1 | MODULE icethd_pnd |
---|
2 | !!====================================================================== |
---|
3 | !! --- closest to CICE version |
---|
4 | !! *** MODULE icethd_pnd *** |
---|
5 | !! sea-ice: Melt ponds on top of sea ice |
---|
6 | !!====================================================================== |
---|
7 | !! history : ! 2012 (O. Lecomte) Adaptation from Flocco and Turner |
---|
8 | !! ! 2017 (M. Vancoppenolle, O. Lecomte, C. Rousset) Implementation |
---|
9 | !! 4.0 ! 2018 (many people) SI3 [aka Sea Ice cube] |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | #if defined key_si3 |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | !! 'key_si3' : SI3 sea-ice model |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | !! ice_thd_pnd_init : some initialization and namelist read |
---|
16 | !! ice_thd_pnd : main calling routine |
---|
17 | !!---------------------------------------------------------------------- |
---|
18 | USE phycst ! physical constants |
---|
19 | USE dom_oce ! ocean space and time domain |
---|
20 | USE ice ! sea-ice: variables |
---|
21 | USE ice1D ! sea-ice: thermodynamics variables |
---|
22 | USE icetab ! sea-ice: 1D <==> 2D transformation |
---|
23 | USE sbc_ice ! surface energy budget |
---|
24 | ! |
---|
25 | USE in_out_manager ! I/O manager |
---|
26 | USE lib_mpp ! MPP library |
---|
27 | USE lib_fortran ! fortran utilities (glob_sum + no signed zero) |
---|
28 | USE timing ! Timing |
---|
29 | |
---|
30 | IMPLICIT NONE |
---|
31 | PRIVATE |
---|
32 | |
---|
33 | PUBLIC ice_thd_pnd_init ! routine called by icestp.F90 |
---|
34 | PUBLIC ice_thd_pnd ! routine called by icestp.F90 |
---|
35 | |
---|
36 | INTEGER :: nice_pnd ! choice of the type of pond scheme |
---|
37 | ! ! associated indices: |
---|
38 | INTEGER, PARAMETER :: np_pndNO = 0 ! No pond scheme |
---|
39 | INTEGER, PARAMETER :: np_pndCST = 1 ! Constant ice pond scheme |
---|
40 | INTEGER, PARAMETER :: np_pndLEV = 2 ! Level ice pond scheme |
---|
41 | INTEGER, PARAMETER :: np_pndTOPO = 3 ! Level ice pond scheme |
---|
42 | |
---|
43 | REAL(wp), PARAMETER :: & ! shared parameters for topographic melt ponds |
---|
44 | zhi_min = 0.1_wp , & ! minimum ice thickness with ponds (m) |
---|
45 | zTd = 0.15_wp , & ! temperature difference for freeze-up (C) |
---|
46 | zvp_min = 1.e-4_wp ! minimum pond volume (m) |
---|
47 | ! |
---|
48 | ! Pond volume per area budget diags |
---|
49 | ! |
---|
50 | ! The idea of diags is the volume of ponds per grid cell area is |
---|
51 | ! |
---|
52 | ! dV/dt = mlt + drn + lid + rnf |
---|
53 | ! mlt = input from surface melting |
---|
54 | ! drn = drainage through brine network |
---|
55 | ! lid = lid growth & melt |
---|
56 | ! rnf = runoff (water directly removed out of surface melting + overflow) |
---|
57 | ! |
---|
58 | ! In topo mode, the pond water lost because it is in the snow is not included in the budget |
---|
59 | ! |
---|
60 | ! In level mode |
---|
61 | |
---|
62 | REAL(wp), DIMENSION(jpi,jpj) :: ! pond volume budget diagnostics |
---|
63 | diag_dvpn_mlt, & !! meltwater pond volume input [m/day] |
---|
64 | diag_dvpn_drn, & !! pond volume lost by drainage [m/day] |
---|
65 | diag_dvpn_lid, & !! pond volume lost by refreezing [m/day] |
---|
66 | diag_dvpn_rnf !! meltwater pond lost to runoff [m/day] |
---|
67 | |
---|
68 | REAL(wp), DIMENSION(jpij) :: ! pond volume budget diagnostics (1d) |
---|
69 | diag_dvpn_mlt_1d, & !! meltwater pond volume input [m/day] |
---|
70 | diag_dvpn_drn_1d, & !! pond volume lost by drainage [m/day] |
---|
71 | diag_dvpn_lid_1d, & !! pond volume lost by refreezing [m/day] |
---|
72 | diag_dvpn_rnf_1d !! meltwater pond lost to runoff [m/day] |
---|
73 | |
---|
74 | |
---|
75 | !! * Substitutions |
---|
76 | # include "vectopt_loop_substitute.h90" |
---|
77 | !!---------------------------------------------------------------------- |
---|
78 | !! NEMO/ICE 4.0 , NEMO Consortium (2018) |
---|
79 | !! $Id$ |
---|
80 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
81 | !!---------------------------------------------------------------------- |
---|
82 | CONTAINS |
---|
83 | |
---|
84 | SUBROUTINE ice_thd_pnd |
---|
85 | !!------------------------------------------------------------------- |
---|
86 | !! *** ROUTINE ice_thd_pnd *** |
---|
87 | !! |
---|
88 | !! ** Purpose : change melt pond fraction and thickness |
---|
89 | !! |
---|
90 | !! Note: Melt ponds affect only radiative transfer for now |
---|
91 | !! |
---|
92 | !! No heat, no salt. |
---|
93 | !! The melt water they carry is collected but |
---|
94 | !! not removed from fw budget or released to the ocean |
---|
95 | !! |
---|
96 | !! A wfx_pnd has been coded for diagnostic purposes |
---|
97 | !! It is not fully consistent yet. |
---|
98 | !! |
---|
99 | !! The current diagnostic lacks a contribution from drainage |
---|
100 | !! |
---|
101 | !! Each time wfx_pnd is updated, wfx_sum / wfx_snw_sum must be updated |
---|
102 | !! |
---|
103 | !!------------------------------------------------------------------- |
---|
104 | ! |
---|
105 | diag_dvpn_mlt(:,:) = 0._wp ; diag_dvpn_drn(:,:) = 0._wp |
---|
106 | diag_dvpn_lid(:,:) = 0._wp ; diag_dvpn_rnf(:,:) = 0._wp |
---|
107 | diag_dvpn_mlt_1d(:,:) = 0._wp ; diag_dvpn_drn_1d(:,:) = 0._wp |
---|
108 | diag_dvpn_lid_1d(:,:) = 0._wp ; diag_dvpn_rnf_1d(:,:) = 0._wp |
---|
109 | |
---|
110 | SELECT CASE ( nice_pnd ) |
---|
111 | ! |
---|
112 | CASE (np_pndCST) ; CALL pnd_CST !== Constant melt ponds ==! |
---|
113 | ! |
---|
114 | CASE (np_pndLEV) ; CALL pnd_LEV !== Level ice melt ponds ==! |
---|
115 | ! |
---|
116 | CASE (np_pndTOPO) ; CALL pnd_TOPO !== Topographic melt ponds ==! |
---|
117 | ! |
---|
118 | END SELECT |
---|
119 | ! |
---|
120 | |
---|
121 | IF( iom_use('dvpn_mlt' ) ) CALL iom_put( 'dvpn_mlt', dvpn_mlt * 100._wp ) ! input from melting |
---|
122 | IF( iom_use('dvpn_lid' ) ) CALL iom_put( 'dvpn_lid', dvpn_lid * 100._wp ) ! exchanges with lid |
---|
123 | IF( iom_use('dvpn_drn' ) ) CALL iom_put( 'dvpn_drn', dvpn_drn * 100._wp ) ! vertical drainage |
---|
124 | IF( iom_use('dvpn_rnf' ) ) CALL iom_put( 'dvpn_rnf', dvpn_rnf * 100._wp ) ! runoff + overflow |
---|
125 | |
---|
126 | END SUBROUTINE ice_thd_pnd |
---|
127 | |
---|
128 | |
---|
129 | |
---|
130 | SUBROUTINE pnd_CST |
---|
131 | !!------------------------------------------------------------------- |
---|
132 | !! *** ROUTINE pnd_CST *** |
---|
133 | !! |
---|
134 | !! ** Purpose : Compute melt pond evolution |
---|
135 | !! |
---|
136 | !! ** Method : Melt pond fraction and thickness are prescribed |
---|
137 | !! to non-zero values when t_su = 0C |
---|
138 | !! |
---|
139 | !! ** Tunable parameters : Pond fraction (rn_apnd) & depth (rn_hpnd) |
---|
140 | !! |
---|
141 | !! ** Note : Coupling with such melt ponds is only radiative |
---|
142 | !! Advection, ridging, rafting... are bypassed |
---|
143 | !! |
---|
144 | !! ** References : Bush, G.W., and Trump, D.J. (2017) |
---|
145 | !!------------------------------------------------------------------- |
---|
146 | INTEGER :: ji ! loop indices |
---|
147 | !!------------------------------------------------------------------- |
---|
148 | DO ji = 1, npti |
---|
149 | ! |
---|
150 | IF( a_i_1d(ji) > 0._wp .AND. t_su_1d(ji) >= rt0 ) THEN |
---|
151 | h_ip_1d(ji) = rn_hpnd |
---|
152 | a_ip_1d(ji) = rn_apnd * a_i_1d(ji) |
---|
153 | h_il_1d(ji) = 0._wp ! no pond lids whatsoever |
---|
154 | ELSE |
---|
155 | h_ip_1d(ji) = 0._wp |
---|
156 | a_ip_1d(ji) = 0._wp |
---|
157 | h_il_1d(ji) = 0._wp |
---|
158 | ENDIF |
---|
159 | ! |
---|
160 | END DO |
---|
161 | ! |
---|
162 | END SUBROUTINE pnd_CST |
---|
163 | |
---|
164 | |
---|
165 | SUBROUTINE pnd_LEV |
---|
166 | !!------------------------------------------------------------------- |
---|
167 | !! *** ROUTINE pnd_LEV *** |
---|
168 | !! |
---|
169 | !! ** Purpose : Compute melt pond evolution |
---|
170 | !! |
---|
171 | !! ** Method : A fraction of meltwater is accumulated in ponds and sent to ocean when surface is freezing |
---|
172 | !! We work with volumes and then redistribute changes into thickness and concentration |
---|
173 | !! assuming linear relationship between the two. |
---|
174 | !! |
---|
175 | !! ** Action : - pond growth: Vp = Vp + dVmelt --- from Holland et al 2012 --- |
---|
176 | !! dVmelt = (1-r)/rhow * ( rhoi*dh_i + rhos*dh_s ) * a_i |
---|
177 | !! dh_i = meltwater from ice surface melt |
---|
178 | !! dh_s = meltwater from snow melt |
---|
179 | !! (1-r) = fraction of melt water that is not flushed |
---|
180 | !! |
---|
181 | !! - limtations: a_ip must not exceed (1-r)*a_i |
---|
182 | !! h_ip must not exceed 0.5*h_i |
---|
183 | !! |
---|
184 | !! - pond shrinking: |
---|
185 | !! if lids: Vp = Vp -dH * a_ip |
---|
186 | !! dH = lid thickness change. Retrieved from this eq.: --- from Flocco et al 2010 --- |
---|
187 | !! |
---|
188 | !! rhoi * Lf * dH/dt = ki * MAX(Tp-Tsu,0) / H |
---|
189 | !! H = lid thickness |
---|
190 | !! Lf = latent heat of fusion |
---|
191 | !! Tp = -2C |
---|
192 | !! |
---|
193 | !! And solved implicitely as: |
---|
194 | !! H(t+dt)**2 -H(t) * H(t+dt) -ki * (Tp-Tsu) * dt / (rhoi*Lf) = 0 |
---|
195 | !! |
---|
196 | !! if no lids: Vp = Vp * exp(0.01*MAX(Tp-Tsu,0)/Tp) --- from Holland et al 2012 --- |
---|
197 | !! |
---|
198 | !! - Flushing: w = -perm/visc * rho_oce * grav * Hp / Hi --- from Flocco et al 2007 --- |
---|
199 | !! perm = permability of sea-ice |
---|
200 | !! visc = water viscosity |
---|
201 | !! Hp = height of top of the pond above sea-level |
---|
202 | !! Hi = ice thickness thru which there is flushing |
---|
203 | !! |
---|
204 | !! - Corrections: remove melt ponds when lid thickness is 10 times the pond thickness |
---|
205 | !! |
---|
206 | !! - pond thickness and area is retrieved from pond volume assuming a linear relationship between h_ip and a_ip: |
---|
207 | !! a_ip/a_i = a_ip_frac = h_ip / zaspect |
---|
208 | !! |
---|
209 | !! ** Tunable parameters : ln_pnd_lids, rn_apnd_max, rn_apnd_min |
---|
210 | !! |
---|
211 | !! ** Note : mostly stolen from CICE but not only |
---|
212 | !! |
---|
213 | !! ** References : Holland et al (J. Clim, 2012) |
---|
214 | !! |
---|
215 | !!------------------------------------------------------------------- |
---|
216 | |
---|
217 | REAL(wp), DIMENSION(nlay_i) :: ztmp ! temporary array |
---|
218 | !! |
---|
219 | REAL(wp), PARAMETER :: zaspect = 0.8_wp ! pond aspect ratio |
---|
220 | REAL(wp), PARAMETER :: zTp = -2._wp ! reference temperature |
---|
221 | REAL(wp), PARAMETER :: zvisc = 1.79e-3_wp ! water viscosity |
---|
222 | !! |
---|
223 | REAL(wp) :: zfr_mlt, zdv_mlt ! fraction and volume of available meltwater retained for melt ponding |
---|
224 | REAL(wp) :: zdv_frz, zdv_flush ! Amount of melt pond that freezes, flushes |
---|
225 | REAL(wp) :: zhp ! heigh of top of pond lid wrt ssh |
---|
226 | REAL(wp) :: zv_ip_max ! max pond volume allowed |
---|
227 | REAL(wp) :: zdT ! zTp-t_su |
---|
228 | REAL(wp) :: zsbr ! Brine salinity |
---|
229 | REAL(wp) :: zperm ! permeability of sea ice |
---|
230 | REAL(wp) :: zfac, zdum ! temporary arrays |
---|
231 | REAL(wp) :: z1_rhow, z1_aspect, z1_Tp ! inverse |
---|
232 | REAL(wp) :: z1_rdtice ! inverse time step |
---|
233 | REAL(wp) :: zvold ! |
---|
234 | !! |
---|
235 | INTEGER :: ji, jj, jk, jl ! loop indices |
---|
236 | |
---|
237 | !!------------------------------------------------------------------- |
---|
238 | |
---|
239 | z1_rhow = 1._wp / rhow |
---|
240 | z1_aspect = 1._wp / zaspect |
---|
241 | z1_Tp = 1._wp / zTp |
---|
242 | z1_rdtice = 1._wp / rdt_ice |
---|
243 | |
---|
244 | !----------------------------------------------------------------------------------------------- |
---|
245 | ! Identify grid cells with ice |
---|
246 | !----------------------------------------------------------------------------------------------- |
---|
247 | at_i(:,:) = SUM( a_i, dim=3 ) |
---|
248 | ! |
---|
249 | npti = 0 ; nptidx(:) = 0 |
---|
250 | DO jj = 1, jpj |
---|
251 | DO ji = 1, jpi |
---|
252 | IF ( at_i(ji,jj) > epsi10 ) THEN |
---|
253 | npti = npti + 1 |
---|
254 | nptidx( npti ) = (jj - 1) * jpi + ji |
---|
255 | ENDIF |
---|
256 | END DO |
---|
257 | END DO |
---|
258 | |
---|
259 | !----------------------------------------------------------------------------------------------- |
---|
260 | ! Prepare 1D arrays |
---|
261 | !----------------------------------------------------------------------------------------------- |
---|
262 | |
---|
263 | IF( npti > 0 ) THEN |
---|
264 | |
---|
265 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_snw_sum_1d(1:npti), wfx_snw_sum ) |
---|
266 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_sum_1d (1:npti) , wfx_sum ) |
---|
267 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_pnd_1d (1:npti) , wfx_pnd ) |
---|
268 | |
---|
269 | CALL tab_2d_1d( npti, nptidx(1:npti), diag_dvpn_mlt_1d (1:npti), diag_dvpn_mlt ) |
---|
270 | CALL tab_2d_1d( npti, nptidx(1:npti), diag_dvpn_drn_1d (1:npti), diag_dvpn_drn ) |
---|
271 | CALL tab_2d_1d( npti, nptidx(1:npti), diag_dvpn_lid_1d (1:npti), diag_dvpn_lid ) |
---|
272 | CALL tab_2d_1d( npti, nptidx(1:npti), diag_dvpn_rnf_1d (1:npti), diag_dvpn_rnf ) |
---|
273 | |
---|
274 | DO jl = 1, jpl |
---|
275 | |
---|
276 | CALL tab_2d_1d( npti, nptidx(1:npti), a_i_1d (1:npti), a_i (:,:,jl) ) |
---|
277 | CALL tab_2d_1d( npti, nptidx(1:npti), h_i_1d (1:npti), h_i (:,:,jl) ) |
---|
278 | CALL tab_2d_1d( npti, nptidx(1:npti), t_su_1d (1:npti), t_su (:,:,jl) ) |
---|
279 | CALL tab_2d_1d( npti, nptidx(1:npti), a_ip_1d (1:npti), a_ip (:,:,jl) ) |
---|
280 | CALL tab_2d_1d( npti, nptidx(1:npti), h_ip_1d (1:npti), h_ip (:,:,jl) ) |
---|
281 | CALL tab_2d_1d( npti, nptidx(1:npti), h_il_1d (1:npti), h_il (:,:,jl) ) |
---|
282 | |
---|
283 | CALL tab_2d_1d( npti, nptidx(1:npti), dh_i_sum (1:npti), dh_i_sum_2d (:,:,jl) ) |
---|
284 | CALL tab_2d_1d( npti, nptidx(1:npti), dh_s_mlt (1:npti), dh_s_mlt_2d (:,:,jl) ) |
---|
285 | |
---|
286 | DO jk = 1, nlay_i |
---|
287 | CALL tab_2d_1d( npti, nptidx(1:npti), sz_i_1d(1:npti,jk), sz_i(:,:,jk,jl) ) |
---|
288 | END DO |
---|
289 | |
---|
290 | !----------------------------------------------------------------------------------------------- |
---|
291 | ! Go for ponds |
---|
292 | !----------------------------------------------------------------------------------------------- |
---|
293 | |
---|
294 | |
---|
295 | DO ji = 1, npti |
---|
296 | ! !----------------------------------------------------! |
---|
297 | IF( h_i_1d(ji) < rn_himin .OR. a_i_1d(ji) < epsi10 ) THEN ! Case ice thickness < rn_himin or tiny ice fraction ! |
---|
298 | ! !----------------------------------------------------! |
---|
299 | !--- Remove ponds on thin ice or tiny ice fractions |
---|
300 | a_ip_1d(ji) = 0._wp |
---|
301 | h_ip_1d(ji) = 0._wp |
---|
302 | h_il_1d(ji) = 0._wp |
---|
303 | ! !--------------------------------! |
---|
304 | ELSE ! Case ice thickness >= rn_himin ! |
---|
305 | ! !--------------------------------! |
---|
306 | v_ip_1d(ji) = h_ip_1d(ji) * a_ip_1d(ji) ! retrieve volume from thickness |
---|
307 | v_il_1d(ji) = h_il_1d(ji) * a_ip_1d(ji) |
---|
308 | ! |
---|
309 | !------------------! |
---|
310 | ! case ice melting ! |
---|
311 | !------------------! |
---|
312 | ! |
---|
313 | !--- available meltwater for melt ponding ---! |
---|
314 | zdum = -( dh_i_sum(ji)*rhoi + dh_s_mlt(ji)*rhos ) * z1_rhow * a_i_1d(ji) |
---|
315 | zfr_mlt = rn_apnd_min + ( rn_apnd_max - rn_apnd_min ) * at_i_1d(ji) ! = ( 1 - r ) = fraction of melt water that is not flushed |
---|
316 | zdv_mlt = MAX( 0._wp, zfr_mlt * zdum ) ! max for roundoff errors? |
---|
317 | |
---|
318 | diag_dvpn_mlt_1d(ji) = diag_dvpn_mlt_1d(ji) + zdum * z1_rdtice ! surface melt input diag |
---|
319 | |
---|
320 | diag_dvpn_rnf_1d(ji) = diag_dvpn_rnf_1d(ji) + ( 1. - zfr_mlt ) * zdum * z1_rdtice ! runoff diag |
---|
321 | |
---|
322 | ! |
---|
323 | !--- overflow ---! |
---|
324 | ! |
---|
325 | ! 1) area driven overflow |
---|
326 | ! |
---|
327 | ! If pond area exceeds zfr_mlt * a_i_1d(ji) then reduce the pond water volume |
---|
328 | ! a_ip_max = zfr_mlt * a_i |
---|
329 | ! => from zaspect = h_ip / (a_ip / a_i), set v_ip_max as: |
---|
330 | zv_ip_max = zfr_mlt**2 * a_i_1d(ji) * zaspect |
---|
331 | zvold = zdv_mlt |
---|
332 | zdv_mlt = MAX( 0._wp, MIN( zdv_mlt, zv_ip_max - v_ip_1d(ji) ) ) |
---|
333 | |
---|
334 | ! |
---|
335 | ! 2) depth driven overflow |
---|
336 | ! |
---|
337 | ! If pond depth exceeds half the ice thickness then reduce the pond volume |
---|
338 | ! h_ip_max = 0.5 * h_i |
---|
339 | ! => from zaspect = h_ip / (a_ip / a_i), set v_ip_max as: |
---|
340 | zv_ip_max = z1_aspect * a_i_1d(ji) * 0.25 * h_i_1d(ji) * h_i_1d(ji) ! MV dimensions are wrong here or comment is unclear |
---|
341 | |
---|
342 | zdv_mlt = MAX( 0._wp, MIN( zdv_mlt, zv_ip_max - v_ip_1d(ji) ) ) |
---|
343 | |
---|
344 | diag_dvpn_rnf_1d(ji) = diag_dvpn_rnf_1d(ji) + ( zdv_mlt - zvold ) * z1_rdtice ! runoff diag - overflow contribution |
---|
345 | |
---|
346 | !--- Pond growing ---! |
---|
347 | v_ip_1d(ji) = v_ip_1d(ji) + zdv_mlt |
---|
348 | ! |
---|
349 | !--- Lid melting ---! |
---|
350 | IF( ln_pnd_lids ) v_il_1d(ji) = MAX( 0._wp, v_il_1d(ji) - zdv_mlt ) ! must be bounded by 0 |
---|
351 | ! |
---|
352 | !--- mass flux ---! |
---|
353 | ! MV I would recommend to remove that |
---|
354 | ! Since melt ponds carry no freshwater there is no point in modifying water fluxes |
---|
355 | |
---|
356 | IF( zdv_mlt > 0._wp ) THEN |
---|
357 | zfac = zdv_mlt * rhow * r1_rdtice ! melt pond mass flux < 0 [kg.m-2.s-1] |
---|
358 | wfx_pnd_1d(ji) = wfx_pnd_1d(ji) - zfac |
---|
359 | ! |
---|
360 | zdum = zfac / ( wfx_snw_sum_1d(ji) + wfx_sum_1d(ji) ) ! adjust ice/snow melting flux > 0 to balance melt pond flux |
---|
361 | wfx_snw_sum_1d(ji) = wfx_snw_sum_1d(ji) * (1._wp + zdum) |
---|
362 | wfx_sum_1d(ji) = wfx_sum_1d(ji) * (1._wp + zdum) |
---|
363 | ENDIF |
---|
364 | |
---|
365 | !-------------------! |
---|
366 | ! case ice freezing ! i.e. t_su_1d(ji) < (zTp+rt0) |
---|
367 | !-------------------! |
---|
368 | ! |
---|
369 | zdT = MAX( zTp+rt0 - t_su_1d(ji), 0._wp ) |
---|
370 | ! |
---|
371 | !--- Pond contraction (due to refreezing) ---! |
---|
372 | zvold = v_ip_1d(ji) ! for diag |
---|
373 | |
---|
374 | IF( ln_pnd_lids ) THEN |
---|
375 | ! |
---|
376 | !--- Lid growing and subsequent pond shrinking ---! |
---|
377 | zdv_frz = 0.5_wp * MAX( 0._wp, -v_il_1d(ji) + & ! Flocco 2010 (eq. 5) solved implicitly as aH**2 + bH + c = 0 |
---|
378 | & SQRT( v_il_1d(ji)**2 + a_ip_1d(ji)**2 * 4._wp * rcnd_i * zdT * rdt_ice / (rLfus * rhow) ) ) ! max for roundoff errors |
---|
379 | |
---|
380 | ! Lid growing |
---|
381 | v_il_1d(ji) = MAX( 0._wp, v_il_1d(ji) + zdv_frz ) |
---|
382 | |
---|
383 | ! Pond shrinking |
---|
384 | v_ip_1d(ji) = MAX( 0._wp, v_ip_1d(ji) - zdv_frz ) |
---|
385 | |
---|
386 | ELSE |
---|
387 | |
---|
388 | ! Pond shrinking |
---|
389 | v_ip_1d(ji) = v_ip_1d(ji) * EXP( 0.01_wp * zdT * z1_Tp ) ! Holland 2012 (eq. 6) |
---|
390 | |
---|
391 | ENDIF |
---|
392 | |
---|
393 | diag_dvpn_lid_1d(ji) = diag_dvpn_lid_1d(ji) + ( v_ip_1d(ji) - zvold ) * z1_rdtice ! shrinking counted as lid diagnostic |
---|
394 | |
---|
395 | ! |
---|
396 | !--- Set new pond area and depth ---! assuming linear relation between h_ip and a_ip_frac |
---|
397 | ! v_ip = h_ip * a_ip |
---|
398 | ! a_ip/a_i = a_ip_frac = h_ip / zaspect (cf Holland 2012, fitting SHEBA so that knowing v_ip we can distribute it to a_ip and h_ip) |
---|
399 | a_ip_1d(ji) = MIN( a_i_1d(ji), SQRT( v_ip_1d(ji) * z1_aspect * a_i_1d(ji) ) ) ! make sure a_ip < a_i |
---|
400 | h_ip_1d(ji) = zaspect * a_ip_1d(ji) / a_i_1d(ji) |
---|
401 | |
---|
402 | !------------------------------------------------! |
---|
403 | ! Pond drainage through brine network (flushing) ! |
---|
404 | !------------------------------------------------! |
---|
405 | ! height of top of the pond above sea-level |
---|
406 | zhp = ( h_i_1d(ji) * ( rau0 - rhoi ) + h_ip_1d(ji) * ( rau0 - rhow * a_ip_1d(ji) / a_i_1d(ji) ) ) * r1_rau0 |
---|
407 | |
---|
408 | ! Calculate the permeability of the ice (Assur 1958, see Flocco 2010) |
---|
409 | DO jk = 1, nlay_i |
---|
410 | ! MV Assur is inconsistent with SI3 |
---|
411 | zsbr = - 1.2_wp & |
---|
412 | & - 21.8_wp * ( t_i_1d(ji,jk) - rt0 ) & |
---|
413 | & - 0.919_wp * ( t_i_1d(ji,jk) - rt0 )**2 & |
---|
414 | & - 0.0178_wp * ( t_i_1d(ji,jk) - rt0 )**3 |
---|
415 | ! MV linear expression more consistent & simpler zsbr = - ( t_i_1d(ji,jk) - rt0 ) / rTmlt |
---|
416 | ztmp(jk) = sz_i_1d(ji,jk) / zsbr |
---|
417 | END DO |
---|
418 | zperm = MAX( 0._wp, 3.e-08_wp * MINVAL(ztmp)**3 ) |
---|
419 | |
---|
420 | ! Do the drainage using Darcy's law |
---|
421 | zdv_flush = -zperm * rau0 * grav * zhp * rdt_ice / (zvisc * h_i_1d(ji)) * a_ip_1d(ji) |
---|
422 | zdv_flush = MAX( zdv_flush, -v_ip_1d(ji) ) |
---|
423 | ! zdv_flush = 0._wp ! MV remove pond drainage for now |
---|
424 | v_ip_1d(ji) = v_ip_1d(ji) + zdv_flush |
---|
425 | |
---|
426 | diag_dvpn_drn_1d(ji) = diag_dvpn_drn_1d(ji) + zdv_flush * z1_rdtice ! shrinking counted as lid diagnostic |
---|
427 | |
---|
428 | ! MV --- why pond drainage does not give back water into freshwater flux ? |
---|
429 | !--- Set new pond area and depth ---! assuming linear relation between h_ip and a_ip_frac |
---|
430 | a_ip_1d(ji) = MIN( a_i_1d(ji), SQRT( v_ip_1d(ji) * z1_aspect * a_i_1d(ji) ) ) ! make sure a_ip < a_i |
---|
431 | h_ip_1d(ji) = zaspect * a_ip_1d(ji) / a_i_1d(ji) |
---|
432 | |
---|
433 | !--- Corrections and lid thickness ---! |
---|
434 | IF( ln_pnd_lids ) THEN |
---|
435 | !--- retrieve lid thickness from volume ---! |
---|
436 | IF( a_ip_1d(ji) > epsi10 ) THEN ; h_il_1d(ji) = v_il_1d(ji) / a_ip_1d(ji) |
---|
437 | ELSE ; h_il_1d(ji) = 0._wp |
---|
438 | ENDIF |
---|
439 | !--- remove ponds if lids are much larger than ponds ---! |
---|
440 | IF ( h_il_1d(ji) > h_ip_1d(ji) * 10._wp ) THEN |
---|
441 | a_ip_1d(ji) = 0._wp |
---|
442 | h_ip_1d(ji) = 0._wp |
---|
443 | h_il_1d(ji) = 0._wp |
---|
444 | ENDIF |
---|
445 | ENDIF |
---|
446 | ! |
---|
447 | ENDIF |
---|
448 | |
---|
449 | END DO ! ji |
---|
450 | |
---|
451 | !----------------------------------------------------------------------------------------------- |
---|
452 | ! Retrieve 2D arrays |
---|
453 | !----------------------------------------------------------------------------------------------- |
---|
454 | |
---|
455 | v_ip_1d(1:npti) = h_ip_1d(1:npti) * a_ip_1d(1:npti) |
---|
456 | v_il_1d(1:npti) = h_il_1d(1:npti) * a_ip_1d(1:npti) |
---|
457 | |
---|
458 | CALL tab_1d_2d( npti, nptidx(1:npti), a_ip_1d (1:npti), a_ip (:,:,jl) ) |
---|
459 | CALL tab_1d_2d( npti, nptidx(1:npti), h_ip_1d (1:npti), h_ip (:,:,jl) ) |
---|
460 | CALL tab_1d_2d( npti, nptidx(1:npti), h_il_1d (1:npti), h_il (:,:,jl) ) |
---|
461 | CALL tab_1d_2d( npti, nptidx(1:npti), v_ip_1d (1:npti), v_ip (:,:,jl) ) |
---|
462 | CALL tab_1d_2d( npti, nptidx(1:npti), v_il_1d (1:npti), v_il (:,:,jl) ) |
---|
463 | DO jk = 1, nlay_i |
---|
464 | CALL tab_1d_2d( npti, nptidx(1:npti), sz_i_1d(1:npti,jk), sz_i(:,:,jk,jl) ) |
---|
465 | END DO |
---|
466 | |
---|
467 | END DO ! ji |
---|
468 | |
---|
469 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_snw_sum_1d(1:npti), wfx_snw_sum ) |
---|
470 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_sum_1d (1:npti), wfx_sum ) |
---|
471 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_pnd_1d (1:npti), wfx_pnd ) |
---|
472 | |
---|
473 | CALL tab_1d_2d( npti, nptidx(1:npti), diag_dvpn_mlt_1d (1:npti), diag_dvpn_mlt ) |
---|
474 | CALL tab_1d_2d( npti, nptidx(1:npti), diag_dvpn_drn_1d (1:npti), diag_dvpn_drn ) |
---|
475 | CALL tab_1d_2d( npti, nptidx(1:npti), diag_dvpn_lid_1d (1:npti), diag_dvpn_lid ) |
---|
476 | CALL tab_1d_2d( npti, nptidx(1:npti), diag_dvpn_rnf_1d (1:npti), diag_dvpn_rnf ) |
---|
477 | |
---|
478 | ! |
---|
479 | ENDIF |
---|
480 | |
---|
481 | END SUBROUTINE pnd_LEV |
---|
482 | |
---|
483 | SUBROUTINE pnd_TOPO |
---|
484 | |
---|
485 | !!------------------------------------------------------------------- |
---|
486 | !! *** ROUTINE pnd_TOPO *** |
---|
487 | !! |
---|
488 | !! ** Purpose : Compute melt pond evolution |
---|
489 | !! |
---|
490 | !! ** Purpose : Compute melt pond evolution based on the ice |
---|
491 | !! topography as inferred from the ice thickness |
---|
492 | !! distribution. |
---|
493 | !! |
---|
494 | !! ** Method : This code is initially based on Flocco and Feltham |
---|
495 | !! (2007) and Flocco et al. (2010). More to come... |
---|
496 | !! |
---|
497 | !! ** Tunable parameters : |
---|
498 | !! |
---|
499 | !! ** Note : |
---|
500 | !! |
---|
501 | !! ** References |
---|
502 | !! |
---|
503 | !! Flocco, D. and D. L. Feltham, 2007. A continuum model of melt pond |
---|
504 | !! evolution on Arctic sea ice. J. Geophys. Res. 112, C08016, doi: |
---|
505 | !! 10.1029/2006JC003836. |
---|
506 | !! |
---|
507 | !! Flocco, D., D. L. Feltham and A. K. Turner, 2010. Incorporation of |
---|
508 | !! a physically based melt pond scheme into the sea ice component of a |
---|
509 | !! climate model. J. Geophys. Res. 115, C08012, |
---|
510 | !! doi: 10.1029/2009JC005568. |
---|
511 | !! |
---|
512 | !!------------------------------------------------------------------- |
---|
513 | |
---|
514 | ! local variables |
---|
515 | REAL(wp) :: & |
---|
516 | zdHui, & ! change in thickness of ice lid (m) |
---|
517 | zomega, & ! conduction |
---|
518 | zdTice, & ! temperature difference across ice lid (C) |
---|
519 | zdvice, & ! change in ice volume (m) |
---|
520 | zTavg, & ! mean surface temperature across categories (C) |
---|
521 | zfsurf, & ! net heat flux, excluding conduction and transmitted radiation (W/m2) |
---|
522 | zTp, & ! pond freezing temperature (C) |
---|
523 | zrhoi_L, & ! volumetric latent heat of sea ice (J/m^3) |
---|
524 | zfr_mlt, & ! fraction and volume of available meltwater retained for melt ponding |
---|
525 | z1_rhow, & ! inverse water density |
---|
526 | z1_rdtice, & ! inverse time step |
---|
527 | zv_pnd , & ! volume of meltwater contributing to ponds |
---|
528 | zv_mlt ! total amount of meltwater produced |
---|
529 | |
---|
530 | REAL(wp), DIMENSION(jpi,jpj) :: zvolp, & !! total melt pond water available before redistribution and drainage |
---|
531 | zvolp_res !! remaining melt pond water available after drainage |
---|
532 | |
---|
533 | REAL(wp), DIMENSION(jpi,jpj,jpl) :: z1_a_i |
---|
534 | |
---|
535 | INTEGER :: ji, jj, jk, jl ! loop indices |
---|
536 | |
---|
537 | INTEGER :: i_test |
---|
538 | |
---|
539 | ! Note |
---|
540 | ! equivalent for CICE translation |
---|
541 | ! a_ip -> apond |
---|
542 | ! a_ip_frac -> apnd |
---|
543 | |
---|
544 | !--------------------------------------------------------------- |
---|
545 | ! Initialise |
---|
546 | !--------------------------------------------------------------- |
---|
547 | |
---|
548 | ! Parameters & constants (move to parameters) |
---|
549 | zrhoi_L = rhoi * rLfus ! volumetric latent heat (J/m^3) |
---|
550 | zTp = rt0 - 0.15_wp ! pond freezing point, slightly below 0C (ponds are bid saline) |
---|
551 | z1_rhow = 1._wp / rhow |
---|
552 | z1_rdtice = 1._wp / rdt_ice |
---|
553 | |
---|
554 | ! Set required ice variables (hard-coded here for now) |
---|
555 | ! zfpond(:,:) = 0._wp ! contributing freshwater flux (?) |
---|
556 | |
---|
557 | at_i (:,:) = SUM( a_i (:,:,:), dim=3 ) ! ice fraction |
---|
558 | vt_i (:,:) = SUM( v_i (:,:,:), dim=3 ) ! volume per grid area |
---|
559 | vt_ip(:,:) = SUM( v_ip(:,:,:), dim=3 ) ! pond volume per grid area |
---|
560 | vt_il(:,:) = SUM( v_il(:,:,:), dim=3 ) ! lid volume per grid area |
---|
561 | |
---|
562 | ! thickness |
---|
563 | WHERE( a_i(:,:,:) > epsi20 ) ; z1_a_i(:,:,:) = 1._wp / a_i(:,:,:) |
---|
564 | ELSEWHERE ; z1_a_i(:,:,:) = 0._wp |
---|
565 | END WHERE |
---|
566 | h_i(:,:,:) = v_i (:,:,:) * z1_a_i(:,:,:) |
---|
567 | |
---|
568 | !--------------------------------------------------------------- |
---|
569 | ! Change 2D to 1D |
---|
570 | !--------------------------------------------------------------- |
---|
571 | |
---|
572 | ! use what we have in iceitd.F90 (incremental remapping) |
---|
573 | |
---|
574 | !-------------------------------------------------------------- |
---|
575 | ! Collect total available pond water volume |
---|
576 | !-------------------------------------------------------------- |
---|
577 | ! Assuming that meltwater (+rain in principle) runsoff the surface |
---|
578 | ! Holland et al (2012) suggest that the fraction of runoff decreases with total ice fraction |
---|
579 | ! I cite her words, they are very talkative |
---|
580 | ! "grid cells with very little ice cover (and hence more open water area) |
---|
581 | ! have a higher runoff fraction to rep- resent the greater proximity of ice to open water." |
---|
582 | ! "This results in the same runoff fraction r for each ice category within a grid cell" |
---|
583 | |
---|
584 | zvolp(:,:) = 0._wp |
---|
585 | |
---|
586 | DO jl = 1, jpl |
---|
587 | DO jj = 1, jpj |
---|
588 | DO ji = 1, jpi |
---|
589 | |
---|
590 | IF ( a_i(ji,jj,jl) > epsi10 ) THEN |
---|
591 | |
---|
592 | !--- Available meltwater for melt ponding ---! |
---|
593 | zfr_mlt = rn_apnd_min + ( rn_apnd_max - rn_apnd_min ) * at_i(ji,jj) ! fraction of surface meltwater going to ponds |
---|
594 | |
---|
595 | zv_mlt = - ( dh_i_sum_2d(ji,jj,jl) * rhoi + dh_s_mlt_2d(ji,jj,jl) * rhos ) & ! total volume of surface melt water |
---|
596 | & * z1_rhow * a_i(ji,jj,jl) |
---|
597 | zv_pnd = zfr_mlt * zv_mlt ! volume of meltwater contributing to ponds |
---|
598 | |
---|
599 | diag_dvpn_mlt(ji,jj) = diag_dvpn_mlt(ji,jj) + zv_mlt * z1_rdtice ! diagnostics |
---|
600 | |
---|
601 | diag_dvpn_rnf(ji,jj) = diag_dvpn_rnf(ji,jj) + ( 1. - zfr_mlt ) * zv_mlt * z1_rdtice |
---|
602 | |
---|
603 | !--- Create possible new ponds |
---|
604 | ! if pond does not exist, create new pond over full ice area |
---|
605 | IF ( a_ip_frac(ji,jj,jl) < epsi10 ) THEN |
---|
606 | h_ip(ji,jj,jl) = 0._wp |
---|
607 | a_ip_frac(ji,jj,jl) = 1.0_wp ! pond fraction of sea ice (apnd for CICE) |
---|
608 | a_ip(ji,jj,jl) = a_i(ji,jj,jl) |
---|
609 | ENDIF |
---|
610 | |
---|
611 | !--- Deepen existing ponds before redistribution and drainage |
---|
612 | ! without pond fraction |
---|
613 | v_ip(ji,jj,jl) = v_i_p(ji,jj,jl) + zv_pnd ! use pond water to increase thickness |
---|
614 | |
---|
615 | h_ip(ji,jj,jl) = v_ip(ji,jj,jl) / a_ip(ji,jj,jl) |
---|
616 | |
---|
617 | zvolp(ji,jj) = zvolp(ji,jj) + v_ip(ji,jj,jl) |
---|
618 | |
---|
619 | ! zfpond(ji,jj) = zfpond(ji,jj) + zpond * a_ip_frac(ji,jj,jl) ! useless for now |
---|
620 | |
---|
621 | ENDIF ! a_i |
---|
622 | |
---|
623 | END DO! jl |
---|
624 | END DO ! jj |
---|
625 | END DO ! ji |
---|
626 | |
---|
627 | !-------------------------------------------------------------- |
---|
628 | ! Redistribute and drain water from ponds |
---|
629 | !-------------------------------------------------------------- |
---|
630 | CALL ice_thd_pnd_area( zvolp, zvolp_res ) |
---|
631 | |
---|
632 | !-------------------------------------------------------------- |
---|
633 | ! Freeze and melt lid |
---|
634 | !-------------------------------------------------------------- |
---|
635 | DO jj = 1, jpj |
---|
636 | DO ji = 1, jpi |
---|
637 | |
---|
638 | IF ( at_i(ji,jj) > 0.01 .AND. hm_i(ji,jj) > zhi_min .AND. vt_ip(ji,jj) > zvp_min *at_i(ji,jj) ) THEN |
---|
639 | |
---|
640 | !-------------------------- |
---|
641 | ! Pond lid growth and melt |
---|
642 | !-------------------------- |
---|
643 | ! Mean surface temperature |
---|
644 | zTavg = 0._wp |
---|
645 | DO jl = 1, jpl |
---|
646 | zTavg = zTavg + t_su(ji,jj,jl)*a_i(ji,jj,jl) |
---|
647 | END DO |
---|
648 | zTavg = zTavg / a_i(ji,jj,jl) !!! could get a division by zero here |
---|
649 | |
---|
650 | DO jl = 1, jpl-1 |
---|
651 | |
---|
652 | IF ( v_il(ji,jj,jl) > epsi10 ) THEN |
---|
653 | |
---|
654 | !---------------------------------------------------------------- |
---|
655 | ! Lid melting: floating upper ice layer melts in whole or part |
---|
656 | !---------------------------------------------------------------- |
---|
657 | ! Use Tsfc for each category |
---|
658 | IF ( t_su(ji,jj,jl) > zTp ) THEN |
---|
659 | |
---|
660 | zdvice = MIN( dh_i_sum_2d(ji,jj,jl)*a_ip(ji,jj,jl), v_il(ji,jj,jl) ) |
---|
661 | |
---|
662 | IF ( zdvice > epsi10 ) THEN |
---|
663 | |
---|
664 | v_il (ji,jj,jl) = v_il (ji,jj,jl) - zdvice |
---|
665 | v_ip(ji,jj,jl) = v_ip(ji,jj,jl) + zdvice ! MV: not sure i understand dh_i_sum seems counted twice - |
---|
666 | ! as it is already counted in surface melt |
---|
667 | ! zvolp(ji,jj) = zvolp(ji,jj) + zdvice ! pointless to calculate total volume (done in icevar) |
---|
668 | ! zfpond(ji,jj) = fpond(ji,jj) + zdvice ! pointless to follow fw budget (ponds have no fw) |
---|
669 | |
---|
670 | IF ( v_il(ji,jj,jl) < epsi10 .AND. v_ip(ji,jj,jl) > epsi10) THEN |
---|
671 | ! ice lid melted and category is pond covered |
---|
672 | v_ip(ji,jj,jl) = v_ip(ji,jj,jl) + v_il(ji,jj,jl) |
---|
673 | ! zfpond(ji,jj) = zfpond (ji,jj) + v_il(ji,jj,jl) |
---|
674 | v_il(ji,jj,jl) = 0._wp |
---|
675 | ENDIF |
---|
676 | h_ip(ji,jj,jl) = v_ip(ji,jj,jl) / a_ip(ji,jj,jl) !!! could get a division by zero here |
---|
677 | |
---|
678 | diag_dvpn_lid(ji,jj) = diag_dvpn_lid(ji,jj) + zdvice ! diag |
---|
679 | |
---|
680 | ENDIF |
---|
681 | |
---|
682 | !---------------------------------------------------------------- |
---|
683 | ! Freeze pre-existing lid |
---|
684 | !---------------------------------------------------------------- |
---|
685 | |
---|
686 | ELSE IF ( v_ip(ji,jj,jl) > epsi10 ) THEN ! Tsfcn(i,j,n) <= Tp |
---|
687 | |
---|
688 | ! differential growth of base of surface floating ice layer |
---|
689 | zdTice = MAX( - t_su(ji,jj,jl) - zTd , 0._wp ) ! > 0 |
---|
690 | zomega = rcnd_i * zdTice / zrhoi_L |
---|
691 | zdHui = SQRT( 2._wp * zomega * rdt_ice + ( v_il(ji,jj,jl) / a_i(ji,jj,jl) )**2 ) & |
---|
692 | - v_il(ji,jj,jl) / a_i(ji,jj,jl) |
---|
693 | zdvice = min( zdHui*a_ip(ji,jj,jl) , v_ip(ji,jj,jl) ) |
---|
694 | |
---|
695 | IF ( zdvice > epsi10 ) THEN |
---|
696 | v_il (ji,jj,jl) = v_il(ji,jj,jl) + zdvice |
---|
697 | v_ip(ji,jj,jl) = v_ip(ji,jj,jl) - zdvice |
---|
698 | ! zvolp(ji,jj) = zvolp(ji,jj) - zdvice |
---|
699 | ! zfpond(ji,jj) = zfpond(ji,jj) - zdvice |
---|
700 | h_ip(ji,jj,jl) = v_ip(ji,jj,jl) / a_ip(ji,jj,jl) |
---|
701 | |
---|
702 | diag_dvpn_lid(ji,jj) = diag_dvpn_lid(ji,jj) - zdvice ! diag |
---|
703 | |
---|
704 | ENDIF |
---|
705 | |
---|
706 | ENDIF ! Tsfcn(i,j,n) |
---|
707 | |
---|
708 | !---------------------------------------------------------------- |
---|
709 | ! Freeze new lids |
---|
710 | !---------------------------------------------------------------- |
---|
711 | ! upper ice layer begins to form |
---|
712 | ! note: albedo does not change |
---|
713 | |
---|
714 | ELSE ! v_il < epsi10 |
---|
715 | |
---|
716 | ! thickness of newly formed ice |
---|
717 | ! the surface temperature of a meltpond is the same as that |
---|
718 | ! of the ice underneath (0C), and the thermodynamic surface |
---|
719 | ! flux is the same |
---|
720 | |
---|
721 | !!! we need net surface energy flux, excluding conduction |
---|
722 | !!! fsurf is summed over categories in CICE |
---|
723 | !!! we have the category-dependent flux, let us use it ? |
---|
724 | zfsurf = qns_ice(ji,jj,jl) + qsr_ice(ji,jj,jl) |
---|
725 | zdHui = MAX ( -zfsurf * rdt_ice/zrhoi_L , 0._wp ) |
---|
726 | zdvice = MIN ( zdHui * a_ip(ji,jj,jl) , v_ip(ji,jj,jl) ) |
---|
727 | IF ( zdvice > epsi10 ) THEN |
---|
728 | v_il (ji,jj,jl) = v_il(ji,jj,jl) + zdvice |
---|
729 | v_ip(ji,jj,jl) = v_ip(ji,jj,jl) - zdvice |
---|
730 | |
---|
731 | diag_dvpn_lid(ji,jj) = diag_dvpn_lid(ji,jj) - zdvice ! diag |
---|
732 | ! zvolp(ji,jj) = zvolp(ji,jj) - zdvice |
---|
733 | ! zfpond(ji,jj) = zfpond(ji,jj) - zdvice |
---|
734 | h_ip(ji,jj,jl) = v_ip(ji,jj,jl) / a_ip(ji,jj,jl) ! in principle, this is useless as h_ip is computed in icevar |
---|
735 | ENDIF |
---|
736 | |
---|
737 | ENDIF ! v_il |
---|
738 | |
---|
739 | END DO ! jl |
---|
740 | |
---|
741 | ELSE ! remove ponds on thin ice |
---|
742 | |
---|
743 | v_ip(ji,jj,:) = 0._wp |
---|
744 | v_il(ji,jj,:) = 0._wp |
---|
745 | ! zfpond(ji,jj) = zfpond(ji,jj)- zvolp(ji,jj) |
---|
746 | ! zvolp(ji,jj) = 0._wp |
---|
747 | |
---|
748 | ENDIF |
---|
749 | |
---|
750 | END DO ! jj |
---|
751 | END DO ! ji |
---|
752 | |
---|
753 | !--------------------------------------------------------------- |
---|
754 | ! Clean-up variables (probably duplicates what icevar would do) |
---|
755 | !--------------------------------------------------------------- |
---|
756 | ! MV comment |
---|
757 | ! In the ideal world, the lines above should update only v_ip, a_ip, v_il |
---|
758 | ! icevar should recompute all other variables (if needed at all) |
---|
759 | |
---|
760 | DO jl = 1, jpl |
---|
761 | DO jj = 1, jpj |
---|
762 | DO ji = 1, jpi |
---|
763 | |
---|
764 | IF ( a_i(ji,jj,jl) > epsi10 .AND. v_ip(ji,jj,jl) < epsi10 & |
---|
765 | .AND. v_il (ji,jj,jl) > epsi10) THEN |
---|
766 | v_il(ji,jj,jl) = 0._wp |
---|
767 | ENDIF |
---|
768 | |
---|
769 | ! reload tracers |
---|
770 | IF ( a_ip(ji,jj,jl) > epsi10) THEN |
---|
771 | h_il(ji,jj,jl) = v_il(ji,jj,jl) / a_ip(ji,jj,jl) ! MV in principle, useless as computed in icevar |
---|
772 | ELSE |
---|
773 | v_il(ji,jj,jl) = 0._wp |
---|
774 | h_il(ji,jj,jl) = 0._wp ! MV in principle, useless as a_ip_frac computed in icevar |
---|
775 | ENDIF |
---|
776 | |
---|
777 | IF ( a_ip(ji,jj,jl) > epsi10 ) THEN |
---|
778 | a_ip_frac(ji,jj,jl) = a_ip(ji,jj,jl) / a_i(ji,jj,jl) ! MV in principle, useless as computed in icevar |
---|
779 | !h_ip(ji,jj,jl) = zhpondn(ji,jj,jl) |
---|
780 | ELSE |
---|
781 | a_ip_frac(ji,jj,jl) = 0._wp |
---|
782 | h_ip(ji,jj,jl) = 0._wp ! MV in principle, useless as computed in icevar |
---|
783 | h_il(ji,jj,jl) = 0._wp ! MV in principle, useless as omputed in icevar |
---|
784 | ENDIF |
---|
785 | |
---|
786 | END DO ! ji |
---|
787 | END DO ! jj |
---|
788 | END DO ! jl |
---|
789 | |
---|
790 | END SUBROUTINE pnd_TOPO |
---|
791 | |
---|
792 | |
---|
793 | SUBROUTINE ice_thd_pnd_area( zvolp , zdvolp ) |
---|
794 | |
---|
795 | !!------------------------------------------------------------------- |
---|
796 | !! *** ROUTINE ice_thd_pnd_area *** |
---|
797 | !! |
---|
798 | !! ** Purpose : Given the total volume of available pond water, |
---|
799 | !! redistribute and drain water |
---|
800 | !! |
---|
801 | !! ** |
---|
802 | !! |
---|
803 | !!------------------------------------------------------------------ |
---|
804 | |
---|
805 | REAL (wp), DIMENSION(jpi,jpj), INTENT(INOUT) :: & |
---|
806 | zvolp, & ! total available pond water |
---|
807 | zdvolp ! remaining meltwater after redistribution |
---|
808 | |
---|
809 | INTEGER :: & |
---|
810 | ns, & |
---|
811 | m_index, & |
---|
812 | permflag |
---|
813 | |
---|
814 | REAL (wp), DIMENSION(jpl) :: & |
---|
815 | hicen, & |
---|
816 | hsnon, & |
---|
817 | asnon, & |
---|
818 | alfan, & |
---|
819 | betan, & |
---|
820 | cum_max_vol, & |
---|
821 | reduced_aicen |
---|
822 | |
---|
823 | REAL (wp), DIMENSION(0:jpl) :: & |
---|
824 | cum_max_vol_tmp |
---|
825 | |
---|
826 | REAL (wp) :: & |
---|
827 | hpond, & |
---|
828 | drain, & |
---|
829 | floe_weight, & |
---|
830 | pressure_head, & |
---|
831 | hsl_rel, & |
---|
832 | deltah, & |
---|
833 | perm, & |
---|
834 | msno |
---|
835 | |
---|
836 | REAL (wp), parameter :: & |
---|
837 | viscosity = 1.79e-3_wp ! kinematic water viscosity in kg/m/s |
---|
838 | |
---|
839 | INTEGER :: ji, jj, jk, jl ! loop indices |
---|
840 | |
---|
841 | !-----------| |
---|
842 | ! | |
---|
843 | ! |-----------| |
---|
844 | !___________|___________|______________________________________sea-level |
---|
845 | ! | | |
---|
846 | ! | |---^--------| |
---|
847 | ! | | | | |
---|
848 | ! | | | |-----------| |------- |
---|
849 | ! | | |alfan(jl)| | | |
---|
850 | ! | | | | |--------------| |
---|
851 | ! | | | | | | |
---|
852 | !---------------------------v------------------------------------------- |
---|
853 | ! | | ^ | | | |
---|
854 | ! | | | | |--------------| |
---|
855 | ! | | |betan(jl)| | | |
---|
856 | ! | | | |-----------| |------- |
---|
857 | ! | | | | |
---|
858 | ! | |---v------- | |
---|
859 | ! | | |
---|
860 | ! |-----------| |
---|
861 | ! | |
---|
862 | !-----------| |
---|
863 | |
---|
864 | a_ip(:,:,:) = 0._wp |
---|
865 | h_ip(:,:,:) = 0._wp |
---|
866 | |
---|
867 | DO jj = 1, jpj |
---|
868 | DO ji = 1, jpi |
---|
869 | |
---|
870 | IF ( at_i(ji,jj) > 0.01 .AND. hm_i(ji,jj) > zhi_min .AND. zvolp(ji,jj) > zvp_min * at_i(ji,jj) ) THEN |
---|
871 | |
---|
872 | !------------------------------------------------------------------- |
---|
873 | ! initialize |
---|
874 | !------------------------------------------------------------------- |
---|
875 | |
---|
876 | DO jl = 1, jpl |
---|
877 | |
---|
878 | a_ip(ji,jj,jl) = 0._wp |
---|
879 | h_ip(ji,jj,jl) = 0._wp |
---|
880 | |
---|
881 | !---------------------------------------- |
---|
882 | ! compute the effective snow fraction |
---|
883 | !---------------------------------------- |
---|
884 | |
---|
885 | IF (a_i(ji,jj,jl) < epsi10) THEN |
---|
886 | hicen(jl) = 0._wp |
---|
887 | hsnon(jl) = 0._wp |
---|
888 | reduced_aicen(jl) = 0._wp |
---|
889 | asnon(jl) = 0._wp !js: in CICE 5.1.2: make sense as the compiler may not initiate the variables |
---|
890 | ELSE |
---|
891 | hicen(jl) = v_i(ji,jj,jl) / a_i(ji,jj,jl) |
---|
892 | hsnon(jl) = v_s(ji,jj,jl) / a_i(ji,jj,jl) |
---|
893 | reduced_aicen(jl) = 1._wp ! n=jpl |
---|
894 | |
---|
895 | !js: initial code in NEMO_DEV |
---|
896 | !IF (n < jpl) reduced_aicen(jl) = aicen(jl) & |
---|
897 | ! * (-0.024_wp*hicen(jl) + 0.832_wp) |
---|
898 | |
---|
899 | !js: from CICE 5.1.2: this limit reduced_aicen to 0.2 when hicen is too large |
---|
900 | IF (jl < jpl) reduced_aicen(jl) = a_i(ji,jj,jl) & |
---|
901 | * max(0.2_wp,(-0.024_wp*hicen(jl) + 0.832_wp)) |
---|
902 | |
---|
903 | asnon(jl) = reduced_aicen(jl) ! effective snow fraction (empirical) |
---|
904 | ! MV should check whether this makes sense to have the same effective snow fraction in here |
---|
905 | ! OLI: it probably doesn't |
---|
906 | END IF |
---|
907 | |
---|
908 | ! This choice for alfa and beta ignores hydrostatic equilibium of categories. |
---|
909 | ! Hydrostatic equilibium of the entire ITD is accounted for below, assuming |
---|
910 | ! a surface topography implied by alfa=0.6 and beta=0.4, and rigidity across all |
---|
911 | ! categories. alfa and beta partition the ITD - they are areas not thicknesses! |
---|
912 | ! Multiplying by hicen, alfan and betan (below) are thus volumes per unit area. |
---|
913 | ! Here, alfa = 60% of the ice area (and since hice is constant in a category, |
---|
914 | ! alfan = 60% of the ice volume) in each category lies above the reference line, |
---|
915 | ! and 40% below. Note: p6 is an arbitrary choice, but alfa+beta=1 is required. |
---|
916 | |
---|
917 | ! MV: |
---|
918 | ! Note that this choice is not in the original FF07 paper and has been adopted in CICE |
---|
919 | ! No reason why is explained in the doc, but I guess there is a reason. I'll try to investigate, maybe |
---|
920 | |
---|
921 | ! Where does that choice come from ? => OLI : Coz' Chuck Norris said so... |
---|
922 | |
---|
923 | alfan(jl) = 0.6 * hicen(jl) |
---|
924 | betan(jl) = 0.4 * hicen(jl) |
---|
925 | |
---|
926 | cum_max_vol(jl) = 0._wp |
---|
927 | cum_max_vol_tmp(jl) = 0._wp |
---|
928 | |
---|
929 | END DO ! jpl |
---|
930 | |
---|
931 | cum_max_vol_tmp(0) = 0._wp |
---|
932 | drain = 0._wp |
---|
933 | zdvolp(ji,jj) = 0._wp |
---|
934 | |
---|
935 | !---------------------------------------------------------- |
---|
936 | ! Drain overflow water, update pond fraction and volume |
---|
937 | !---------------------------------------------------------- |
---|
938 | |
---|
939 | !-------------------------------------------------------------------------- |
---|
940 | ! the maximum amount of water that can be contained up to each ice category |
---|
941 | !-------------------------------------------------------------------------- |
---|
942 | ! If melt ponds are too deep to be sustainable given the ITD (OVERFLOW) |
---|
943 | ! Then the excess volume cum_max_vol(jl) drains out of the system |
---|
944 | ! It should be added to wfx_pnd_out |
---|
945 | |
---|
946 | DO jl = 1, jpl-1 ! last category can not hold any volume |
---|
947 | |
---|
948 | IF (alfan(jl+1) >= alfan(jl) .AND. alfan(jl+1) > 0._wp ) THEN |
---|
949 | |
---|
950 | ! total volume in level including snow |
---|
951 | cum_max_vol_tmp(jl) = cum_max_vol_tmp(jl-1) + & |
---|
952 | (alfan(jl+1) - alfan(jl)) * sum(reduced_aicen(1:jl)) |
---|
953 | |
---|
954 | ! subtract snow solid volumes from lower categories in current level |
---|
955 | DO ns = 1, jl |
---|
956 | cum_max_vol_tmp(jl) = cum_max_vol_tmp(jl) & |
---|
957 | - rhos/rhow * & ! free air fraction that can be filled by water |
---|
958 | asnon(ns) * & ! effective areal fraction of snow in that category |
---|
959 | max(min(hsnon(ns)+alfan(ns)-alfan(jl), alfan(jl+1)-alfan(jl)), 0._wp) |
---|
960 | END DO |
---|
961 | |
---|
962 | ELSE ! assume higher categories unoccupied |
---|
963 | cum_max_vol_tmp(jl) = cum_max_vol_tmp(jl-1) |
---|
964 | END IF |
---|
965 | !IF (cum_max_vol_tmp(jl) < z0) THEN |
---|
966 | ! CALL abort_ice('negative melt pond volume') |
---|
967 | !END IF |
---|
968 | END DO |
---|
969 | cum_max_vol_tmp(jpl) = cum_max_vol_tmp(jpl-1) ! last category holds no volume |
---|
970 | cum_max_vol (1:jpl) = cum_max_vol_tmp(1:jpl) |
---|
971 | |
---|
972 | !---------------------------------------------------------------- |
---|
973 | ! is there more meltwater than can be held in the floe? |
---|
974 | !---------------------------------------------------------------- |
---|
975 | IF (zvolp(ji,jj) >= cum_max_vol(jpl)) THEN |
---|
976 | drain = zvolp(ji,jj) - cum_max_vol(jpl) + epsi10 |
---|
977 | zvolp(ji,jj) = zvolp(ji,jj) - drain ! update meltwater volume available |
---|
978 | |
---|
979 | diag_dvpn_rnf(ji,jj) = - drain ! diag - overflow counted in the runoff part (arbitrary choice) |
---|
980 | |
---|
981 | zdvolp(ji,jj) = drain ! this is the drained water |
---|
982 | IF (zvolp(ji,jj) < epsi10) THEN |
---|
983 | zdvolp(ji,jj) = zdvolp(ji,jj) + zvolp(ji,jj) |
---|
984 | zvolp(ji,jj) = 0._wp |
---|
985 | END IF |
---|
986 | END IF |
---|
987 | |
---|
988 | ! height and area corresponding to the remaining volume |
---|
989 | ! routine leaves zvolp unchanged |
---|
990 | CALL ice_thd_pnd_depth(reduced_aicen, asnon, hsnon, alfan, zvolp(ji,jj), cum_max_vol, hpond, m_index) |
---|
991 | |
---|
992 | DO jl = 1, m_index |
---|
993 | !h_ip(jl) = hpond - alfan(jl) + alfan(1) ! here oui choulde update |
---|
994 | ! ! volume instead, no ? |
---|
995 | h_ip(ji,jj,jl) = max((hpond - alfan(jl) + alfan(1)), 0._wp) !js: from CICE 5.1.2 |
---|
996 | a_ip(ji,jj,jl) = reduced_aicen(jl) |
---|
997 | ! in practise, pond fraction depends on the empirical snow fraction |
---|
998 | ! so in turn on ice thickness |
---|
999 | END DO |
---|
1000 | !zapond = sum(a_ip(1:m_index)) !js: from CICE 5.1.2; not in Icepack1.1.0-6-gac6195d |
---|
1001 | |
---|
1002 | !------------------------------------------------------------------------ |
---|
1003 | ! Drainage through brine network (permeability) |
---|
1004 | !------------------------------------------------------------------------ |
---|
1005 | !!! drainage due to ice permeability - Darcy's law |
---|
1006 | |
---|
1007 | ! sea water level |
---|
1008 | msno = 0._wp |
---|
1009 | DO jl = 1 , jpl |
---|
1010 | msno = msno + v_s(ji,jj,jl) * rhos |
---|
1011 | END DO |
---|
1012 | floe_weight = ( msno + rhoi*vt_i(ji,jj) + rau0*zvolp(ji,jj) ) / at_i(ji,jj) |
---|
1013 | hsl_rel = floe_weight / rau0 & |
---|
1014 | - ( ( sum(betan(:)*a_i(ji,jj,:)) / at_i(ji,jj) ) + alfan(1) ) |
---|
1015 | |
---|
1016 | deltah = hpond - hsl_rel |
---|
1017 | pressure_head = grav * rau0 * max(deltah, 0._wp) |
---|
1018 | |
---|
1019 | ! drain if ice is permeable |
---|
1020 | permflag = 0 |
---|
1021 | |
---|
1022 | IF (pressure_head > 0._wp) THEN |
---|
1023 | DO jl = 1, jpl-1 |
---|
1024 | IF ( hicen(jl) /= 0._wp ) THEN |
---|
1025 | |
---|
1026 | !IF (hicen(jl) > 0._wp) THEN !js: from CICE 5.1.2 |
---|
1027 | |
---|
1028 | perm = 0._wp ! MV ugly dummy patch |
---|
1029 | CALL ice_thd_pnd_perm(t_i(ji,jj,:,jl), sz_i(ji,jj,:,jl), perm) ! bof |
---|
1030 | IF (perm > 0._wp) permflag = 1 |
---|
1031 | |
---|
1032 | drain = perm*a_ip(ji,jj,jl)*pressure_head*rdt_ice / & |
---|
1033 | (viscosity*hicen(jl)) |
---|
1034 | zdvolp(ji,jj) = zdvolp(ji,jj) + min(drain, zvolp(ji,jj)) |
---|
1035 | zvolp(ji,jj) = max(zvolp(ji,jj) - drain, 0._wp) |
---|
1036 | |
---|
1037 | diag_dvpn_drn(ji,jj) = - drain ! diag (could be better coded) |
---|
1038 | |
---|
1039 | IF (zvolp(ji,jj) < epsi10) THEN |
---|
1040 | zdvolp(ji,jj) = zdvolp(ji,jj) + zvolp(ji,jj) |
---|
1041 | zvolp(ji,jj) = 0._wp |
---|
1042 | END IF |
---|
1043 | END IF |
---|
1044 | END DO |
---|
1045 | |
---|
1046 | ! adjust melt pond dimensions |
---|
1047 | IF (permflag > 0) THEN |
---|
1048 | ! recompute pond depth |
---|
1049 | CALL ice_thd_pnd_depth(reduced_aicen, asnon, hsnon, alfan, zvolp(ji,jj), cum_max_vol, hpond, m_index) |
---|
1050 | DO jl = 1, m_index |
---|
1051 | h_ip(ji,jj,jl) = hpond - alfan(jl) + alfan(1) |
---|
1052 | a_ip(ji,jj,jl) = reduced_aicen(jl) |
---|
1053 | END DO |
---|
1054 | !zapond = sum(a_ip(1:m_index)) !js: from CICE 5.1.2; not in Icepack1.1.0-6-gac6195d |
---|
1055 | END IF |
---|
1056 | END IF ! pressure_head |
---|
1057 | |
---|
1058 | !------------------------------- |
---|
1059 | ! remove water from the snow |
---|
1060 | !------------------------------- |
---|
1061 | !------------------------------------------------------------------------ |
---|
1062 | ! total melt pond volume in category does not include snow volume |
---|
1063 | ! snow in melt ponds is not melted |
---|
1064 | !------------------------------------------------------------------------ |
---|
1065 | |
---|
1066 | ! MV here, it seems that we remove some meltwater from the ponds, but I can't really tell |
---|
1067 | ! how much, so I did not diagnose it |
---|
1068 | ! so if there is a problem here, nobody is going to see it... |
---|
1069 | |
---|
1070 | |
---|
1071 | ! Calculate pond volume for lower categories |
---|
1072 | DO jl = 1,m_index-1 |
---|
1073 | v_ip(ji,jj,jl) = a_ip(ji,jj,jl) * h_ip(ji,jj,jl) & ! what is not in the snow |
---|
1074 | - (rhos/rhow) * asnon(jl) * min(hsnon(jl), h_ip(ji,jj,jl)) |
---|
1075 | END DO |
---|
1076 | |
---|
1077 | ! Calculate pond volume for highest category = remaining pond volume |
---|
1078 | |
---|
1079 | ! The following is completely unclear to Martin at least |
---|
1080 | ! Could we redefine properly and recode in a more readable way ? |
---|
1081 | |
---|
1082 | ! m_index = last category with melt pond |
---|
1083 | |
---|
1084 | IF (m_index == 1) v_ip(ji,jj,m_index) = zvolp(ji,jj) ! volume of mw in 1st category is the total volume of melt water |
---|
1085 | |
---|
1086 | IF (m_index > 1) THEN |
---|
1087 | IF (zvolp(ji,jj) > sum( v_ip(ji,jj,1:m_index-1))) THEN |
---|
1088 | v_ip(ji,jj,m_index) = zvolp(ji,jj) - sum(v_ip(ji,jj,1:m_index-1)) |
---|
1089 | ELSE |
---|
1090 | v_ip(ji,jj,m_index) = 0._wp |
---|
1091 | h_ip(ji,jj,m_index) = 0._wp |
---|
1092 | a_ip(ji,jj,m_index) = 0._wp |
---|
1093 | ! If remaining pond volume is negative reduce pond volume of |
---|
1094 | ! lower category |
---|
1095 | IF ( zvolp(ji,jj) + epsi10 < SUM(v_ip(ji,jj,1:m_index-1))) & |
---|
1096 | v_ip(ji,jj,m_index-1) = v_ip(ji,jj,m_index-1) - sum(v_ip(ji,jj,1:m_index-1)) + zvolp(ji,jj) |
---|
1097 | END IF |
---|
1098 | END IF |
---|
1099 | |
---|
1100 | DO jl = 1,m_index |
---|
1101 | IF (a_ip(ji,jj,jl) > epsi10) THEN |
---|
1102 | h_ip(ji,jj,jl) = v_ip(ji,jj,jl) / a_ip(ji,jj,jl) |
---|
1103 | ELSE |
---|
1104 | zdvolp(ji,jj) = zdvolp(ji,jj) + v_ip(ji,jj,jl) |
---|
1105 | h_ip(ji,jj,jl) = 0._wp |
---|
1106 | v_ip(ji,jj,jl) = 0._wp |
---|
1107 | a_ip(ji,jj,jl) = 0._wp |
---|
1108 | END IF |
---|
1109 | END DO |
---|
1110 | DO jl = m_index+1, jpl |
---|
1111 | h_ip(ji,jj,jl) = 0._wp |
---|
1112 | a_ip(ji,jj,jl) = 0._wp |
---|
1113 | v_ip(ji,jj,jl) = 0._wp |
---|
1114 | END DO |
---|
1115 | |
---|
1116 | ENDIF |
---|
1117 | END DO ! ji |
---|
1118 | END DO ! jj |
---|
1119 | |
---|
1120 | END SUBROUTINE ice_thd_pnd_area |
---|
1121 | |
---|
1122 | |
---|
1123 | SUBROUTINE ice_thd_pnd_depth(aicen, asnon, hsnon, alfan, zvolp, cum_max_vol, hpond, m_index) |
---|
1124 | !!------------------------------------------------------------------- |
---|
1125 | !! *** ROUTINE ice_thd_pnd_depth *** |
---|
1126 | !! |
---|
1127 | !! ** Purpose : Compute melt pond depth |
---|
1128 | !!------------------------------------------------------------------- |
---|
1129 | |
---|
1130 | REAL (wp), DIMENSION(jpl), INTENT(IN) :: & |
---|
1131 | aicen, & |
---|
1132 | asnon, & |
---|
1133 | hsnon, & |
---|
1134 | alfan, & |
---|
1135 | cum_max_vol |
---|
1136 | |
---|
1137 | REAL (wp), INTENT(IN) :: & |
---|
1138 | zvolp |
---|
1139 | |
---|
1140 | REAL (wp), INTENT(OUT) :: & |
---|
1141 | hpond |
---|
1142 | |
---|
1143 | INTEGER, INTENT(OUT) :: & |
---|
1144 | m_index |
---|
1145 | |
---|
1146 | INTEGER :: n, ns |
---|
1147 | |
---|
1148 | REAL (wp), DIMENSION(0:jpl+1) :: & |
---|
1149 | hitl, & |
---|
1150 | aicetl |
---|
1151 | |
---|
1152 | REAL (wp) :: & |
---|
1153 | rem_vol, & |
---|
1154 | area, & |
---|
1155 | vol, & |
---|
1156 | tmp, & |
---|
1157 | z0 = 0.0_wp |
---|
1158 | |
---|
1159 | !---------------------------------------------------------------- |
---|
1160 | ! hpond is zero if zvolp is zero - have we fully drained? |
---|
1161 | !---------------------------------------------------------------- |
---|
1162 | |
---|
1163 | IF (zvolp < epsi10) THEN |
---|
1164 | hpond = z0 |
---|
1165 | m_index = 0 |
---|
1166 | ELSE |
---|
1167 | |
---|
1168 | !---------------------------------------------------------------- |
---|
1169 | ! Calculate the category where water fills up to |
---|
1170 | !---------------------------------------------------------------- |
---|
1171 | |
---|
1172 | !----------| |
---|
1173 | ! | |
---|
1174 | ! | |
---|
1175 | ! |----------| -- -- |
---|
1176 | !__________|__________|_________________________________________ ^ |
---|
1177 | ! | | rem_vol ^ | Semi-filled |
---|
1178 | ! | |----------|-- -- -- - ---|-- ---- -- -- --v layer |
---|
1179 | ! | | | | |
---|
1180 | ! | | | |hpond |
---|
1181 | ! | | |----------| | |------- |
---|
1182 | ! | | | | | | |
---|
1183 | ! | | | |---v-----| |
---|
1184 | ! | | m_index | | | |
---|
1185 | !------------------------------------------------------------- |
---|
1186 | |
---|
1187 | m_index = 0 ! 1:m_index categories have water in them |
---|
1188 | DO n = 1, jpl |
---|
1189 | IF (zvolp <= cum_max_vol(n)) THEN |
---|
1190 | m_index = n |
---|
1191 | IF (n == 1) THEN |
---|
1192 | rem_vol = zvolp |
---|
1193 | ELSE |
---|
1194 | rem_vol = zvolp - cum_max_vol(n-1) |
---|
1195 | END IF |
---|
1196 | exit ! to break out of the loop |
---|
1197 | END IF |
---|
1198 | END DO |
---|
1199 | m_index = min(jpl-1, m_index) |
---|
1200 | |
---|
1201 | !---------------------------------------------------------------- |
---|
1202 | ! semi-filled layer may have m_index different snow in it |
---|
1203 | !---------------------------------------------------------------- |
---|
1204 | |
---|
1205 | !----------------------------------------------------------- ^ |
---|
1206 | ! | alfan(m_index+1) |
---|
1207 | ! | |
---|
1208 | !hitl(3)--> |----------| | |
---|
1209 | !hitl(2)--> |------------| * * * * *| | |
---|
1210 | !hitl(1)--> |----------|* * * * * * |* * * * * | | |
---|
1211 | !hitl(0)-->------------------------------------------------- | ^ |
---|
1212 | ! various snow from lower categories | |alfa(m_index) |
---|
1213 | |
---|
1214 | ! hitl - heights of the snow layers from thinner and current categories |
---|
1215 | ! aicetl - area of each snow depth in this layer |
---|
1216 | |
---|
1217 | hitl(:) = z0 |
---|
1218 | aicetl(:) = z0 |
---|
1219 | DO n = 1, m_index |
---|
1220 | hitl(n) = max(min(hsnon(n) + alfan(n) - alfan(m_index), & |
---|
1221 | alfan(m_index+1) - alfan(m_index)), z0) |
---|
1222 | aicetl(n) = asnon(n) |
---|
1223 | |
---|
1224 | aicetl(0) = aicetl(0) + (aicen(n) - asnon(n)) |
---|
1225 | END DO |
---|
1226 | |
---|
1227 | hitl(m_index+1) = alfan(m_index+1) - alfan(m_index) |
---|
1228 | aicetl(m_index+1) = z0 |
---|
1229 | |
---|
1230 | !---------------------------------------------------------------- |
---|
1231 | ! reorder array according to hitl |
---|
1232 | ! snow heights not necessarily in height order |
---|
1233 | !---------------------------------------------------------------- |
---|
1234 | |
---|
1235 | DO ns = 1, m_index+1 |
---|
1236 | DO n = 0, m_index - ns + 1 |
---|
1237 | IF (hitl(n) > hitl(n+1)) THEN ! swap order |
---|
1238 | tmp = hitl(n) |
---|
1239 | hitl(n) = hitl(n+1) |
---|
1240 | hitl(n+1) = tmp |
---|
1241 | tmp = aicetl(n) |
---|
1242 | aicetl(n) = aicetl(n+1) |
---|
1243 | aicetl(n+1) = tmp |
---|
1244 | END IF |
---|
1245 | END DO |
---|
1246 | END DO |
---|
1247 | |
---|
1248 | !---------------------------------------------------------------- |
---|
1249 | ! divide semi-filled layer into set of sublayers each vertically homogenous |
---|
1250 | !---------------------------------------------------------------- |
---|
1251 | |
---|
1252 | !hitl(3)---------------------------------------------------------------- |
---|
1253 | ! | * * * * * * * * |
---|
1254 | ! |* * * * * * * * * |
---|
1255 | !hitl(2)---------------------------------------------------------------- |
---|
1256 | ! | * * * * * * * * | * * * * * * * * |
---|
1257 | ! |* * * * * * * * * |* * * * * * * * * |
---|
1258 | !hitl(1)---------------------------------------------------------------- |
---|
1259 | ! | * * * * * * * * | * * * * * * * * | * * * * * * * * |
---|
1260 | ! |* * * * * * * * * |* * * * * * * * * |* * * * * * * * * |
---|
1261 | !hitl(0)---------------------------------------------------------------- |
---|
1262 | ! aicetl(0) aicetl(1) aicetl(2) aicetl(3) |
---|
1263 | |
---|
1264 | ! move up over layers incrementing volume |
---|
1265 | DO n = 1, m_index+1 |
---|
1266 | |
---|
1267 | area = sum(aicetl(:)) - & ! total area of sub-layer |
---|
1268 | (rhos/rau0) * sum(aicetl(n:jpl+1)) ! area of sub-layer occupied by snow |
---|
1269 | |
---|
1270 | vol = (hitl(n) - hitl(n-1)) * area ! thickness of sub-layer times area |
---|
1271 | |
---|
1272 | IF (vol >= rem_vol) THEN ! have reached the sub-layer with the depth within |
---|
1273 | hpond = rem_vol / area + hitl(n-1) + alfan(m_index) - alfan(1) |
---|
1274 | |
---|
1275 | exit |
---|
1276 | ELSE ! still in sub-layer below the sub-layer with the depth |
---|
1277 | rem_vol = rem_vol - vol |
---|
1278 | END IF |
---|
1279 | |
---|
1280 | END DO |
---|
1281 | |
---|
1282 | END IF |
---|
1283 | |
---|
1284 | END SUBROUTINE ice_thd_pnd_depth |
---|
1285 | |
---|
1286 | |
---|
1287 | SUBROUTINE ice_thd_pnd_perm(ticen, salin, perm) |
---|
1288 | !!------------------------------------------------------------------- |
---|
1289 | !! *** ROUTINE ice_thd_pnd_perm *** |
---|
1290 | !! |
---|
1291 | !! ** Purpose : Determine the liquid fraction of brine in the ice |
---|
1292 | !! and its permeability |
---|
1293 | !!------------------------------------------------------------------- |
---|
1294 | |
---|
1295 | REAL (wp), DIMENSION(nlay_i), INTENT(IN) :: & |
---|
1296 | ticen, & ! internal ice temperature (K) |
---|
1297 | salin ! salinity (ppt) !js: ppt according to cice |
---|
1298 | |
---|
1299 | REAL (wp), INTENT(OUT) :: & |
---|
1300 | perm ! permeability |
---|
1301 | |
---|
1302 | REAL (wp) :: & |
---|
1303 | Sbr ! brine salinity |
---|
1304 | |
---|
1305 | REAL (wp), DIMENSION(nlay_i) :: & |
---|
1306 | Tin, & ! ice temperature |
---|
1307 | phi ! liquid fraction |
---|
1308 | |
---|
1309 | INTEGER :: k |
---|
1310 | |
---|
1311 | !----------------------------------------------------------------- |
---|
1312 | ! Compute ice temperatures from enthalpies using quadratic formula |
---|
1313 | !----------------------------------------------------------------- |
---|
1314 | |
---|
1315 | DO k = 1,nlay_i |
---|
1316 | Tin(k) = ticen(k) - rt0 !js: from K to degC |
---|
1317 | END DO |
---|
1318 | |
---|
1319 | !----------------------------------------------------------------- |
---|
1320 | ! brine salinity and liquid fraction |
---|
1321 | !----------------------------------------------------------------- |
---|
1322 | |
---|
1323 | DO k = 1, nlay_i |
---|
1324 | |
---|
1325 | Sbr = - Tin(k) / rTmlt ! Consistent expression with SI3 (linear liquidus) |
---|
1326 | ! Best expression to date is that one |
---|
1327 | Sbr = - 18.7 * Tin(k) - 0.519 * Tin(k)**2 - 0.00535 * Tin(k) **3 |
---|
1328 | phi(k) = salin(k) / Sbr |
---|
1329 | |
---|
1330 | END DO |
---|
1331 | |
---|
1332 | !----------------------------------------------------------------- |
---|
1333 | ! permeability |
---|
1334 | !----------------------------------------------------------------- |
---|
1335 | |
---|
1336 | perm = 3.0e-08_wp * (minval(phi))**3 ! Golden et al. (2007) |
---|
1337 | |
---|
1338 | END SUBROUTINE ice_thd_pnd_perm |
---|
1339 | |
---|
1340 | |
---|
1341 | !---------------------------------------------------------------------------------------------------------------------- |
---|
1342 | |
---|
1343 | SUBROUTINE ice_thd_pnd_init |
---|
1344 | !!------------------------------------------------------------------- |
---|
1345 | !! *** ROUTINE ice_thd_pnd_init *** |
---|
1346 | !! |
---|
1347 | !! ** Purpose : Physical constants and parameters linked to melt ponds |
---|
1348 | !! over sea ice |
---|
1349 | !! |
---|
1350 | !! ** Method : Read the namthd_pnd namelist and check the melt pond |
---|
1351 | !! parameter values called at the first timestep (nit000) |
---|
1352 | !! |
---|
1353 | !! ** input : Namelist namthd_pnd |
---|
1354 | !!------------------------------------------------------------------- |
---|
1355 | INTEGER :: ios, ioptio ! Local integer |
---|
1356 | !! |
---|
1357 | NAMELIST/namthd_pnd/ ln_pnd, ln_pnd_LEV , rn_apnd_min, rn_apnd_max, & |
---|
1358 | & ln_pnd_CST , rn_apnd, rn_hpnd, & |
---|
1359 | & ln_pnd_TOPO , & |
---|
1360 | & ln_pnd_lids, ln_pnd_alb |
---|
1361 | !!------------------------------------------------------------------- |
---|
1362 | ! |
---|
1363 | REWIND( numnam_ice_ref ) ! Namelist namthd_pnd in reference namelist : Melt Ponds |
---|
1364 | READ ( numnam_ice_ref, namthd_pnd, IOSTAT = ios, ERR = 901) |
---|
1365 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namthd_pnd in reference namelist' ) |
---|
1366 | REWIND( numnam_ice_cfg ) ! Namelist namthd_pnd in configuration namelist : Melt Ponds |
---|
1367 | READ ( numnam_ice_cfg, namthd_pnd, IOSTAT = ios, ERR = 902 ) |
---|
1368 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namthd_pnd in configuration namelist' ) |
---|
1369 | IF(lwm) WRITE ( numoni, namthd_pnd ) |
---|
1370 | ! |
---|
1371 | IF(lwp) THEN ! control print |
---|
1372 | WRITE(numout,*) |
---|
1373 | WRITE(numout,*) 'ice_thd_pnd_init: ice parameters for melt ponds' |
---|
1374 | WRITE(numout,*) '~~~~~~~~~~~~~~~~' |
---|
1375 | WRITE(numout,*) ' Namelist namicethd_pnd:' |
---|
1376 | WRITE(numout,*) ' Melt ponds activated or not ln_pnd = ', ln_pnd |
---|
1377 | WRITE(numout,*) ' Topographic melt pond scheme ln_pnd_TOPO = ', ln_pnd_TOPO |
---|
1378 | WRITE(numout,*) ' Level ice melt pond scheme ln_pnd_LEV = ', ln_pnd_LEV |
---|
1379 | WRITE(numout,*) ' Minimum ice fraction that contributes to melt ponds rn_apnd_min = ', rn_apnd_min |
---|
1380 | WRITE(numout,*) ' Maximum ice fraction that contributes to melt ponds rn_apnd_max = ', rn_apnd_max |
---|
1381 | WRITE(numout,*) ' Constant ice melt pond scheme ln_pnd_CST = ', ln_pnd_CST |
---|
1382 | WRITE(numout,*) ' Prescribed pond fraction rn_apnd = ', rn_apnd |
---|
1383 | WRITE(numout,*) ' Prescribed pond depth rn_hpnd = ', rn_hpnd |
---|
1384 | WRITE(numout,*) ' Frozen lids on top of melt ponds ln_pnd_lids = ', ln_pnd_lids |
---|
1385 | WRITE(numout,*) ' Melt ponds affect albedo or not ln_pnd_alb = ', ln_pnd_alb |
---|
1386 | ENDIF |
---|
1387 | ! |
---|
1388 | ! !== set the choice of ice pond scheme ==! |
---|
1389 | ioptio = 0 |
---|
1390 | IF( .NOT.ln_pnd ) THEN ; ioptio = ioptio + 1 ; nice_pnd = np_pndNO ; ENDIF |
---|
1391 | IF( ln_pnd_CST ) THEN ; ioptio = ioptio + 1 ; nice_pnd = np_pndCST ; ENDIF |
---|
1392 | IF( ln_pnd_LEV ) THEN ; ioptio = ioptio + 1 ; nice_pnd = np_pndLEV ; ENDIF |
---|
1393 | IF( ln_pnd_TOPO ) THEN ; ioptio = ioptio + 1 ; nice_pnd = np_pndTOPO ; ENDIF |
---|
1394 | IF( ioptio /= 1 ) & |
---|
1395 | & CALL ctl_stop( 'ice_thd_pnd_init: choose either none (ln_pnd=F) or only one pond scheme (ln_pnd_LEV or ln_pnd_CST)' ) |
---|
1396 | ! |
---|
1397 | SELECT CASE( nice_pnd ) |
---|
1398 | CASE( np_pndNO ) |
---|
1399 | IF( ln_pnd_alb ) THEN ; ln_pnd_alb = .FALSE. ; CALL ctl_warn( 'ln_pnd_alb=false when no ponds' ) ; ENDIF |
---|
1400 | IF( ln_pnd_lids ) THEN ; ln_pnd_lids = .FALSE. ; CALL ctl_warn( 'ln_pnd_lids=false when no ponds' ) ; ENDIF |
---|
1401 | CASE( np_pndCST ) |
---|
1402 | IF( ln_pnd_lids ) THEN ; ln_pnd_lids = .FALSE. ; CALL ctl_warn( 'ln_pnd_lids=false when constant ponds' ) ; ENDIF |
---|
1403 | END SELECT |
---|
1404 | ! |
---|
1405 | END SUBROUTINE ice_thd_pnd_init |
---|
1406 | |
---|
1407 | #else |
---|
1408 | !!---------------------------------------------------------------------- |
---|
1409 | !! Default option Empty module NO SI3 sea-ice model |
---|
1410 | !!---------------------------------------------------------------------- |
---|
1411 | #endif |
---|
1412 | |
---|
1413 | !!====================================================================== |
---|
1414 | END MODULE icethd_pnd |
---|