1 | #if defined MULTI |
---|
2 | # define NAT_IN(k) cd_nat(k) |
---|
3 | # define SGN_IN(k) psgn(k) |
---|
4 | # define F_SIZE(ptab) kfld |
---|
5 | # define LBC_ARG (jf) |
---|
6 | # if defined DIM_2d |
---|
7 | # define ARRAY_TYPE(i,j,k,l,f) TYPE(PTR_2D) , INTENT(inout) :: ptab(f) |
---|
8 | # define ARRAY_IN(i,j,k,l,f) ptab(f)%pt2d(i,j) |
---|
9 | # define K_SIZE(ptab) 1 |
---|
10 | # define L_SIZE(ptab) 1 |
---|
11 | # endif |
---|
12 | # if defined DIM_3d |
---|
13 | # define ARRAY_TYPE(i,j,k,l,f) TYPE(PTR_3D) , INTENT(inout) :: ptab(f) |
---|
14 | # define ARRAY_IN(i,j,k,l,f) ptab(f)%pt3d(i,j,k) |
---|
15 | # define K_SIZE(ptab) SIZE(ptab(1)%pt3d,3) |
---|
16 | # define L_SIZE(ptab) 1 |
---|
17 | # endif |
---|
18 | # if defined DIM_4d |
---|
19 | # define ARRAY_TYPE(i,j,k,l,f) TYPE(PTR_4D) , INTENT(inout) :: ptab(f) |
---|
20 | # define ARRAY_IN(i,j,k,l,f) ptab(f)%pt4d(i,j,k,l) |
---|
21 | # define K_SIZE(ptab) SIZE(ptab(1)%pt4d,3) |
---|
22 | # define L_SIZE(ptab) SIZE(ptab(1)%pt4d,4) |
---|
23 | # endif |
---|
24 | #else |
---|
25 | ! !== IN: ptab is an array ==! |
---|
26 | # define ARRAY_TYPE(i,j,k,l,f) REAL(wp) , INTENT(inout) :: ARRAY_IN(i,j,k,l,f) |
---|
27 | # define NAT_IN(k) cd_nat |
---|
28 | # define SGN_IN(k) psgn |
---|
29 | # define F_SIZE(ptab) 1 |
---|
30 | # define LBC_ARG |
---|
31 | # if defined DIM_2d |
---|
32 | # define ARRAY_IN(i,j,k,l,f) ptab(i,j) |
---|
33 | # define K_SIZE(ptab) 1 |
---|
34 | # define L_SIZE(ptab) 1 |
---|
35 | # endif |
---|
36 | # if defined DIM_3d |
---|
37 | # define ARRAY_IN(i,j,k,l,f) ptab(i,j,k) |
---|
38 | # define K_SIZE(ptab) SIZE(ptab,3) |
---|
39 | # define L_SIZE(ptab) 1 |
---|
40 | # endif |
---|
41 | # if defined DIM_4d |
---|
42 | # define ARRAY_IN(i,j,k,l,f) ptab(i,j,k,l) |
---|
43 | # define K_SIZE(ptab) SIZE(ptab,3) |
---|
44 | # define L_SIZE(ptab) SIZE(ptab,4) |
---|
45 | # endif |
---|
46 | #endif |
---|
47 | |
---|
48 | SUBROUTINE ROUTINE_NFD( ptab, cd_nat, psgn, kfld ) |
---|
49 | !!---------------------------------------------------------------------- |
---|
50 | ARRAY_TYPE(:,:,:,:,:) ! array or pointer of arrays on which the boundary condition is applied |
---|
51 | CHARACTER(len=1) , INTENT(in ) :: NAT_IN(:) ! nature of array grid-points |
---|
52 | REAL(wp) , INTENT(in ) :: SGN_IN(:) ! sign used across the north fold boundary |
---|
53 | INTEGER, OPTIONAL, INTENT(in ) :: kfld ! number of pt3d arrays |
---|
54 | ! |
---|
55 | INTEGER :: ji, jj, jk, jl, jh, jf, jr ! dummy loop indices |
---|
56 | INTEGER :: ipi, ipk, ipl, ipf ! dimension of the input array |
---|
57 | INTEGER :: imigr, iihom, ijhom ! local integers |
---|
58 | INTEGER :: ierr, ibuffsize, ijpi, iis0, iie0, iilb |
---|
59 | INTEGER :: ij, iproc |
---|
60 | INTEGER, DIMENSION (jpmaxngh) :: ml_req_nf ! for mpi_isend when avoiding mpi_allgather |
---|
61 | INTEGER :: ml_err ! for mpi_isend when avoiding mpi_allgather |
---|
62 | INTEGER, DIMENSION(MPI_STATUS_SIZE) :: ml_stat ! for mpi_isend when avoiding mpi_allgather |
---|
63 | ! ! Workspace for message transfers avoiding mpi_allgather |
---|
64 | INTEGER :: ipf_j ! sum of lines for all multi fields |
---|
65 | INTEGER :: js ! counter |
---|
66 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: jj_s ! position of sent lines |
---|
67 | INTEGER, DIMENSION(:), ALLOCATABLE :: ipj_s ! number of sent lines |
---|
68 | REAL(wp), DIMENSION(:,:,:) , ALLOCATABLE :: ztabl |
---|
69 | REAL(wp), DIMENSION(:,:,:,:,:) , ALLOCATABLE :: ztab, ztabr |
---|
70 | REAL(wp), DIMENSION(:,:,:,:,:) , ALLOCATABLE :: znorthloc, zfoldwk |
---|
71 | REAL(wp), DIMENSION(:,:,:,:,:,:), ALLOCATABLE :: znorthgloio |
---|
72 | !!---------------------------------------------------------------------- |
---|
73 | ! |
---|
74 | ipk = K_SIZE(ptab) ! 3rd dimension |
---|
75 | ipl = L_SIZE(ptab) ! 4th - |
---|
76 | ipf = F_SIZE(ptab) ! 5th - use in "multi" case (array of pointers) |
---|
77 | ! |
---|
78 | IF( l_north_nogather ) THEN !== no allgather exchanges ==! |
---|
79 | |
---|
80 | ALLOCATE(ipj_s(ipf)) |
---|
81 | |
---|
82 | ijpj = 2 + nn_hls -1 ! Max 2nd dimension of message transfers (last two j-line only) |
---|
83 | ipj_s(:) = 1 + nn_hls -1 ! Real 2nd dimension of message transfers (depending on perf requirement) |
---|
84 | ! by default, only one line is exchanged |
---|
85 | |
---|
86 | ALLOCATE( jj_s(ipf,ijpj) ) |
---|
87 | |
---|
88 | ! re-define number of exchanged lines : |
---|
89 | ! must be two during the first two time steps |
---|
90 | ! to correct possible incoherent values on North fold lines from restart |
---|
91 | |
---|
92 | !!!!!!!!! temporary switch off this optimisation ==> force TRUE !!!!!!!! |
---|
93 | !!!!!!!!! needed to get the same results without agrif and with agrif and no zoom !!!!!!!! |
---|
94 | !!!!!!!!! I don't know why we must do that... !!!!!!!! |
---|
95 | l_full_nf_update = .TRUE. |
---|
96 | |
---|
97 | ! Two lines update (slower but necessary to avoid different values ion identical grid points |
---|
98 | IF ( l_full_nf_update .OR. & ! if coupling fields |
---|
99 | ( ncom_stp == nit000 .AND. .NOT. ln_rstart ) ) & ! at first time step, if not restart |
---|
100 | ipj_s(:) = 2 + nn_hls -1 |
---|
101 | |
---|
102 | ! Index of modifying lines in input |
---|
103 | DO jf = 1, ipf ! Loop over the number of arrays to be processed |
---|
104 | ! |
---|
105 | SELECT CASE ( npolj ) |
---|
106 | ! |
---|
107 | CASE ( 3, 4 ) ! * North fold T-point pivot |
---|
108 | ! |
---|
109 | SELECT CASE ( NAT_IN(jf) ) |
---|
110 | ! |
---|
111 | CASE ( 'T' , 'W' ,'U' ) ! T-, U-, W-point |
---|
112 | DO ji = 1, nn_hls+1 |
---|
113 | jj_s(jf,ji) = jpj - 2*nn_hls +ji -1 |
---|
114 | ENDDO |
---|
115 | CASE ( 'V' , 'F' ) ! V-, F-point |
---|
116 | DO ji = 1, nn_hls+1 |
---|
117 | jj_s(jf,ji) = jpj - 2*nn_hls +ji - 2 |
---|
118 | ENDDO |
---|
119 | END SELECT |
---|
120 | ! |
---|
121 | CASE ( 5, 6 ) ! * North fold F-point pivot |
---|
122 | SELECT CASE ( NAT_IN(jf) ) |
---|
123 | ! |
---|
124 | CASE ( 'T' , 'W' ,'U' ) ! T-, U-, W-point |
---|
125 | DO ji = 1, nn_hls |
---|
126 | jj_s(jf,ji) = jpj - 2*nn_hls + ji |
---|
127 | ENDDO |
---|
128 | ipj_s(jf) = nn_hls ! need only one line anyway |
---|
129 | CASE ( 'V' , 'F' ) ! V-, F-point |
---|
130 | DO ji = 1, nn_hls+1 |
---|
131 | jj_s(jf,ji) = jpj - 2*nn_hls +ji -1 |
---|
132 | ENDDO |
---|
133 | END SELECT |
---|
134 | ! |
---|
135 | END SELECT |
---|
136 | ! |
---|
137 | ENDDO |
---|
138 | ! |
---|
139 | ipf_j = sum (ipj_s(:)) ! Total number of lines to be exchanged |
---|
140 | ! |
---|
141 | ALLOCATE( znorthloc(jpimax,ipf_j,ipk,ipl,1) ) |
---|
142 | ! |
---|
143 | js = 0 |
---|
144 | DO jf = 1, ipf ! Loop over the number of arrays to be processed |
---|
145 | DO jj = 1, ipj_s(jf) |
---|
146 | js = js + 1 |
---|
147 | DO jl = 1, ipl |
---|
148 | DO jk = 1, ipk |
---|
149 | znorthloc(1:jpi,js,jk,jl,1) = ARRAY_IN(1:jpi,jj_s(jf,jj),jk,jl,jf) |
---|
150 | END DO |
---|
151 | END DO |
---|
152 | END DO |
---|
153 | END DO |
---|
154 | ! |
---|
155 | ibuffsize = jpimax * ipf_j * ipk * ipl |
---|
156 | ! |
---|
157 | ALLOCATE( zfoldwk(jpimax,ipf_j,ipk,ipl,1) ) |
---|
158 | ALLOCATE( ztabr(jpimax*jpmaxngh,ijpj,ipk,ipl,ipf) ) |
---|
159 | ! when some processors of the north fold are suppressed, |
---|
160 | ! values of ztab* arrays corresponding to these suppressed domain won't be defined |
---|
161 | ! and we need a default definition to 0. |
---|
162 | ! a better test should be: a testing if "suppressed land-processors" belongs to the north-pole folding |
---|
163 | IF ( jpni*jpnj /= jpnij ) ztabr(:,:,:,:,:) = 0._wp |
---|
164 | ! |
---|
165 | ! start waiting time measurement |
---|
166 | IF( ln_timing ) CALL tic_tac(.TRUE.) |
---|
167 | ! |
---|
168 | DO jr = 1, nsndto |
---|
169 | IF( nfipproc(isendto(jr),jpnj) /= narea-1 .AND. nfipproc(isendto(jr),jpnj) /= -1 ) THEN |
---|
170 | CALL mppsend( 5, znorthloc, ibuffsize, nfipproc(isendto(jr),jpnj), ml_req_nf(jr) ) |
---|
171 | ENDIF |
---|
172 | END DO |
---|
173 | ! |
---|
174 | DO jr = 1,nsndto |
---|
175 | iproc = nfipproc(isendto(jr),jpnj) |
---|
176 | IF(iproc /= -1) THEN |
---|
177 | iilb = nimppt(iproc+1) |
---|
178 | ijpi = jpiall(iproc+1) |
---|
179 | iis0 = nis0all(iproc+1) |
---|
180 | iie0 = nie0all(iproc+1) |
---|
181 | IF( iilb == 1 ) iis0 = 1 ! e-w boundary already done -> force to take 1st column |
---|
182 | IF( iilb + ijpi - 1 == jpiglo ) iie0 = ijpi ! e-w boundary already done -> force to take last column |
---|
183 | iilb = nfiimpp(isendto(jr),jpnj) - nfiimpp(isendto(1),jpnj) |
---|
184 | ENDIF |
---|
185 | IF( iproc /= narea-1 .AND. iproc /= -1 ) THEN |
---|
186 | CALL mpprecv(5, zfoldwk, ibuffsize, iproc) |
---|
187 | js = 0 |
---|
188 | DO jf = 1, ipf ; DO jj = 1, ipj_s(jf) |
---|
189 | js = js + 1 |
---|
190 | DO jl = 1, ipl |
---|
191 | DO jk = 1, ipk |
---|
192 | DO ji = iis0, iie0 |
---|
193 | ztabr(iilb+ji,jj,jk,jl,jf) = zfoldwk(ji,js,jk,jl,1) |
---|
194 | END DO |
---|
195 | END DO |
---|
196 | END DO |
---|
197 | END DO; END DO |
---|
198 | ELSE IF( iproc == narea-1 ) THEN |
---|
199 | DO jf = 1, ipf ; DO jj = 1, ipj_s(jf) |
---|
200 | DO jl = 1, ipl |
---|
201 | DO jk = 1, ipk |
---|
202 | DO ji = iis0, iie0 |
---|
203 | ztabr(iilb+ji,jj,jk,jl,jf) = ARRAY_IN(ji,jj_s(jf,jj),jk,jl,jf) |
---|
204 | END DO |
---|
205 | END DO |
---|
206 | END DO |
---|
207 | END DO; END DO |
---|
208 | ENDIF |
---|
209 | END DO |
---|
210 | DO jr = 1,nsndto |
---|
211 | IF( nfipproc(isendto(jr),jpnj) /= narea-1 .AND. nfipproc(isendto(jr),jpnj) /= -1 ) THEN |
---|
212 | CALL mpi_wait( ml_req_nf(jr), ml_stat, ml_err ) |
---|
213 | ENDIF |
---|
214 | END DO |
---|
215 | ! |
---|
216 | IF( ln_timing ) CALL tic_tac(.FALSE.) |
---|
217 | ! |
---|
218 | ! North fold boundary condition |
---|
219 | ! |
---|
220 | DO jf = 1, ipf |
---|
221 | CALL lbc_nfd_nogather( ARRAY_IN(:,:,:,:,jf), ztabr(:,1:ipj_s(jf),:,:,jf), cd_nat LBC_ARG, psgn LBC_ARG ) |
---|
222 | END DO |
---|
223 | ! |
---|
224 | DEALLOCATE( zfoldwk, ztabr, jj_s, ipj_s ) |
---|
225 | ! |
---|
226 | ELSE !== allgather exchanges ==! |
---|
227 | ! |
---|
228 | ijpj = 4 ! 2nd dimension of message transfers (last j-lines) |
---|
229 | ! |
---|
230 | ALLOCATE( znorthloc(jpimax,ijpj,ipk,ipl,ipf) ) |
---|
231 | ! |
---|
232 | DO jf = 1, ipf ! put in znorthloc the last ijpj j-lines of ptab |
---|
233 | DO jl = 1, ipl |
---|
234 | DO jk = 1, ipk |
---|
235 | DO jj = jpj - ijpj +1, jpj |
---|
236 | ij = jj - jpj + ijpj |
---|
237 | znorthloc(1:jpi,ij,jk,jl,jf) = ARRAY_IN(1:jpi,jj,jk,jl,jf) |
---|
238 | END DO |
---|
239 | END DO |
---|
240 | END DO |
---|
241 | END DO |
---|
242 | ! |
---|
243 | ibuffsize = jpimax * ijpj * ipk * ipl * ipf |
---|
244 | ! |
---|
245 | ALLOCATE( ztab (jpiglo,ijpj,ipk,ipl,ipf ) ) |
---|
246 | ALLOCATE( znorthgloio(jpimax,ijpj,ipk,ipl,ipf,jpni) ) |
---|
247 | ! |
---|
248 | ! when some processors of the north fold are suppressed, |
---|
249 | ! values of ztab* arrays corresponding to these suppressed domain won't be defined |
---|
250 | ! and we need a default definition to 0. |
---|
251 | ! a better test should be: a testing if "suppressed land-processors" belongs to the north-pole folding |
---|
252 | IF ( jpni*jpnj /= jpnij ) ztab(:,:,:,:,:) = 0._wp |
---|
253 | ! |
---|
254 | ! start waiting time measurement |
---|
255 | IF( ln_timing ) CALL tic_tac(.TRUE.) |
---|
256 | CALL MPI_ALLGATHER( znorthloc , ibuffsize, MPI_DOUBLE_PRECISION, & |
---|
257 | & znorthgloio, ibuffsize, MPI_DOUBLE_PRECISION, ncomm_north, ierr ) |
---|
258 | ! |
---|
259 | ! stop waiting time measurement |
---|
260 | IF( ln_timing ) CALL tic_tac(.FALSE.) |
---|
261 | ! |
---|
262 | DO jr = 1, ndim_rank_north ! recover the global north array |
---|
263 | iproc = nrank_north(jr) + 1 |
---|
264 | iilb = nimppt(iproc) |
---|
265 | ijpi = jpiall(iproc) |
---|
266 | iis0 = nis0all(iproc) |
---|
267 | iie0 = nie0all(iproc) |
---|
268 | IF( iilb == 1 ) iis0 = 1 ! e-w boundary already done -> force to take 1st column |
---|
269 | IF( iilb + ijpi - 1 == jpiglo ) iie0 = ijpi ! e-w boundary already done -> force to take last column |
---|
270 | DO jf = 1, ipf |
---|
271 | DO jl = 1, ipl |
---|
272 | DO jk = 1, ipk |
---|
273 | DO jj = 1, ijpj |
---|
274 | DO ji = iis0, iie0 |
---|
275 | ztab(ji+iilb-1,jj,jk,jl,jf) = znorthgloio(ji,jj,jk,jl,jf,jr) |
---|
276 | END DO |
---|
277 | END DO |
---|
278 | END DO |
---|
279 | END DO |
---|
280 | END DO |
---|
281 | END DO |
---|
282 | DO jf = 1, ipf |
---|
283 | CALL lbc_nfd( ztab(:,:,:,:,jf), cd_nat LBC_ARG, psgn LBC_ARG ) ! North fold boundary condition |
---|
284 | END DO |
---|
285 | ! |
---|
286 | DO jf = 1, ipf |
---|
287 | DO jl = 1, ipl |
---|
288 | DO jk = 1, ipk |
---|
289 | DO jj = jpj-ijpj+1, jpj ! Scatter back to ARRAY_IN |
---|
290 | ij = jj - jpj + ijpj |
---|
291 | DO ji= 1, jpi |
---|
292 | ARRAY_IN(ji,jj,jk,jl,jf) = ztab(ji+nimpp-1,ij,jk,jl,jf) |
---|
293 | END DO |
---|
294 | END DO |
---|
295 | END DO |
---|
296 | END DO |
---|
297 | END DO |
---|
298 | ! |
---|
299 | ! |
---|
300 | DEALLOCATE( ztab ) |
---|
301 | DEALLOCATE( znorthgloio ) |
---|
302 | ENDIF |
---|
303 | ! |
---|
304 | DEALLOCATE( znorthloc ) |
---|
305 | ! |
---|
306 | END SUBROUTINE ROUTINE_NFD |
---|
307 | |
---|
308 | #undef ARRAY_TYPE |
---|
309 | #undef NAT_IN |
---|
310 | #undef SGN_IN |
---|
311 | #undef ARRAY_IN |
---|
312 | #undef K_SIZE |
---|
313 | #undef L_SIZE |
---|
314 | #undef F_SIZE |
---|
315 | #undef LBC_ARG |
---|