1 | MODULE domqe |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE domqe *** |
---|
4 | !! Ocean : |
---|
5 | !!====================================================================== |
---|
6 | !! History : 2.0 ! 2006-06 (B. Levier, L. Marie) original code |
---|
7 | !! 3.1 ! 2009-02 (G. Madec, M. Leclair, R. Benshila) pure z* coordinate |
---|
8 | !! 3.3 ! 2011-10 (M. Leclair) totally rewrote domvvl: vvl option includes z_star and z_tilde coordinates |
---|
9 | !! 3.6 ! 2014-11 (P. Mathiot) add ice shelf capability |
---|
10 | !! 4.1 ! 2019-08 (A. Coward, D. Storkey) rename dom_vvl_sf_swp -> dom_vvl_sf_update for new timestepping |
---|
11 | !! 4.x ! 2020-02 (G. Madec, S. Techene) pure z* (quasi-eulerian) coordinate |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | !! dom_vvl_init : define initial vertical scale factors, depths and column thickness |
---|
16 | !! dom_vvl_sf_nxt : Compute next vertical scale factors |
---|
17 | !! dom_vvl_sf_update : Swap vertical scale factors and update the vertical grid |
---|
18 | !! dom_vvl_interpol : Interpolate vertical scale factors from one grid point to another |
---|
19 | !! dom_vvl_rst : read/write restart file |
---|
20 | !! dom_vvl_ctl : Check the vvl options |
---|
21 | !!---------------------------------------------------------------------- |
---|
22 | USE oce ! ocean dynamics and tracers |
---|
23 | USE phycst ! physical constant |
---|
24 | USE dom_oce ! ocean space and time domain |
---|
25 | USE dynadv , ONLY : ln_dynadv_vec |
---|
26 | USE isf_oce ! iceshelf cavities |
---|
27 | USE sbc_oce ! ocean surface boundary condition |
---|
28 | USE wet_dry ! wetting and drying |
---|
29 | USE usrdef_istate ! user defined initial state (wad only) |
---|
30 | USE restart ! ocean restart |
---|
31 | ! |
---|
32 | USE in_out_manager ! I/O manager |
---|
33 | USE iom ! I/O manager library |
---|
34 | USE lib_mpp ! distributed memory computing library |
---|
35 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
36 | USE timing ! Timing |
---|
37 | |
---|
38 | IMPLICIT NONE |
---|
39 | PRIVATE |
---|
40 | |
---|
41 | PUBLIC dom_qe_init ! called by domain.F90 |
---|
42 | PUBLIC dom_qe_zgr ! called by isfcpl.F90 |
---|
43 | PUBLIC dom_qe_sf_nxt ! called by step.F90 |
---|
44 | PUBLIC dom_qe_sf_update ! called by step.F90 |
---|
45 | PUBLIC dom_qe_interpol ! called by dynnxt.F90 |
---|
46 | |
---|
47 | ! !!* Namelist nam_vvl |
---|
48 | LOGICAL , PUBLIC :: ln_vvl_zstar = .FALSE. ! zstar vertical coordinate |
---|
49 | LOGICAL , PUBLIC :: ln_vvl_ztilde = .FALSE. ! ztilde vertical coordinate |
---|
50 | LOGICAL , PUBLIC :: ln_vvl_layer = .FALSE. ! level vertical coordinate |
---|
51 | LOGICAL , PUBLIC :: ln_vvl_ztilde_as_zstar = .FALSE. ! ztilde vertical coordinate |
---|
52 | LOGICAL , PUBLIC :: ln_vvl_zstar_at_eqtor = .FALSE. ! ztilde vertical coordinate |
---|
53 | LOGICAL , PUBLIC :: ln_vvl_kepe = .FALSE. ! kinetic/potential energy transfer |
---|
54 | ! ! conservation: not used yet |
---|
55 | REAL(wp) :: rn_ahe3 ! thickness diffusion coefficient |
---|
56 | REAL(wp) :: rn_rst_e3t ! ztilde to zstar restoration timescale [days] |
---|
57 | REAL(wp) :: rn_lf_cutoff ! cutoff frequency for low-pass filter [days] |
---|
58 | REAL(wp) :: rn_zdef_max ! maximum fractional e3t deformation |
---|
59 | LOGICAL , PUBLIC :: ln_vvl_dbg = .FALSE. ! debug control prints |
---|
60 | |
---|
61 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: un_td, vn_td ! thickness diffusion transport |
---|
62 | |
---|
63 | !! * Substitutions |
---|
64 | # include "do_loop_substitute.h90" |
---|
65 | !!---------------------------------------------------------------------- |
---|
66 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
67 | !! $Id: domvvl.F90 12377 2020-02-12 14:39:06Z acc $ |
---|
68 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
69 | !!---------------------------------------------------------------------- |
---|
70 | CONTAINS |
---|
71 | |
---|
72 | SUBROUTINE dom_qe_init( Kbb, Kmm, Kaa ) |
---|
73 | !!---------------------------------------------------------------------- |
---|
74 | !! *** ROUTINE dom_qe_init *** |
---|
75 | !! |
---|
76 | !! ** Purpose : Initialization of all scale factors, depths |
---|
77 | !! and water column heights |
---|
78 | !! |
---|
79 | !! ** Method : - use restart file and/or initialize |
---|
80 | !! - interpolate scale factors |
---|
81 | !! |
---|
82 | !! ** Action : - e3t_(n/b) |
---|
83 | !! - Regrid: e3[u/v](:,:,:,Kmm) |
---|
84 | !! e3[u/v](:,:,:,Kmm) |
---|
85 | !! e3w(:,:,:,Kmm) |
---|
86 | !! e3[u/v]w_b |
---|
87 | !! e3[u/v]w_n |
---|
88 | !! gdept(:,:,:,Kmm), gdepw(:,:,:,Kmm) and gde3w |
---|
89 | !! - h(t/u/v)_0 |
---|
90 | !! |
---|
91 | !! Reference : Leclair, M., and G. Madec, 2011, Ocean Modelling. |
---|
92 | !!---------------------------------------------------------------------- |
---|
93 | INTEGER, INTENT(in) :: Kbb, Kmm, Kaa |
---|
94 | ! |
---|
95 | IF(lwp) WRITE(numout,*) |
---|
96 | IF(lwp) WRITE(numout,*) 'dom_qe_init : Variable volume activated' |
---|
97 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~' |
---|
98 | ! |
---|
99 | CALL dom_qe_ctl ! choose vertical coordinate (z_star, z_tilde or layer) |
---|
100 | ! |
---|
101 | ! ! Read or initialize e3t_(b/n), tilde_e3t_(b/n) and hdiv_lf |
---|
102 | CALL dom_qe_rst( nit000, Kbb, Kmm, 'READ' ) |
---|
103 | e3t(:,:,jpk,Kaa) = e3t_0(:,:,jpk) ! last level always inside the sea floor set one for all |
---|
104 | ! |
---|
105 | CALL dom_qe_zgr(Kbb, Kmm, Kaa) ! interpolation scale factor, depth and water column |
---|
106 | ! |
---|
107 | IF(lwxios) THEN ! define variables in restart file when writing with XIOS |
---|
108 | CALL iom_set_rstw_var_active('e3t_b') |
---|
109 | CALL iom_set_rstw_var_active('e3t_n') |
---|
110 | ENDIF |
---|
111 | ! |
---|
112 | END SUBROUTINE dom_qe_init |
---|
113 | |
---|
114 | |
---|
115 | SUBROUTINE dom_qe_zgr(Kbb, Kmm, Kaa) |
---|
116 | !!---------------------------------------------------------------------- |
---|
117 | !! *** ROUTINE dom_qe_init *** |
---|
118 | !! |
---|
119 | !! ** Purpose : Interpolation of all scale factors, |
---|
120 | !! depths and water column heights |
---|
121 | !! |
---|
122 | !! ** Method : - interpolate scale factors |
---|
123 | !! |
---|
124 | !! ** Action : - e3t_(n/b) |
---|
125 | !! - Regrid: e3(u/v)_n |
---|
126 | !! e3(u/v)_b |
---|
127 | !! e3w_n |
---|
128 | !! e3(u/v)w_b |
---|
129 | !! e3(u/v)w_n |
---|
130 | !! gdept_n, gdepw_n and gde3w_n |
---|
131 | !! - h(t/u/v)_0 |
---|
132 | !! |
---|
133 | !! Reference : Leclair, M., and G. Madec, 2011, Ocean Modelling. |
---|
134 | !!---------------------------------------------------------------------- |
---|
135 | INTEGER, INTENT(in) :: Kbb, Kmm, Kaa |
---|
136 | !!---------------------------------------------------------------------- |
---|
137 | INTEGER :: ji, jj, jk |
---|
138 | INTEGER :: ii0, ii1, ij0, ij1 |
---|
139 | REAL(wp):: zcoef |
---|
140 | !!---------------------------------------------------------------------- |
---|
141 | ! |
---|
142 | ! !== Set of all other vertical scale factors ==! (now and before) |
---|
143 | ! ! Horizontal interpolation of e3t |
---|
144 | CALL dom_qe_r3c( ssh(:,:,Kbb), r3t(:,:,Kbb), r3u(:,:,Kbb), r3v(:,:,Kbb) ) |
---|
145 | CALL dom_qe_r3c( ssh(:,:,Kmm), r3t(:,:,Kmm), r3u(:,:,Kmm), r3v(:,:,Kmm), r3f(:,:) ) |
---|
146 | ! |
---|
147 | DO jk = 1, jpkm1 ! Horizontal interpolation of e3t |
---|
148 | e3t(:,:,jk,Kbb) = e3t_0(:,:,jk) * ( 1._wp + r3t(:,:,Kbb) * tmask(:,:,jk) ) ! Kbb time level |
---|
149 | e3u(:,:,jk,Kbb) = e3u_0(:,:,jk) * ( 1._wp + r3u(:,:,Kbb) * umask(:,:,jk) ) |
---|
150 | e3v(:,:,jk,Kbb) = e3v_0(:,:,jk) * ( 1._wp + r3v(:,:,Kbb) * vmask(:,:,jk) ) |
---|
151 | e3t(:,:,jk,Kmm) = e3t_0(:,:,jk) * ( 1._wp + r3t(:,:,Kmm) * tmask(:,:,jk) ) ! Kmm time level |
---|
152 | e3u(:,:,jk,Kmm) = e3u_0(:,:,jk) * ( 1._wp + r3u(:,:,Kmm) * umask(:,:,jk) ) |
---|
153 | e3v(:,:,jk,Kmm) = e3v_0(:,:,jk) * ( 1._wp + r3v(:,:,Kmm) * vmask(:,:,jk) ) |
---|
154 | e3f(:,:,jk) = e3f_0(:,:,jk) * ( 1._wp + r3f(:,:) * fmask(:,:,jk) ) |
---|
155 | END DO |
---|
156 | ! |
---|
157 | DO jk = 1, jpk ! Vertical interpolation of e3t,u,v |
---|
158 | ! ! The ratio does not have to be masked at w-level |
---|
159 | e3w (:,:,jk,Kbb) = e3w_0(:,:,jk) * ( 1._wp + r3t(:,:,Kbb) ) ! Kbb time level |
---|
160 | e3uw(:,:,jk,Kbb) = e3uw_0(:,:,jk) * ( 1._wp + r3u(:,:,Kbb) ) |
---|
161 | e3vw(:,:,jk,Kbb) = e3vw_0(:,:,jk) * ( 1._wp + r3v(:,:,Kbb) ) |
---|
162 | e3w (:,:,jk,Kmm) = e3w_0(:,:,jk) * ( 1._wp + r3t(:,:,Kmm) ) ! Kmm time level |
---|
163 | e3uw(:,:,jk,Kmm) = e3uw_0(:,:,jk) * ( 1._wp + r3u(:,:,Kmm) ) |
---|
164 | e3vw(:,:,jk,Kmm) = e3vw_0(:,:,jk) * ( 1._wp + r3v(:,:,Kmm) ) |
---|
165 | END DO |
---|
166 | ! |
---|
167 | ! We need to define e3[tuv]_a for AGRIF initialisation (should not be a problem for the restartability...) |
---|
168 | e3t(:,:,:,Kaa) = e3t(:,:,:,Kmm) |
---|
169 | e3u(:,:,:,Kaa) = e3u(:,:,:,Kmm) |
---|
170 | e3v(:,:,:,Kaa) = e3v(:,:,:,Kmm) |
---|
171 | ! |
---|
172 | ! !== depth of t and w-point ==! (set the isf depth as it is in the initial timestep) |
---|
173 | IF( ln_isf ) THEN !** IceShelF cavities |
---|
174 | ! ! to be created depending of the new names in isf |
---|
175 | ! ! it should be something like that : (with h_isf = thickness of iceshelf) |
---|
176 | ! ! in fact currently, h_isf(:,:) is called : risfdep(:,:) |
---|
177 | !!gm - depth idea 0 : just realize that mask is not needed ===>>>> with ISF, rescale all grid point position below ISF : no mask ! |
---|
178 | gdept(:,:,1,Kmm) = gdept_0(:,:,1) * ( 1._wp + r3t(:,:,Kmm) ) |
---|
179 | gdepw(:,:,1,Kmm) = 0._wp ! Initialized to zero one for all |
---|
180 | gde3w(:,:,1) = gdept(:,:,1,Kmm) - ssh(:,:,Kmm) ! reference to a common level z=0 for hpg |
---|
181 | DO jk = 2, jpk |
---|
182 | gdept(:,:,jk,Kmm) = MIN( risfdep(:,:) , gdept_0(:,:,jk) ) & |
---|
183 | + MAX( 0._wp , gdept_0(:,:,jk)-risfdep(:,:) ) * ( 1._wp + r3t(:,:,Kmm) ) |
---|
184 | gdepw(:,:,jk,Kmm) = MIN( risfdep(:,:) , gdepw_0(:,:,jk) ) & |
---|
185 | + MAX( 0._wp , gdepw_0(:,:,jk)-risfdep(:,:) ) * ( 1._wp + r3t(:,:,Kmm) ) |
---|
186 | gde3w(:,:,jk) = gdept(:,:,jk,Kmm) - ssh(:,:,Kmm) |
---|
187 | gdept(:,:,jk,Kbb) = MIN( risfdep(:,:) , gdept_0(:,:,jk) ) & |
---|
188 | + MAX( 0._wp , gdept_0(:,:,jk)-risfdep(:,:) ) * ( 1._wp + r3t(:,:,Kbb) ) |
---|
189 | gdepw(:,:,jk,Kbb) = MIN( risfdep(:,:) , gdepw_0(:,:,jk) ) & |
---|
190 | + MAX( 0._wp , gdepw_0(:,:,jk)-risfdep(:,:) ) * ( 1._wp + r3t(:,:,Kbb) ) |
---|
191 | END DO |
---|
192 | ! |
---|
193 | ELSE !** No cavities (all depth rescaled, even inside topography: no mask) |
---|
194 | ! |
---|
195 | !!gm idea 0 : just realize that mask is not needed ===>>>> without ISF, rescale all grid point position : no mask ! |
---|
196 | DO jk = 1, jpk |
---|
197 | gdept(:,:,jk,Kmm) = gdept_0(:,:,jk) * ( 1._wp + r3t(:,:,Kmm) ) |
---|
198 | gdepw(:,:,jk,Kmm) = gdepw_0(:,:,jk) * ( 1._wp + r3t(:,:,Kmm) ) |
---|
199 | gde3w(:,:,jk) = gdept (:,:,jk,Kmm) - ssh(:,:,Kmm) |
---|
200 | gdept(:,:,jk,Kbb) = gdept_0(:,:,jk) * ( 1._wp + r3t(:,:,Kbb) ) |
---|
201 | gdepw(:,:,jk,Kbb) = gdepw_0(:,:,jk) * ( 1._wp + r3t(:,:,Kbb) ) |
---|
202 | END DO |
---|
203 | ! |
---|
204 | ENDIF |
---|
205 | ! |
---|
206 | ! !== thickness of the water column !! (ocean portion only) |
---|
207 | ht(:,:) = ht_0(:,:) + ssh(:,:,Kmm) |
---|
208 | hu(:,:,Kbb) = hu_0(:,:) * ( 1._wp + r3u(:,:,Kbb) ) |
---|
209 | hu(:,:,Kmm) = hu_0(:,:) * ( 1._wp + r3u(:,:,Kmm) ) |
---|
210 | hv(:,:,Kbb) = hv_0(:,:) * ( 1._wp + r3v(:,:,Kbb) ) |
---|
211 | hv(:,:,Kmm) = hv_0(:,:) * ( 1._wp + r3v(:,:,Kmm) ) |
---|
212 | ! |
---|
213 | ! !== inverse of water column thickness ==! (u- and v- points) |
---|
214 | r1_hu(:,:,Kbb) = ssumask(:,:) / ( hu(:,:,Kbb) + 1._wp - ssumask(:,:) ) ! _i mask due to ISF |
---|
215 | r1_hu(:,:,Kmm) = ssumask(:,:) / ( hu(:,:,Kmm) + 1._wp - ssumask(:,:) ) |
---|
216 | r1_hv(:,:,Kbb) = ssvmask(:,:) / ( hv(:,:,Kbb) + 1._wp - ssvmask(:,:) ) |
---|
217 | r1_hv(:,:,Kmm) = ssvmask(:,:) / ( hv(:,:,Kmm) + 1._wp - ssvmask(:,:) ) |
---|
218 | ! |
---|
219 | END SUBROUTINE dom_qe_zgr |
---|
220 | |
---|
221 | |
---|
222 | SUBROUTINE dom_qe_sf_nxt( kt, Kbb, Kmm, Kaa, kcall ) |
---|
223 | !!---------------------------------------------------------------------- |
---|
224 | !! *** ROUTINE dom_qe_sf_nxt *** |
---|
225 | !! |
---|
226 | !! ** Purpose : - compute the after scale factors used in tra_zdf, dynnxt, |
---|
227 | !! tranxt and dynspg routines |
---|
228 | !! |
---|
229 | !! ** Method : - z_star case: Repartition of ssh INCREMENT proportionnaly to the level thickness. |
---|
230 | !! |
---|
231 | !! ** Action : - hdiv_lf : restoring towards full baroclinic divergence in z_tilde case |
---|
232 | !! - tilde_e3t_a: after increment of vertical scale factor |
---|
233 | !! in z_tilde case |
---|
234 | !! - e3(t/u/v)_a |
---|
235 | !! |
---|
236 | !! Reference : Leclair, M., and Madec, G. 2011, Ocean Modelling. |
---|
237 | !!---------------------------------------------------------------------- |
---|
238 | INTEGER, INTENT( in ) :: kt ! time step |
---|
239 | INTEGER, INTENT( in ) :: Kbb, Kmm, Kaa ! time step |
---|
240 | INTEGER, INTENT( in ), OPTIONAL :: kcall ! optional argument indicating call sequence |
---|
241 | ! |
---|
242 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
243 | INTEGER , DIMENSION(3) :: ijk_max, ijk_min ! temporary integers |
---|
244 | REAL(wp) :: z2dt, z_tmin, z_tmax ! local scalars |
---|
245 | LOGICAL :: ll_do_bclinic ! local logical |
---|
246 | REAL(wp), DIMENSION(jpi,jpj) :: zht, z_scale, zwu, zwv, zhdiv |
---|
247 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: ze3t |
---|
248 | !!---------------------------------------------------------------------- |
---|
249 | ! |
---|
250 | IF( ln_linssh ) RETURN ! No calculation in linear free surface |
---|
251 | ! |
---|
252 | IF( ln_timing ) CALL timing_start('dom_qe_sf_nxt') |
---|
253 | ! |
---|
254 | IF( kt == nit000 ) THEN |
---|
255 | IF(lwp) WRITE(numout,*) |
---|
256 | IF(lwp) WRITE(numout,*) 'dom_qe_sf_nxt : compute after scale factors' |
---|
257 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~~' |
---|
258 | ENDIF |
---|
259 | |
---|
260 | ! ll_do_bclinic = .TRUE. |
---|
261 | ! IF( PRESENT(kcall) ) THEN |
---|
262 | ! IF( kcall == 2 .AND. ln_vvl_ztilde ) ll_do_bclinic = .FALSE. |
---|
263 | ! ENDIF |
---|
264 | |
---|
265 | ! ******************************* ! |
---|
266 | ! After acale factors at t-points ! |
---|
267 | ! ******************************* ! |
---|
268 | ! ! --------------------------------------------- ! |
---|
269 | ! ! z_star coordinate and barotropic z-tilde part ! |
---|
270 | ! ! --------------------------------------------- ! |
---|
271 | ! |
---|
272 | ! |
---|
273 | ! *********************************** ! |
---|
274 | ! After scale factors at u- v- points ! |
---|
275 | ! *********************************** ! |
---|
276 | ! |
---|
277 | CALL dom_qe_r3c( ssh(:,:,Kaa), r3t(:,:,Kaa), r3u(:,:,Kaa), r3v(:,:,Kaa) ) |
---|
278 | ! |
---|
279 | DO jk = 1, jpkm1 |
---|
280 | e3t(:,:,jk,Kaa) = e3t_0(:,:,jk) * ( 1._wp + r3t(:,:,Kaa) * tmask(:,:,jk) ) |
---|
281 | e3u(:,:,jk,Kaa) = e3u_0(:,:,jk) * ( 1._wp + r3u(:,:,Kaa) * umask(:,:,jk) ) |
---|
282 | e3v(:,:,jk,Kaa) = e3v_0(:,:,jk) * ( 1._wp + r3v(:,:,Kaa) * vmask(:,:,jk) ) |
---|
283 | END DO |
---|
284 | ! |
---|
285 | ! *********************************** ! |
---|
286 | ! After depths at u- v points ! |
---|
287 | ! *********************************** ! |
---|
288 | hu(:,:,Kaa) = hu_0(:,:) * ( 1._wp + r3u(:,:,Kaa) ) |
---|
289 | hv(:,:,Kaa) = hv_0(:,:) * ( 1._wp + r3v(:,:,Kaa) ) |
---|
290 | ! ! Inverse of the local depth |
---|
291 | r1_hu(:,:,Kaa) = ssumask(:,:) / ( hu(:,:,Kaa) + 1._wp - ssumask(:,:) ) |
---|
292 | r1_hv(:,:,Kaa) = ssvmask(:,:) / ( hv(:,:,Kaa) + 1._wp - ssvmask(:,:) ) |
---|
293 | ! |
---|
294 | IF( ln_timing ) CALL timing_stop('dom_qe_sf_nxt') |
---|
295 | ! |
---|
296 | END SUBROUTINE dom_qe_sf_nxt |
---|
297 | |
---|
298 | |
---|
299 | SUBROUTINE dom_qe_sf_update( kt, Kbb, Kmm, Kaa ) |
---|
300 | !!---------------------------------------------------------------------- |
---|
301 | !! *** ROUTINE dom_qe_sf_update *** |
---|
302 | !! |
---|
303 | !! ** Purpose : for z tilde case: compute time filter and swap of scale factors |
---|
304 | !! compute all depths and related variables for next time step |
---|
305 | !! write outputs and restart file |
---|
306 | !! |
---|
307 | !! ** Method : - reconstruct scale factor at other grid points (interpolate) |
---|
308 | !! - recompute depths and water height fields |
---|
309 | !! |
---|
310 | !! ** Action : - Recompute: |
---|
311 | !! e3(u/v)_b |
---|
312 | !! e3w(:,:,:,Kmm) |
---|
313 | !! e3(u/v)w_b |
---|
314 | !! e3(u/v)w_n |
---|
315 | !! gdept(:,:,:,Kmm), gdepw(:,:,:,Kmm) and gde3w |
---|
316 | !! h(u/v) and h(u/v)r |
---|
317 | !! |
---|
318 | !! Reference : Leclair, M., and G. Madec, 2009, Ocean Modelling. |
---|
319 | !! Leclair, M., and G. Madec, 2011, Ocean Modelling. |
---|
320 | !!---------------------------------------------------------------------- |
---|
321 | INTEGER, INTENT( in ) :: kt ! time step |
---|
322 | INTEGER, INTENT( in ) :: Kbb, Kmm, Kaa ! time level indices |
---|
323 | ! |
---|
324 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
325 | REAL(wp) :: zcoef ! local scalar |
---|
326 | !!---------------------------------------------------------------------- |
---|
327 | ! |
---|
328 | IF( ln_linssh ) RETURN ! No calculation in linear free surface |
---|
329 | ! |
---|
330 | IF( ln_timing ) CALL timing_start('dom_qe_sf_update') |
---|
331 | ! |
---|
332 | IF( kt == nit000 ) THEN |
---|
333 | IF(lwp) WRITE(numout,*) |
---|
334 | IF(lwp) WRITE(numout,*) 'dom_qe_sf_update : - interpolate scale factors and compute depths for next time step' |
---|
335 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~~~~~' |
---|
336 | ENDIF |
---|
337 | ! |
---|
338 | ! Compute all missing vertical scale factor and depths |
---|
339 | ! ==================================================== |
---|
340 | ! Horizontal scale factor interpolations |
---|
341 | ! -------------------------------------- |
---|
342 | ! - ML - e3u(:,:,:,Kbb) and e3v(:,:,:,Kbb) are already computed in dynnxt |
---|
343 | ! - JC - hu(:,:,:,Kbb), hv(:,:,:,:,Kbb), hur_b, hvr_b also |
---|
344 | !!st ! r3t/u/v should be unchanged |
---|
345 | CALL dom_qe_r3c( ssh(:,:,Kmm), r3t_f(:,:), r3u_f(:,:), r3v_f(:,:), r3f(:,:) ) |
---|
346 | ! |
---|
347 | DO jk = 1, jpkm1 ! Horizontal interpolation of e3t |
---|
348 | e3f(:,:,jk) = e3f_0(:,:,jk) * ( 1._wp + r3f(:,:) * fmask(:,:,jk) ) ! Kmm time level |
---|
349 | END DO |
---|
350 | !CALL dom_qe_interpol( e3u(:,:,:,Kmm), e3f(:,:,:), 'F' ) |
---|
351 | |
---|
352 | ! Vertical scale factor interpolations |
---|
353 | ! DO jk = 1, jpk ! Vertical interpolation of e3t,u,v |
---|
354 | ! ! ! The ratio does not have to be masked at w-level |
---|
355 | ! e3w (:,:,jk,Kmm) = e3w_0(:,:,jk) * ( 1._wp + r3t(:,:,Kmm) ) ! Kmm time level |
---|
356 | ! e3uw(:,:,jk,Kmm) = e3uw_0(:,:,jk) * ( 1._wp + r3u(:,:,Kmm) ) |
---|
357 | ! e3vw(:,:,jk,Kmm) = e3vw_0(:,:,jk) * ( 1._wp + r3v(:,:,Kmm) ) |
---|
358 | ! END DO |
---|
359 | CALL dom_qe_interpol( e3t(:,:,:,Kmm), e3w(:,:,:,Kmm), 'W' ) |
---|
360 | CALL dom_qe_interpol( e3u(:,:,:,Kmm), e3uw(:,:,:,Kmm), 'UW' ) |
---|
361 | CALL dom_qe_interpol( e3v(:,:,:,Kmm), e3vw(:,:,:,Kmm), 'VW' ) |
---|
362 | CALL dom_qe_interpol( e3t(:,:,:,Kbb), e3w(:,:,:,Kbb), 'W' ) |
---|
363 | CALL dom_qe_interpol( e3u(:,:,:,Kbb), e3uw(:,:,:,Kbb), 'UW' ) |
---|
364 | CALL dom_qe_interpol( e3v(:,:,:,Kbb), e3vw(:,:,:,Kbb), 'VW' ) |
---|
365 | |
---|
366 | ! t- and w- points depth (set the isf depth as it is in the initial step) |
---|
367 | gdept(:,:,1,Kmm) = 0.5_wp * e3w(:,:,1,Kmm) |
---|
368 | gdepw(:,:,1,Kmm) = 0.0_wp |
---|
369 | gde3w(:,:,1) = gdept(:,:,1,Kmm) - ssh(:,:,Kmm) |
---|
370 | DO_3D_11_11( 2, jpk ) |
---|
371 | ! zcoef = (tmask(ji,jj,jk) - wmask(ji,jj,jk)) ! 0 everywhere tmask = wmask, ie everywhere expect at jk = mikt |
---|
372 | ! 1 for jk = mikt |
---|
373 | zcoef = (tmask(ji,jj,jk) - wmask(ji,jj,jk)) |
---|
374 | gdepw(ji,jj,jk,Kmm) = gdepw(ji,jj,jk-1,Kmm) + e3t(ji,jj,jk-1,Kmm) |
---|
375 | gdept(ji,jj,jk,Kmm) = zcoef * ( gdepw(ji,jj,jk ,Kmm) + 0.5 * e3w(ji,jj,jk,Kmm) ) & |
---|
376 | & + (1-zcoef) * ( gdept(ji,jj,jk-1,Kmm) + e3w(ji,jj,jk,Kmm) ) |
---|
377 | gde3w(ji,jj,jk) = gdept(ji,jj,jk,Kmm) - ssh(ji,jj,Kmm) |
---|
378 | END_3D |
---|
379 | ! IF( ln_isf ) THEN !** IceShelF cavities |
---|
380 | ! ! ! to be created depending of the new names in isf |
---|
381 | ! ! ! it should be something like that : (with h_isf = thickness of iceshelf) |
---|
382 | ! ! ! in fact currently, h_isf(:,:) is called : risfdep(:,:) |
---|
383 | ! !!gm - depth idea 0 : just realize that mask is not needed ===>>>> with ISF, rescale all grid point position below ISF : no mask ! |
---|
384 | ! gdept(:,:,1,Kmm) = gdept_0(:,:,1) * ( 1._wp + r3t(:,:,Kmm) ) |
---|
385 | ! gdepw(:,:,1,Kmm) = 0._wp ! Initialized to zero one for all |
---|
386 | ! gde3w(:,:,1) = gdept(:,:,1,Kmm) - ssh(:,:,Kmm) ! reference to a common level z=0 for hpg |
---|
387 | ! DO jk = 2, jpk |
---|
388 | ! gdept(:,:,jk,Kmm) = MIN( risfdep(:,:) , gdept_0(:,:,jk) ) & |
---|
389 | ! + MAX( 0._wp , gdept_0(:,:,jk)-risfdep(:,:) ) * ( 1._wp + r3t(:,:,Kmm) ) |
---|
390 | ! gdepw(:,:,jk,Kmm) = MIN( risfdep(:,:) , gdepw_0(:,:,jk) ) & |
---|
391 | ! + MAX( 0._wp , gdepw_0(:,:,jk)-risfdep(:,:) ) * ( 1._wp + r3t(:,:,Kmm) ) |
---|
392 | ! gde3w(:,:,jk) = gdept(:,:,jk,Kmm) - ssh(:,:,Kmm) |
---|
393 | ! END DO |
---|
394 | ! ! |
---|
395 | ! ELSE !** No cavities (all depth rescaled, even inside topography: no mask) |
---|
396 | ! ! |
---|
397 | ! !!gm idea 0 : just realize that mask is not needed ===>>>> without ISF, rescale all grid point position : no mask ! |
---|
398 | ! DO jk = 1, jpk |
---|
399 | ! gdept(:,:,jk,Kmm) = gdept_0(:,:,jk) * ( 1._wp + r3t(:,:,Kmm) ) |
---|
400 | ! gdepw(:,:,jk,Kmm) = gdepw_0(:,:,jk) * ( 1._wp + r3t(:,:,Kmm) ) |
---|
401 | ! gde3w(:,:,jk) = gdept (:,:,jk,Kmm) - ssh(:,:,Kmm) |
---|
402 | ! END DO |
---|
403 | ! ! |
---|
404 | ! ENDIF |
---|
405 | |
---|
406 | ! Local depth and Inverse of the local depth of the water |
---|
407 | ! ------------------------------------------------------- |
---|
408 | ! |
---|
409 | ht(:,:) = ht_0(:,:) + ssh(:,:,Kmm) |
---|
410 | |
---|
411 | ! write restart file |
---|
412 | ! ================== |
---|
413 | IF( lrst_oce ) CALL dom_qe_rst( kt, Kbb, Kmm, 'WRITE' ) |
---|
414 | ! |
---|
415 | IF( ln_timing ) CALL timing_stop('dom_qe_sf_update') |
---|
416 | ! |
---|
417 | END SUBROUTINE dom_qe_sf_update |
---|
418 | |
---|
419 | |
---|
420 | SUBROUTINE dom_qe_interpol( pe3_in, pe3_out, pout ) |
---|
421 | !!--------------------------------------------------------------------- |
---|
422 | !! *** ROUTINE dom_qe_interpol *** |
---|
423 | !! |
---|
424 | !! ** Purpose : interpolate scale factors from one grid point to another |
---|
425 | !! |
---|
426 | !! ** Method : e3_out = e3_0 + interpolation(e3_in - e3_0) |
---|
427 | !! - horizontal interpolation: grid cell surface averaging |
---|
428 | !! - vertical interpolation: simple averaging |
---|
429 | !!---------------------------------------------------------------------- |
---|
430 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(in ) :: pe3_in ! input e3 to be interpolated |
---|
431 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pe3_out ! output interpolated e3 |
---|
432 | CHARACTER(LEN=*) , INTENT(in ) :: pout ! grid point of out scale factors |
---|
433 | ! ! = 'U', 'V', 'W, 'F', 'UW' or 'VW' |
---|
434 | ! |
---|
435 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
436 | REAL(wp) :: zlnwd ! =1./0. when ln_wd_il = T/F |
---|
437 | !!---------------------------------------------------------------------- |
---|
438 | ! |
---|
439 | IF(ln_wd_il) THEN |
---|
440 | zlnwd = 1.0_wp |
---|
441 | ELSE |
---|
442 | zlnwd = 0.0_wp |
---|
443 | END IF |
---|
444 | ! |
---|
445 | SELECT CASE ( pout ) !== type of interpolation ==! |
---|
446 | ! |
---|
447 | CASE( 'U' ) !* from T- to U-point : hor. surface weighted mean |
---|
448 | DO_3D_10_10( 1, jpk ) |
---|
449 | pe3_out(ji,jj,jk) = 0.5_wp * ( umask(ji,jj,jk) * (1.0_wp - zlnwd) + zlnwd ) * r1_e1e2u(ji,jj) & |
---|
450 | & * ( e1e2t(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3t_0(ji ,jj,jk) ) & |
---|
451 | & + e1e2t(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3t_0(ji+1,jj,jk) ) ) |
---|
452 | END_3D |
---|
453 | CALL lbc_lnk( 'domqe', pe3_out(:,:,:), 'U', 1._wp ) |
---|
454 | pe3_out(:,:,:) = pe3_out(:,:,:) + e3u_0(:,:,:) |
---|
455 | ! |
---|
456 | CASE( 'V' ) !* from T- to V-point : hor. surface weighted mean |
---|
457 | DO_3D_10_10( 1, jpk ) |
---|
458 | pe3_out(ji,jj,jk) = 0.5_wp * ( vmask(ji,jj,jk) * (1.0_wp - zlnwd) + zlnwd ) * r1_e1e2v(ji,jj) & |
---|
459 | & * ( e1e2t(ji,jj ) * ( pe3_in(ji,jj ,jk) - e3t_0(ji,jj ,jk) ) & |
---|
460 | & + e1e2t(ji,jj+1) * ( pe3_in(ji,jj+1,jk) - e3t_0(ji,jj+1,jk) ) ) |
---|
461 | END_3D |
---|
462 | CALL lbc_lnk( 'domqe', pe3_out(:,:,:), 'V', 1._wp ) |
---|
463 | pe3_out(:,:,:) = pe3_out(:,:,:) + e3v_0(:,:,:) |
---|
464 | ! |
---|
465 | CASE( 'F' ) !* from U-point to F-point : hor. surface weighted mean |
---|
466 | DO_3D_10_10( 1, jpk ) |
---|
467 | pe3_out(ji,jj,jk) = 0.5_wp * ( umask(ji,jj,jk) * umask(ji,jj+1,jk) * (1.0_wp - zlnwd) + zlnwd ) & |
---|
468 | & * r1_e1e2f(ji,jj) & |
---|
469 | & * ( e1e2u(ji,jj ) * ( pe3_in(ji,jj ,jk) - e3u_0(ji,jj ,jk) ) & |
---|
470 | & + e1e2u(ji,jj+1) * ( pe3_in(ji,jj+1,jk) - e3u_0(ji,jj+1,jk) ) ) |
---|
471 | END_3D |
---|
472 | CALL lbc_lnk( 'domqe', pe3_out(:,:,:), 'F', 1._wp ) |
---|
473 | pe3_out(:,:,:) = pe3_out(:,:,:) + e3f_0(:,:,:) |
---|
474 | ! |
---|
475 | CASE( 'W' ) !* from T- to W-point : vertical simple mean |
---|
476 | ! |
---|
477 | pe3_out(:,:,1) = e3w_0(:,:,1) + pe3_in(:,:,1) - e3t_0(:,:,1) |
---|
478 | ! - ML - The use of mask in this formulea enables the special treatment of the last w-point without indirect adressing |
---|
479 | !!gm BUG? use here wmask in case of ISF ? to be checked |
---|
480 | DO jk = 2, jpk |
---|
481 | pe3_out(:,:,jk) = e3w_0(:,:,jk) + ( 1.0_wp - 0.5_wp * ( tmask(:,:,jk) * (1.0_wp - zlnwd) + zlnwd ) ) & |
---|
482 | & * ( pe3_in(:,:,jk-1) - e3t_0(:,:,jk-1) ) & |
---|
483 | & + 0.5_wp * ( tmask(:,:,jk) * (1.0_wp - zlnwd) + zlnwd ) & |
---|
484 | & * ( pe3_in(:,:,jk ) - e3t_0(:,:,jk ) ) |
---|
485 | END DO |
---|
486 | ! |
---|
487 | CASE( 'UW' ) !* from U- to UW-point : vertical simple mean |
---|
488 | ! |
---|
489 | pe3_out(:,:,1) = e3uw_0(:,:,1) + pe3_in(:,:,1) - e3u_0(:,:,1) |
---|
490 | ! - ML - The use of mask in this formaula enables the special treatment of the last w- point without indirect adressing |
---|
491 | !!gm BUG? use here wumask in case of ISF ? to be checked |
---|
492 | DO jk = 2, jpk |
---|
493 | pe3_out(:,:,jk) = e3uw_0(:,:,jk) + ( 1.0_wp - 0.5_wp * ( umask(:,:,jk) * (1.0_wp - zlnwd) + zlnwd ) ) & |
---|
494 | & * ( pe3_in(:,:,jk-1) - e3u_0(:,:,jk-1) ) & |
---|
495 | & + 0.5_wp * ( umask(:,:,jk) * (1.0_wp - zlnwd) + zlnwd ) & |
---|
496 | & * ( pe3_in(:,:,jk ) - e3u_0(:,:,jk ) ) |
---|
497 | END DO |
---|
498 | ! |
---|
499 | CASE( 'VW' ) !* from V- to VW-point : vertical simple mean |
---|
500 | ! |
---|
501 | pe3_out(:,:,1) = e3vw_0(:,:,1) + pe3_in(:,:,1) - e3v_0(:,:,1) |
---|
502 | ! - ML - The use of mask in this formaula enables the special treatment of the last w- point without indirect adressing |
---|
503 | !!gm BUG? use here wvmask in case of ISF ? to be checked |
---|
504 | DO jk = 2, jpk |
---|
505 | pe3_out(:,:,jk) = e3vw_0(:,:,jk) + ( 1.0_wp - 0.5_wp * ( vmask(:,:,jk) * (1.0_wp - zlnwd) + zlnwd ) ) & |
---|
506 | & * ( pe3_in(:,:,jk-1) - e3v_0(:,:,jk-1) ) & |
---|
507 | & + 0.5_wp * ( vmask(:,:,jk) * (1.0_wp - zlnwd) + zlnwd ) & |
---|
508 | & * ( pe3_in(:,:,jk ) - e3v_0(:,:,jk ) ) |
---|
509 | END DO |
---|
510 | END SELECT |
---|
511 | ! |
---|
512 | END SUBROUTINE dom_qe_interpol |
---|
513 | |
---|
514 | |
---|
515 | SUBROUTINE dom_qe_r3c( pssh, pr3t, pr3u, pr3v, pr3f ) |
---|
516 | !!--------------------------------------------------------------------- |
---|
517 | !! *** ROUTINE r3c *** |
---|
518 | !! |
---|
519 | !! ** Purpose : compute the filtered ratio ssh/h_0 at t-,u-,v-,f-points |
---|
520 | !! |
---|
521 | !! ** Method : - compute the ssh at u- and v-points (f-point optional) |
---|
522 | !! Vector Form : surface weighted averaging |
---|
523 | !! Flux Form : simple averaging |
---|
524 | !! - compute the ratio ssh/h_0 at t-,u-,v-pts, (f-pt optional) |
---|
525 | !!---------------------------------------------------------------------- |
---|
526 | REAL(wp), DIMENSION(:,:) , INTENT(in ) :: pssh ! sea surface height [m] |
---|
527 | REAL(wp), DIMENSION(:,:) , INTENT( out) :: pr3t, pr3u, pr3v ! ssh/h0 ratio at t-, u-, v-,points [-] |
---|
528 | REAL(wp), DIMENSION(:,:), OPTIONAL, INTENT( out) :: pr3f ! ssh/h0 ratio at f-point [-] |
---|
529 | ! |
---|
530 | INTEGER :: ji, jj ! dummy loop indices |
---|
531 | !!---------------------------------------------------------------------- |
---|
532 | ! |
---|
533 | ! |
---|
534 | pr3t(:,:) = pssh(:,:) * r1_ht_0(:,:) !== ratio at t-point ==! |
---|
535 | ! |
---|
536 | ! |
---|
537 | ! !== ratio at u-,v-point ==! |
---|
538 | ! |
---|
539 | IF( ln_dynadv_vec ) THEN !- Vector Form (thickness weighted averaging) |
---|
540 | DO_2D_11_11 |
---|
541 | pr3u(ji,jj) = 0.5_wp * ( e1e2t(ji ,jj) * pssh(ji ,jj) & |
---|
542 | & + e1e2t(ji+1,jj) * pssh(ji+1,jj) ) * r1_hu_0(ji,jj) * r1_e1e2u(ji,jj) |
---|
543 | pr3v(ji,jj) = 0.5_wp * ( e1e2t(ji,jj ) * pssh(ji,jj ) & |
---|
544 | & + e1e2t(ji,jj+1) * pssh(ji,jj+1) ) * r1_hv_0(ji,jj) * r1_e1e2v(ji,jj) |
---|
545 | END_2D |
---|
546 | ELSE !- Flux Form (simple averaging) |
---|
547 | DO_2D_11_11 |
---|
548 | pr3u(ji,jj) = 0.5_wp * ( pssh(ji ,jj) + pssh(ji+1,jj) ) * r1_hu_0(ji,jj) |
---|
549 | pr3v(ji,jj) = 0.5_wp * ( pssh(ji,jj ) + pssh(ji,jj+1) ) * r1_hv_0(ji,jj) |
---|
550 | END_2D |
---|
551 | ENDIF |
---|
552 | ! |
---|
553 | IF( .NOT.PRESENT( pr3f ) ) THEN !- lbc on ratio at u-, v-points only |
---|
554 | CALL lbc_lnk_multi( 'dom_qe_r3c', pr3u, 'U', 1._wp, pr3v, 'V', 1._wp ) |
---|
555 | ! |
---|
556 | ! |
---|
557 | ELSE !== ratio at f-point ==! |
---|
558 | ! |
---|
559 | IF( ln_dynadv_vec ) THEN !- Vector Form (thickness weighted averaging) |
---|
560 | DO_2D_01_01 ! start from 1 since lbc_lnk('F') doesn't update the 1st row/line |
---|
561 | pr3f(ji,jj) = 0.25_wp * ( e1e2t(ji ,jj ) * pssh(ji ,jj ) & |
---|
562 | & + e1e2t(ji+1,jj ) * pssh(ji+1,jj ) & |
---|
563 | & + e1e2t(ji ,jj+1) * pssh(ji ,jj+1) & |
---|
564 | & + e1e2t(ji+1,jj+1) * pssh(ji+1,jj+1) ) * r1_hf_0(ji,jj) * r1_e1e2f(ji,jj) |
---|
565 | END_2D |
---|
566 | ELSE !- Flux Form (simple averaging) |
---|
567 | DO_2D_01_01 ! start from 1 since lbc_lnk('F') doesn't update the 1st row/line |
---|
568 | pr3f(ji,jj) = 0.25_wp * ( pssh(ji ,jj ) + pssh(ji+1,jj ) & |
---|
569 | & + pssh(ji ,jj+1) + pssh(ji+1,jj+1) ) * r1_hf_0(ji,jj) |
---|
570 | END_2D |
---|
571 | ENDIF |
---|
572 | ! ! lbc on ratio at u-,v-,f-points |
---|
573 | CALL lbc_lnk_multi( 'dom_qe_r3c', pr3u, 'U', 1._wp, pr3v, 'V', 1._wp, pr3f, 'F', 1._wp ) |
---|
574 | ! |
---|
575 | ENDIF |
---|
576 | ! |
---|
577 | END SUBROUTINE dom_qe_r3c |
---|
578 | |
---|
579 | |
---|
580 | SUBROUTINE dom_qe_rst( kt, Kbb, Kmm, cdrw ) |
---|
581 | !!--------------------------------------------------------------------- |
---|
582 | !! *** ROUTINE dom_qe_rst *** |
---|
583 | !! |
---|
584 | !! ** Purpose : Read or write VVL file in restart file |
---|
585 | !! |
---|
586 | !! ** Method : use of IOM library |
---|
587 | !! if the restart does not contain vertical scale factors, |
---|
588 | !! they are set to the _0 values |
---|
589 | !! if the restart does not contain vertical scale factors increments (z_tilde), |
---|
590 | !! they are set to 0. |
---|
591 | !!---------------------------------------------------------------------- |
---|
592 | INTEGER , INTENT(in) :: kt ! ocean time-step |
---|
593 | INTEGER , INTENT(in) :: Kbb, Kmm ! ocean time level indices |
---|
594 | CHARACTER(len=*), INTENT(in) :: cdrw ! "READ"/"WRITE" flag |
---|
595 | ! |
---|
596 | INTEGER :: ji, jj, jk |
---|
597 | INTEGER :: id1, id2 ! local integers |
---|
598 | !!---------------------------------------------------------------------- |
---|
599 | ! |
---|
600 | IF( TRIM(cdrw) == 'READ' ) THEN ! Read/initialise |
---|
601 | ! ! =============== |
---|
602 | IF( ln_rstart ) THEN !* Read the restart file |
---|
603 | CALL rst_read_open ! open the restart file if necessary |
---|
604 | CALL iom_get( numror, jpdom_autoglo, 'sshn' , ssh(:,:,Kmm), ldxios = lrxios ) |
---|
605 | ! |
---|
606 | id1 = iom_varid( numror, 'e3t_b', ldstop = .FALSE. ) |
---|
607 | id2 = iom_varid( numror, 'e3t_n', ldstop = .FALSE. ) |
---|
608 | ! |
---|
609 | ! ! --------- ! |
---|
610 | ! ! all cases ! |
---|
611 | ! ! --------- ! |
---|
612 | ! |
---|
613 | IF( MIN( id1, id2 ) > 0 ) THEN ! all required arrays exist |
---|
614 | CALL iom_get( numror, jpdom_autoglo, 'e3t_b', e3t(:,:,:,Kbb), ldxios = lrxios ) |
---|
615 | CALL iom_get( numror, jpdom_autoglo, 'e3t_n', e3t(:,:,:,Kmm), ldxios = lrxios ) |
---|
616 | ! needed to restart if land processor not computed |
---|
617 | IF(lwp) write(numout,*) 'dom_qe_rst : e3t(:,:,:,Kbb) and e3t(:,:,:,Kmm) found in restart files' |
---|
618 | WHERE ( tmask(:,:,:) == 0.0_wp ) |
---|
619 | e3t(:,:,:,Kmm) = e3t_0(:,:,:) |
---|
620 | e3t(:,:,:,Kbb) = e3t_0(:,:,:) |
---|
621 | END WHERE |
---|
622 | IF( neuler == 0 ) THEN |
---|
623 | e3t(:,:,:,Kbb) = e3t(:,:,:,Kmm) |
---|
624 | ENDIF |
---|
625 | ELSE IF( id1 > 0 ) THEN |
---|
626 | IF(lwp) write(numout,*) 'dom_qe_rst WARNING : e3t(:,:,:,Kmm) not found in restart files' |
---|
627 | IF(lwp) write(numout,*) 'e3t_n set equal to e3t_b.' |
---|
628 | IF(lwp) write(numout,*) 'neuler is forced to 0' |
---|
629 | CALL iom_get( numror, jpdom_autoglo, 'e3t_b', e3t(:,:,:,Kbb), ldxios = lrxios ) |
---|
630 | e3t(:,:,:,Kmm) = e3t(:,:,:,Kbb) |
---|
631 | neuler = 0 |
---|
632 | ELSE IF( id2 > 0 ) THEN |
---|
633 | IF(lwp) write(numout,*) 'dom_qe_rst WARNING : e3t(:,:,:,Kbb) not found in restart files' |
---|
634 | IF(lwp) write(numout,*) 'e3t_b set equal to e3t_n.' |
---|
635 | IF(lwp) write(numout,*) 'neuler is forced to 0' |
---|
636 | CALL iom_get( numror, jpdom_autoglo, 'e3t_n', e3t(:,:,:,Kmm), ldxios = lrxios ) |
---|
637 | e3t(:,:,:,Kbb) = e3t(:,:,:,Kmm) |
---|
638 | neuler = 0 |
---|
639 | ELSE |
---|
640 | IF(lwp) write(numout,*) 'dom_qe_rst WARNING : e3t(:,:,:,Kmm) not found in restart file' |
---|
641 | IF(lwp) write(numout,*) 'Compute scale factor from sshn' |
---|
642 | IF(lwp) write(numout,*) 'neuler is forced to 0' |
---|
643 | DO jk = 1, jpk |
---|
644 | e3t(:,:,jk,Kmm) = e3t_0(:,:,jk) * ( ht_0(:,:) + ssh(:,:,Kmm) ) & |
---|
645 | & / ( ht_0(:,:) + 1._wp - ssmask(:,:) ) * tmask(:,:,jk) & |
---|
646 | & + e3t_0(:,:,jk) * (1._wp -tmask(:,:,jk)) |
---|
647 | END DO |
---|
648 | e3t(:,:,:,Kbb) = e3t(:,:,:,Kmm) |
---|
649 | neuler = 0 |
---|
650 | ENDIF |
---|
651 | ! |
---|
652 | ELSE !* Initialize at "rest" |
---|
653 | ! |
---|
654 | IF( ll_wd ) THEN ! MJB ll_wd edits start here - these are essential |
---|
655 | ! |
---|
656 | IF( cn_cfg == 'wad' ) THEN |
---|
657 | ! Wetting and drying test case |
---|
658 | CALL usr_def_istate( gdept(:,:,:,Kbb), tmask, ts(:,:,:,:,Kbb), uu(:,:,:,Kbb), vv(:,:,:,Kbb), ssh(:,:,Kbb) ) |
---|
659 | ts (:,:,:,:,Kmm) = ts (:,:,:,:,Kbb) ! set now values from to before ones |
---|
660 | ssh (:,:,Kmm) = ssh(:,:,Kbb) |
---|
661 | uu (:,:,:,Kmm) = uu (:,:,:,Kbb) |
---|
662 | vv (:,:,:,Kmm) = vv (:,:,:,Kbb) |
---|
663 | ELSE |
---|
664 | ! if not test case |
---|
665 | ssh(:,:,Kmm) = -ssh_ref |
---|
666 | ssh(:,:,Kbb) = -ssh_ref |
---|
667 | |
---|
668 | DO_2D_11_11 |
---|
669 | IF( ht_0(ji,jj)-ssh_ref < rn_wdmin1 ) THEN ! if total depth is less than min depth |
---|
670 | ssh(ji,jj,Kbb) = rn_wdmin1 - (ht_0(ji,jj) ) |
---|
671 | ssh(ji,jj,Kmm) = rn_wdmin1 - (ht_0(ji,jj) ) |
---|
672 | ENDIF |
---|
673 | END_2D |
---|
674 | ENDIF !If test case else |
---|
675 | |
---|
676 | ! Adjust vertical metrics for all wad |
---|
677 | DO jk = 1, jpk |
---|
678 | e3t(:,:,jk,Kmm) = e3t_0(:,:,jk) * ( ht_0(:,:) + ssh(:,:,Kmm) ) & |
---|
679 | & / ( ht_0(:,:) + 1._wp - ssmask(:,:) ) * tmask(:,:,jk) & |
---|
680 | & + e3t_0(:,:,jk) * ( 1._wp - tmask(:,:,jk) ) |
---|
681 | END DO |
---|
682 | e3t(:,:,:,Kbb) = e3t(:,:,:,Kmm) |
---|
683 | |
---|
684 | DO ji = 1, jpi |
---|
685 | DO jj = 1, jpj |
---|
686 | IF ( ht_0(ji,jj) .LE. 0.0 .AND. NINT( ssmask(ji,jj) ) .EQ. 1) THEN |
---|
687 | CALL ctl_stop( 'dom_qe_rst: ht_0 must be positive at potentially wet points' ) |
---|
688 | ENDIF |
---|
689 | END DO |
---|
690 | END DO |
---|
691 | ! |
---|
692 | ELSE |
---|
693 | ! |
---|
694 | ! Just to read set ssh in fact, called latter once vertical grid |
---|
695 | ! is set up: |
---|
696 | ! CALL usr_def_istate( gdept_0, tmask, ts(:,:,:,:,Kbb), uu(:,:,:,Kbb), vv(:,:,:,Kbb), ssh(:,:,Kbb) ) |
---|
697 | ! ! |
---|
698 | ! DO jk=1,jpk |
---|
699 | ! e3t(:,:,jk,Kbb) = e3t_0(:,:,jk) * ( ht_0(:,:) + ssh(:,:,Kbb) ) & |
---|
700 | ! & / ( ht_0(:,:) + 1._wp -ssmask(:,:) ) * tmask(:,:,jk) |
---|
701 | ! END DO |
---|
702 | ! e3t(:,:,:,Kmm) = e3t(:,:,:,Kbb) |
---|
703 | ssh(:,:,Kmm)=0._wp |
---|
704 | e3t(:,:,:,Kmm)=e3t_0(:,:,:) |
---|
705 | e3t(:,:,:,Kbb)=e3t_0(:,:,:) |
---|
706 | ! |
---|
707 | ENDIF ! end of ll_wd edits |
---|
708 | ! |
---|
709 | ENDIF |
---|
710 | ! |
---|
711 | ELSEIF( TRIM(cdrw) == 'WRITE' ) THEN ! Create restart file |
---|
712 | ! ! =================== |
---|
713 | IF(lwp) WRITE(numout,*) '---- dom_qe_rst ----' |
---|
714 | IF( lwxios ) CALL iom_swap( cwxios_context ) |
---|
715 | ! ! --------- ! |
---|
716 | ! ! all cases ! |
---|
717 | ! ! --------- ! |
---|
718 | CALL iom_rstput( kt, nitrst, numrow, 'e3t_b', e3t(:,:,:,Kbb), ldxios = lwxios ) |
---|
719 | CALL iom_rstput( kt, nitrst, numrow, 'e3t_n', e3t(:,:,:,Kmm), ldxios = lwxios ) |
---|
720 | ! |
---|
721 | IF( lwxios ) CALL iom_swap( cxios_context ) |
---|
722 | ENDIF |
---|
723 | ! |
---|
724 | END SUBROUTINE dom_qe_rst |
---|
725 | |
---|
726 | |
---|
727 | SUBROUTINE dom_qe_ctl |
---|
728 | !!--------------------------------------------------------------------- |
---|
729 | !! *** ROUTINE dom_qe_ctl *** |
---|
730 | !! |
---|
731 | !! ** Purpose : Control the consistency between namelist options |
---|
732 | !! for vertical coordinate |
---|
733 | !!---------------------------------------------------------------------- |
---|
734 | INTEGER :: ioptio, ios |
---|
735 | !! |
---|
736 | NAMELIST/nam_vvl/ ln_vvl_zstar, ln_vvl_ztilde, ln_vvl_layer, ln_vvl_ztilde_as_zstar, & |
---|
737 | & ln_vvl_zstar_at_eqtor , rn_ahe3 , rn_rst_e3t , & |
---|
738 | & rn_lf_cutoff , rn_zdef_max , ln_vvl_dbg ! not yet implemented: ln_vvl_kepe |
---|
739 | !!---------------------------------------------------------------------- |
---|
740 | ! |
---|
741 | READ ( numnam_ref, nam_vvl, IOSTAT = ios, ERR = 901) |
---|
742 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nam_vvl in reference namelist' ) |
---|
743 | READ ( numnam_cfg, nam_vvl, IOSTAT = ios, ERR = 902 ) |
---|
744 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'nam_vvl in configuration namelist' ) |
---|
745 | IF(lwm) WRITE ( numond, nam_vvl ) |
---|
746 | ! |
---|
747 | IF(lwp) THEN ! Namelist print |
---|
748 | WRITE(numout,*) |
---|
749 | WRITE(numout,*) 'dom_qe_ctl : choice/control of the variable vertical coordinate' |
---|
750 | WRITE(numout,*) '~~~~~~~~~~~' |
---|
751 | WRITE(numout,*) ' Namelist nam_vvl : chose a vertical coordinate' |
---|
752 | WRITE(numout,*) ' zstar ln_vvl_zstar = ', ln_vvl_zstar |
---|
753 | WRITE(numout,*) ' ztilde ln_vvl_ztilde = ', ln_vvl_ztilde |
---|
754 | WRITE(numout,*) ' layer ln_vvl_layer = ', ln_vvl_layer |
---|
755 | WRITE(numout,*) ' ztilde as zstar ln_vvl_ztilde_as_zstar = ', ln_vvl_ztilde_as_zstar |
---|
756 | WRITE(numout,*) ' ztilde near the equator ln_vvl_zstar_at_eqtor = ', ln_vvl_zstar_at_eqtor |
---|
757 | WRITE(numout,*) ' !' |
---|
758 | WRITE(numout,*) ' thickness diffusion coefficient rn_ahe3 = ', rn_ahe3 |
---|
759 | WRITE(numout,*) ' maximum e3t deformation fractional change rn_zdef_max = ', rn_zdef_max |
---|
760 | IF( ln_vvl_ztilde_as_zstar ) THEN |
---|
761 | WRITE(numout,*) ' ztilde running in zstar emulation mode (ln_vvl_ztilde_as_zstar=T) ' |
---|
762 | WRITE(numout,*) ' ignoring namelist timescale parameters and using:' |
---|
763 | WRITE(numout,*) ' hard-wired : z-tilde to zstar restoration timescale (days)' |
---|
764 | WRITE(numout,*) ' rn_rst_e3t = 0.e0' |
---|
765 | WRITE(numout,*) ' hard-wired : z-tilde cutoff frequency of low-pass filter (days)' |
---|
766 | WRITE(numout,*) ' rn_lf_cutoff = 1.0/rdt' |
---|
767 | ELSE |
---|
768 | WRITE(numout,*) ' z-tilde to zstar restoration timescale (days) rn_rst_e3t = ', rn_rst_e3t |
---|
769 | WRITE(numout,*) ' z-tilde cutoff frequency of low-pass filter (days) rn_lf_cutoff = ', rn_lf_cutoff |
---|
770 | ENDIF |
---|
771 | WRITE(numout,*) ' debug prints flag ln_vvl_dbg = ', ln_vvl_dbg |
---|
772 | ENDIF |
---|
773 | ! |
---|
774 | ioptio = 0 ! Parameter control |
---|
775 | IF( ln_vvl_ztilde_as_zstar ) ln_vvl_ztilde = .true. |
---|
776 | IF( ln_vvl_zstar ) ioptio = ioptio + 1 |
---|
777 | IF( ln_vvl_ztilde ) ioptio = ioptio + 1 |
---|
778 | IF( ln_vvl_layer ) ioptio = ioptio + 1 |
---|
779 | ! |
---|
780 | IF( ioptio /= 1 ) CALL ctl_stop( 'Choose ONE vertical coordinate in namelist nam_vvl' ) |
---|
781 | ! |
---|
782 | IF(lwp) THEN ! Print the choice |
---|
783 | WRITE(numout,*) |
---|
784 | IF( ln_vvl_zstar ) WRITE(numout,*) ' ==>>> zstar vertical coordinate is used' |
---|
785 | IF( ln_vvl_ztilde ) WRITE(numout,*) ' ==>>> ztilde vertical coordinate is used' |
---|
786 | IF( ln_vvl_layer ) WRITE(numout,*) ' ==>>> layer vertical coordinate is used' |
---|
787 | IF( ln_vvl_ztilde_as_zstar ) WRITE(numout,*) ' ==>>> to emulate a zstar coordinate' |
---|
788 | ENDIF |
---|
789 | ! |
---|
790 | #if defined key_agrif |
---|
791 | IF( (.NOT.Agrif_Root()).AND.(.NOT.ln_vvl_zstar) ) CALL ctl_stop( 'AGRIF is implemented with zstar coordinate only' ) |
---|
792 | #endif |
---|
793 | ! |
---|
794 | END SUBROUTINE dom_qe_ctl |
---|
795 | |
---|
796 | !!====================================================================== |
---|
797 | END MODULE domqe |
---|