ! Golden et al. (2007) |
---|
1219 | |
---|
1220 | END SUBROUTINE ice_thd_pnd_perm |
---|
1221 | |
---|
1222 | |
---|
1223 | !---------------------------------------------------------------------------------------------------------------------- |
---|
1224 | |
---|
1225 | SUBROUTINE ice_thd_pnd_init |
---|
1226 | !!------------------------------------------------------------------- |
---|
1227 | !! *** ROUTINE ice_thd_pnd_init *** |
---|
1228 | !! |
---|
1229 | !! ** Purpose : Physical constants and parameters linked to melt ponds |
---|
1230 | !! over sea ice |
---|
1231 | !! |
---|
1232 | !! ** Method : Read the namthd_pnd namelist and check the melt pond |
---|
1233 | !! parameter values called at the first timestep (nit000) |
---|
1234 | !! |
---|
1235 | !! ** input : Namelist namthd_pnd |
---|
1236 | !!------------------------------------------------------------------- |
---|
1237 | INTEGER :: ios, ioptio ! Local integer |
---|
1238 | !! |
---|
1239 | NAMELIST/namthd_pnd/ ln_pnd, ln_pnd_LEV , rn_apnd_min, rn_apnd_max, & |
---|
1240 | & ln_pnd_CST , rn_apnd, rn_hpnd, & |
---|
1241 | & ln_pnd_TOPO , & |
---|
1242 | & ln_pnd_lids, ln_pnd_alb |
---|
1243 | !!------------------------------------------------------------------- |
---|
1244 | ! |
---|
1245 | REWIND( numnam_ice_ref ) ! Namelist namthd_pnd in reference namelist : Melt Ponds |
---|
1246 | READ ( numnam_ice_ref, namthd_pnd, IOSTAT = ios, ERR = 901) |
---|
1247 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namthd_pnd in reference namelist' ) |
---|
1248 | REWIND( numnam_ice_cfg ) ! Namelist namthd_pnd in configuration namelist : Melt Ponds |
---|
1249 | READ ( numnam_ice_cfg, namthd_pnd, IOSTAT = ios, ERR = 902 ) |
---|
1250 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namthd_pnd in configuration namelist' ) |
---|
1251 | IF(lwm) WRITE ( numoni, namthd_pnd ) |
---|
1252 | ! |
---|
1253 | IF(lwp) THEN ! control print |
---|
1254 | WRITE(numout,*) |
---|
1255 | WRITE(numout,*) 'ice_thd_pnd_init: ice parameters for melt ponds' |
---|
1256 | WRITE(numout,*) '~~~~~~~~~~~~~~~~' |
---|
1257 | WRITE(numout,*) ' Namelist namicethd_pnd:' |
---|
1258 | WRITE(numout,*) ' Melt ponds activated or not ln_pnd = ', ln_pnd |
---|
1259 | WRITE(numout,*) ' Topographic melt pond scheme ln_pnd_TOPO = ', ln_pnd_TOPO |
---|
1260 | WRITE(numout,*) ' Level ice melt pond scheme ln_pnd_LEV = ', ln_pnd_LEV |
---|
1261 | WRITE(numout,*) ' Minimum ice fraction that contributes to melt ponds rn_apnd_min = ', rn_apnd_min |
---|
1262 | WRITE(numout,*) ' Maximum ice fraction that contributes to melt ponds rn_apnd_max = ', rn_apnd_max |
---|
1263 | WRITE(numout,*) ' Constant ice melt pond scheme ln_pnd_CST = ', ln_pnd_CST |
---|
1264 | WRITE(numout,*) ' Prescribed pond fraction rn_apnd = ', rn_apnd |
---|
1265 | WRITE(numout,*) ' Prescribed pond depth rn_hpnd = ', rn_hpnd |
---|
1266 | WRITE(numout,*) ' Frozen lids on top of melt ponds ln_pnd_lids = ', ln_pnd_lids |
---|
1267 | WRITE(numout,*) ' Melt ponds affect albedo or not ln_pnd_alb = ', ln_pnd_alb |
---|
1268 | ENDIF |
---|
1269 | ! |
---|
1270 | ! !== set the choice of ice pond scheme ==! |
---|
1271 | ioptio = 0 |
---|
1272 | IF( .NOT.ln_pnd ) THEN ; ioptio = ioptio + 1 ; nice_pnd = np_pndNO ; ENDIF |
---|
1273 | IF( ln_pnd_CST ) THEN ; ioptio = ioptio + 1 ; nice_pnd = np_pndCST ; ENDIF |
---|
1274 | IF( ln_pnd_LEV ) THEN ; ioptio = ioptio + 1 ; nice_pnd = np_pndLEV ; ENDIF |
---|
1275 | IF( ln_pnd_TOPO ) THEN ; ioptio = ioptio + 1 ; nice_pnd = np_pndTOPO ; ENDIF |
---|
1276 | IF( ioptio /= 1 ) & |
---|
1277 | & CALL ctl_stop( 'ice_thd_pnd_init: choose either none (ln_pnd=F) or only one pond scheme (ln_pnd_LEV or ln_pnd_CST)' ) |
---|
1278 | ! |
---|
1279 | SELECT CASE( nice_pnd ) |
---|
1280 | CASE( np_pndNO ) |
---|
1281 | IF( ln_pnd_alb ) THEN ; ln_pnd_alb = .FALSE. ; CALL ctl_warn( 'ln_pnd_alb=false when no ponds' ) ; ENDIF |
---|
1282 | IF( ln_pnd_lids ) THEN ; ln_pnd_lids = .FALSE. ; CALL ctl_warn( 'ln_pnd_lids=false when no ponds' ) ; ENDIF |
---|
1283 | CASE( np_pndCST ) |
---|
1284 | IF( ln_pnd_lids ) THEN ; ln_pnd_lids = .FALSE. ; CALL ctl_warn( 'ln_pnd_lids=false when constant ponds' ) ; ENDIF |
---|
1285 | END SELECT |
---|
1286 | ! |
---|
1287 | END SUBROUTINE ice_thd_pnd_init |
---|
1288 | |
---|
1289 | #else |
---|
1290 | !!---------------------------------------------------------------------- |
---|
1291 | !! Default option Empty module NO SI3 sea-ice model |
---|
1292 | !!---------------------------------------------------------------------- |
---|
1293 | #endif |
---|
1294 | |
---|
1295 | !!====================================================================== |
---|
1296 | END MODULE icethd_pnd |
---|