1 | MODULE diaptr |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE diaptr *** |
---|
4 | !! Ocean physics: Computes meridonal transports and zonal means |
---|
5 | !!===================================================================== |
---|
6 | !! History : 1.0 ! 2003-09 (C. Talandier, G. Madec) Original code |
---|
7 | !! 2.0 ! 2006-01 (A. Biastoch) Allow sub-basins computation |
---|
8 | !! 3.2 ! 2010-03 (O. Marti, S. Flavoni) Add fields |
---|
9 | !! 3.3 ! 2010-10 (G. Madec) dynamical allocation |
---|
10 | !! 3.6 ! 2014-12 (C. Ethe) use of IOM |
---|
11 | !! 3.6 ! 2016-06 (T. Graham) Addition of diagnostics for CMIP6 |
---|
12 | !! 4.0 ! 2010-08 ( C. Ethe, J. Deshayes ) Improvment |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | |
---|
15 | !!---------------------------------------------------------------------- |
---|
16 | !! dia_ptr : Poleward Transport Diagnostics module |
---|
17 | !! dia_ptr_init : Initialization, namelist read |
---|
18 | !! ptr_sjk : "zonal" mean computation of a field - tracer or flux array |
---|
19 | !! ptr_sj : "zonal" and vertical sum computation of a "meridional" flux array |
---|
20 | !! (Generic interface to ptr_sj_3d, ptr_sj_2d) |
---|
21 | !!---------------------------------------------------------------------- |
---|
22 | USE oce ! ocean dynamics and active tracers |
---|
23 | USE dom_oce ! ocean space and time domain |
---|
24 | ! TEMP: Possibly not necessary if using XIOS (if cumulative axis operations are possible) |
---|
25 | USE domain, ONLY : dom_tile |
---|
26 | USE phycst ! physical constants |
---|
27 | ! |
---|
28 | USE iom ! IOM library |
---|
29 | USE in_out_manager ! I/O manager |
---|
30 | USE lib_mpp ! MPP library |
---|
31 | USE timing ! preformance summary |
---|
32 | |
---|
33 | IMPLICIT NONE |
---|
34 | PRIVATE |
---|
35 | |
---|
36 | INTERFACE ptr_sum |
---|
37 | MODULE PROCEDURE ptr_sum_3d, ptr_sum_2d |
---|
38 | END INTERFACE |
---|
39 | |
---|
40 | INTERFACE ptr_sj |
---|
41 | MODULE PROCEDURE ptr_sj_3d, ptr_sj_2d |
---|
42 | END INTERFACE |
---|
43 | |
---|
44 | PUBLIC ptr_sj ! call by tra_ldf & tra_adv routines |
---|
45 | PUBLIC ptr_sjk ! |
---|
46 | PUBLIC dia_ptr_init ! call in memogcm |
---|
47 | PUBLIC dia_ptr ! call in step module |
---|
48 | PUBLIC dia_ptr_hst ! called from tra_ldf/tra_adv routines |
---|
49 | |
---|
50 | ! !!** namelist namptr ** |
---|
51 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: hstr_adv, hstr_ldf, hstr_eiv !: Heat/Salt TRansports(adv, diff, Bolus.) |
---|
52 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: hstr_ove, hstr_btr, hstr_vtr !: heat Salt TRansports(overturn, baro, merional) |
---|
53 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:,:) :: pvtr_int, pzon_int !: Other zonal integrals |
---|
54 | |
---|
55 | LOGICAL , PUBLIC :: l_diaptr !: tracers trend flag (set from namelist in trdini) |
---|
56 | INTEGER, PARAMETER, PUBLIC :: nptr = 5 ! (glo, atl, pac, ind, ipc) |
---|
57 | INTEGER, PARAMETER :: jp_msk = 3 |
---|
58 | INTEGER, PARAMETER :: jp_vtr = 4 |
---|
59 | |
---|
60 | REAL(wp) :: rc_sv = 1.e-6_wp ! conversion from m3/s to Sverdrup |
---|
61 | REAL(wp) :: rc_pwatt = 1.e-15_wp ! conversion from W to PW (further x rho0 x Cp) |
---|
62 | REAL(wp) :: rc_ggram = 1.e-9_wp ! conversion from g to Gg (further x rho0) |
---|
63 | |
---|
64 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: btmsk ! T-point basin interior masks |
---|
65 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: btmsk34 ! mask out Southern Ocean (=0 south of 34°S) |
---|
66 | |
---|
67 | LOGICAL :: ll_init = .TRUE. !: tracers trend flag (set from namelist in trdini) |
---|
68 | |
---|
69 | !! * Substitutions |
---|
70 | # include "do_loop_substitute.h90" |
---|
71 | # include "domzgr_substitute.h90" |
---|
72 | !!---------------------------------------------------------------------- |
---|
73 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
74 | !! $Id$ |
---|
75 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
76 | !!---------------------------------------------------------------------- |
---|
77 | CONTAINS |
---|
78 | |
---|
79 | ! TEMP: Most changes and some code in this module not necessary if using XIOS (subdomain support, axis operations) |
---|
80 | SUBROUTINE dia_ptr( kt, Kmm, pvtr ) |
---|
81 | !!---------------------------------------------------------------------- |
---|
82 | !! *** ROUTINE dia_ptr *** |
---|
83 | !!---------------------------------------------------------------------- |
---|
84 | INTEGER , INTENT(in) :: kt ! ocean time-step index |
---|
85 | INTEGER , INTENT(in) :: Kmm ! time level index |
---|
86 | REAL(wp), DIMENSION(ST_2D(nn_hls),jpk) , INTENT(in), OPTIONAL :: pvtr ! j-effective transport |
---|
87 | !!---------------------------------------------------------------------- |
---|
88 | ! |
---|
89 | IF( ln_timing ) CALL timing_start('dia_ptr') |
---|
90 | |
---|
91 | IF( kt == nit000 .AND. ll_init ) CALL dia_ptr_init |
---|
92 | ! |
---|
93 | IF( l_diaptr ) THEN |
---|
94 | ! Calculate zonal integrals |
---|
95 | IF( PRESENT( pvtr ) ) THEN |
---|
96 | CALL dia_ptr_zint( Kmm, pvtr ) |
---|
97 | ELSE |
---|
98 | CALL dia_ptr_zint( Kmm ) |
---|
99 | ENDIF |
---|
100 | |
---|
101 | ! Calculate diagnostics only when zonal integrals have finished |
---|
102 | IF( ntile == 0 .OR. ntile == nijtile ) CALL dia_ptr_iom(kt, Kmm, pvtr) |
---|
103 | ENDIF |
---|
104 | |
---|
105 | IF( ln_timing ) CALL timing_stop('dia_ptr') |
---|
106 | ! |
---|
107 | END SUBROUTINE dia_ptr |
---|
108 | |
---|
109 | |
---|
110 | SUBROUTINE dia_ptr_iom( kt, Kmm, pvtr ) |
---|
111 | !!---------------------------------------------------------------------- |
---|
112 | !! *** ROUTINE dia_ptr_iom *** |
---|
113 | !!---------------------------------------------------------------------- |
---|
114 | !! ** Purpose : Calculate diagnostics and send to XIOS |
---|
115 | !!---------------------------------------------------------------------- |
---|
116 | INTEGER , INTENT(in) :: kt ! ocean time-step index |
---|
117 | INTEGER , INTENT(in) :: Kmm ! time level index |
---|
118 | REAL(wp), DIMENSION(ST_2D(nn_hls),jpk) , INTENT(in), OPTIONAL :: pvtr ! j-effective transport |
---|
119 | ! |
---|
120 | INTEGER :: ji, jj, jk, jn ! dummy loop indices |
---|
121 | REAL(wp), DIMENSION(jpi,jpj) :: z2d ! 2D workspace |
---|
122 | REAL(wp), DIMENSION(jpj) :: zvsum, ztsum, zssum ! 1D workspace |
---|
123 | ! |
---|
124 | !overturning calculation |
---|
125 | REAL(wp), DIMENSION(jpj,jpk,nptr) :: sjk, r1_sjk, v_msf ! i-mean i-k-surface and its inverse |
---|
126 | REAL(wp), DIMENSION(jpj,jpk,nptr) :: zt_jk, zs_jk ! i-mean T and S, j-Stream-Function |
---|
127 | |
---|
128 | REAL(wp), DIMENSION(jpi,jpj,jpk,nptr) :: z4d1, z4d2 |
---|
129 | REAL(wp), DIMENSION(jpi,jpj,nptr) :: z3dtr ! i-mean T and S, j-Stream-Function |
---|
130 | !!---------------------------------------------------------------------- |
---|
131 | |
---|
132 | IF( PRESENT( pvtr ) ) THEN |
---|
133 | IF( iom_use( 'zomsf' ) ) THEN ! effective MSF |
---|
134 | DO jn = 1, nptr ! by sub-basins |
---|
135 | z4d1(1,:,:,jn) = pvtr_int(:,:,jp_vtr,jn) ! zonal cumulative effective transport excluding closed seas |
---|
136 | DO jk = jpkm1, 1, -1 |
---|
137 | z4d1(1,:,jk,jn) = z4d1(1,:,jk+1,jn) - z4d1(1,:,jk,jn) ! effective j-Stream-Function (MSF) |
---|
138 | END DO |
---|
139 | DO ji = 1, jpi |
---|
140 | z4d1(ji,:,:,jn) = z4d1(1,:,:,jn) |
---|
141 | ENDDO |
---|
142 | END DO |
---|
143 | CALL iom_put( 'zomsf', z4d1 * rc_sv ) |
---|
144 | ENDIF |
---|
145 | IF( iom_use( 'sopstove' ) .OR. iom_use( 'sophtove' ) ) THEN |
---|
146 | DO jn = 1, nptr |
---|
147 | sjk(:,:,jn) = pvtr_int(:,:,jp_msk,jn) |
---|
148 | r1_sjk(:,:,jn) = 0._wp |
---|
149 | WHERE( sjk(:,:,jn) /= 0._wp ) r1_sjk(:,:,jn) = 1._wp / sjk(:,:,jn) |
---|
150 | ! i-mean T and S, j-Stream-Function, basin |
---|
151 | zt_jk(:,:,jn) = pvtr_int(:,:,jp_tem,jn) * r1_sjk(:,:,jn) |
---|
152 | zs_jk(:,:,jn) = pvtr_int(:,:,jp_sal,jn) * r1_sjk(:,:,jn) |
---|
153 | v_msf(:,:,jn) = pvtr_int(:,:,jp_vtr,jn) |
---|
154 | hstr_ove(:,jp_tem,jn) = SUM( v_msf(:,:,jn)*zt_jk(:,:,jn), 2 ) |
---|
155 | hstr_ove(:,jp_sal,jn) = SUM( v_msf(:,:,jn)*zs_jk(:,:,jn), 2 ) |
---|
156 | ! |
---|
157 | ENDDO |
---|
158 | DO jn = 1, nptr |
---|
159 | z3dtr(1,:,jn) = hstr_ove(:,jp_tem,jn) * rc_pwatt ! (conversion in PW) |
---|
160 | DO ji = 1, jpi |
---|
161 | z3dtr(ji,:,jn) = z3dtr(1,:,jn) |
---|
162 | ENDDO |
---|
163 | ENDDO |
---|
164 | CALL iom_put( 'sophtove', z3dtr ) |
---|
165 | DO jn = 1, nptr |
---|
166 | z3dtr(1,:,jn) = hstr_ove(:,jp_sal,jn) * rc_ggram ! (conversion in Gg) |
---|
167 | DO ji = 1, jpi |
---|
168 | z3dtr(ji,:,jn) = z3dtr(1,:,jn) |
---|
169 | ENDDO |
---|
170 | ENDDO |
---|
171 | CALL iom_put( 'sopstove', z3dtr ) |
---|
172 | ENDIF |
---|
173 | |
---|
174 | IF( iom_use( 'sopstbtr' ) .OR. iom_use( 'sophtbtr' ) ) THEN |
---|
175 | ! Calculate barotropic heat and salt transport here |
---|
176 | DO jn = 1, nptr |
---|
177 | sjk(:,1,jn) = SUM( pvtr_int(:,:,jp_msk,jn), 2 ) |
---|
178 | r1_sjk(:,1,jn) = 0._wp |
---|
179 | WHERE( sjk(:,1,jn) /= 0._wp ) r1_sjk(:,1,jn) = 1._wp / sjk(:,1,jn) |
---|
180 | ! |
---|
181 | zvsum(:) = SUM( pvtr_int(:,:,jp_vtr,jn), 2 ) |
---|
182 | ztsum(:) = SUM( pvtr_int(:,:,jp_tem,jn), 2 ) |
---|
183 | zssum(:) = SUM( pvtr_int(:,:,jp_sal,jn), 2 ) |
---|
184 | hstr_btr(:,jp_tem,jn) = zvsum(:) * ztsum(:) * r1_sjk(:,1,jn) |
---|
185 | hstr_btr(:,jp_sal,jn) = zvsum(:) * zssum(:) * r1_sjk(:,1,jn) |
---|
186 | ! |
---|
187 | ENDDO |
---|
188 | DO jn = 1, nptr |
---|
189 | z3dtr(1,:,jn) = hstr_btr(:,jp_tem,jn) * rc_pwatt ! (conversion in PW) |
---|
190 | DO ji = 1, jpi |
---|
191 | z3dtr(ji,:,jn) = z3dtr(1,:,jn) |
---|
192 | ENDDO |
---|
193 | ENDDO |
---|
194 | CALL iom_put( 'sophtbtr', z3dtr ) |
---|
195 | DO jn = 1, nptr |
---|
196 | z3dtr(1,:,jn) = hstr_btr(:,jp_sal,jn) * rc_ggram ! (conversion in Gg) |
---|
197 | DO ji = 1, jpi |
---|
198 | z3dtr(ji,:,jn) = z3dtr(1,:,jn) |
---|
199 | ENDDO |
---|
200 | ENDDO |
---|
201 | CALL iom_put( 'sopstbtr', z3dtr ) |
---|
202 | ENDIF |
---|
203 | ! |
---|
204 | hstr_ove(:,:,:) = 0._wp ! Zero before next timestep |
---|
205 | hstr_btr(:,:,:) = 0._wp |
---|
206 | pvtr_int(:,:,:,:) = 0._wp |
---|
207 | ELSE |
---|
208 | IF( iom_use( 'zotem' ) .OR. iom_use( 'zosal' ) .OR. iom_use( 'zosrf' ) ) THEN ! i-mean i-k-surface |
---|
209 | ! |
---|
210 | DO jn = 1, nptr |
---|
211 | z4d1(1,:,:,jn) = pzon_int(:,:,jp_msk,jn) |
---|
212 | DO ji = 2, jpi |
---|
213 | z4d1(ji,:,:,jn) = z4d1(1,:,:,jn) |
---|
214 | ENDDO |
---|
215 | ENDDO |
---|
216 | CALL iom_put( 'zosrf', z4d1 ) |
---|
217 | ! |
---|
218 | DO jn = 1, nptr |
---|
219 | z4d2(1,:,:,jn) = pzon_int(:,:,jp_tem,jn) / MAX( z4d1(1,:,:,jn), 10.e-15 ) |
---|
220 | DO ji = 2, jpi |
---|
221 | z4d2(ji,:,:,jn) = z4d2(1,:,:,jn) |
---|
222 | ENDDO |
---|
223 | ENDDO |
---|
224 | CALL iom_put( 'zotem', z4d2 ) |
---|
225 | ! |
---|
226 | DO jn = 1, nptr |
---|
227 | z4d2(1,:,:,jn) = pzon_int(:,:,jp_sal,jn) / MAX( z4d1(1,:,:,jn), 10.e-15 ) |
---|
228 | DO ji = 2, jpi |
---|
229 | z4d2(ji,:,:,jn) = z4d2(1,:,:,jn) |
---|
230 | ENDDO |
---|
231 | ENDDO |
---|
232 | CALL iom_put( 'zosal', z4d2 ) |
---|
233 | ! |
---|
234 | ENDIF |
---|
235 | ! |
---|
236 | ! ! Advective and diffusive heat and salt transport |
---|
237 | IF( iom_use( 'sophtadv' ) .OR. iom_use( 'sopstadv' ) ) THEN |
---|
238 | ! |
---|
239 | DO jn = 1, nptr |
---|
240 | z3dtr(1,:,jn) = hstr_adv(:,jp_tem,jn) * rc_pwatt ! (conversion in PW) |
---|
241 | DO ji = 1, jpi |
---|
242 | z3dtr(ji,:,jn) = z3dtr(1,:,jn) |
---|
243 | ENDDO |
---|
244 | ENDDO |
---|
245 | CALL iom_put( 'sophtadv', z3dtr ) |
---|
246 | DO jn = 1, nptr |
---|
247 | z3dtr(1,:,jn) = hstr_adv(:,jp_sal,jn) * rc_ggram ! (conversion in Gg) |
---|
248 | DO ji = 1, jpi |
---|
249 | z3dtr(ji,:,jn) = z3dtr(1,:,jn) |
---|
250 | ENDDO |
---|
251 | ENDDO |
---|
252 | CALL iom_put( 'sopstadv', z3dtr ) |
---|
253 | ENDIF |
---|
254 | ! |
---|
255 | IF( iom_use( 'sophtldf' ) .OR. iom_use( 'sopstldf' ) ) THEN |
---|
256 | ! |
---|
257 | DO jn = 1, nptr |
---|
258 | z3dtr(1,:,jn) = hstr_ldf(:,jp_tem,jn) * rc_pwatt ! (conversion in PW) |
---|
259 | DO ji = 1, jpi |
---|
260 | z3dtr(ji,:,jn) = z3dtr(1,:,jn) |
---|
261 | ENDDO |
---|
262 | ENDDO |
---|
263 | CALL iom_put( 'sophtldf', z3dtr ) |
---|
264 | DO jn = 1, nptr |
---|
265 | z3dtr(1,:,jn) = hstr_ldf(:,jp_sal,jn) * rc_ggram ! (conversion in Gg) |
---|
266 | DO ji = 1, jpi |
---|
267 | z3dtr(ji,:,jn) = z3dtr(1,:,jn) |
---|
268 | ENDDO |
---|
269 | ENDDO |
---|
270 | CALL iom_put( 'sopstldf', z3dtr ) |
---|
271 | ENDIF |
---|
272 | ! |
---|
273 | IF( iom_use( 'sophteiv' ) .OR. iom_use( 'sopsteiv' ) ) THEN |
---|
274 | ! |
---|
275 | DO jn = 1, nptr |
---|
276 | z3dtr(1,:,jn) = hstr_eiv(:,jp_tem,jn) * rc_pwatt ! (conversion in PW) |
---|
277 | DO ji = 1, jpi |
---|
278 | z3dtr(ji,:,jn) = z3dtr(1,:,jn) |
---|
279 | ENDDO |
---|
280 | ENDDO |
---|
281 | CALL iom_put( 'sophteiv', z3dtr ) |
---|
282 | DO jn = 1, nptr |
---|
283 | z3dtr(1,:,jn) = hstr_eiv(:,jp_sal,jn) * rc_ggram ! (conversion in Gg) |
---|
284 | DO ji = 1, jpi |
---|
285 | z3dtr(ji,:,jn) = z3dtr(1,:,jn) |
---|
286 | ENDDO |
---|
287 | ENDDO |
---|
288 | CALL iom_put( 'sopsteiv', z3dtr ) |
---|
289 | ENDIF |
---|
290 | ! |
---|
291 | IF( iom_use( 'sopstvtr' ) .OR. iom_use( 'sophtvtr' ) ) THEN |
---|
292 | DO jn = 1, nptr |
---|
293 | z3dtr(1,:,jn) = hstr_vtr(:,jp_tem,jn) * rc_pwatt ! (conversion in PW) |
---|
294 | DO ji = 1, jpi |
---|
295 | z3dtr(ji,:,jn) = z3dtr(1,:,jn) |
---|
296 | ENDDO |
---|
297 | ENDDO |
---|
298 | CALL iom_put( 'sophtvtr', z3dtr ) |
---|
299 | DO jn = 1, nptr |
---|
300 | z3dtr(1,:,jn) = hstr_vtr(:,jp_sal,jn) * rc_ggram ! (conversion in Gg) |
---|
301 | DO ji = 1, jpi |
---|
302 | z3dtr(ji,:,jn) = z3dtr(1,:,jn) |
---|
303 | ENDDO |
---|
304 | ENDDO |
---|
305 | CALL iom_put( 'sopstvtr', z3dtr ) |
---|
306 | ENDIF |
---|
307 | ! |
---|
308 | ! TEMP: Possibly not necessary if using XIOS (if cumulative axis operations are possible) |
---|
309 | ! TODO: NOT TESTED- hangs on iom_get_var |
---|
310 | IF( iom_use( 'uocetr_vsum_cumul' ) ) THEN |
---|
311 | IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = 0 ) ! Use full domain |
---|
312 | CALL iom_get_var( 'uocetr_vsum_op', z2d ) ! get uocetr_vsum_op from xml |
---|
313 | z2d(:,:) = ptr_ci_2d( z2d(:,:) ) |
---|
314 | CALL iom_put( 'uocetr_vsum_cumul', z2d ) |
---|
315 | IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = nijtile ) ! Revert to tile domain |
---|
316 | ENDIF |
---|
317 | ! |
---|
318 | hstr_adv(:,:,:) = 0._wp ! Zero before next timestep |
---|
319 | hstr_ldf(:,:,:) = 0._wp |
---|
320 | hstr_eiv(:,:,:) = 0._wp |
---|
321 | hstr_vtr(:,:,:) = 0._wp |
---|
322 | pzon_int(:,:,:,:) = 0._wp |
---|
323 | ENDIF |
---|
324 | END SUBROUTINE dia_ptr_iom |
---|
325 | |
---|
326 | |
---|
327 | SUBROUTINE dia_ptr_zint( Kmm, pvtr ) |
---|
328 | !!---------------------------------------------------------------------- |
---|
329 | !! *** ROUTINE dia_ptr_zint *** |
---|
330 | !!---------------------------------------------------------------------- |
---|
331 | !! ** Purpose : i and i-k sum operations on arrays |
---|
332 | !! |
---|
333 | !! ** Method : - Call ptr_sjk (i sum) or ptr_sj (i-k sum) to perform the sum operation |
---|
334 | !! - Call ptr_sum to add this result to the sum over tiles |
---|
335 | !! |
---|
336 | !! ** Action : pvtr_int - terms for volume streamfunction, heat/salt transport barotropic/overturning terms |
---|
337 | !! pzon_int - terms for i mean temperature/salinity |
---|
338 | !!---------------------------------------------------------------------- |
---|
339 | INTEGER , INTENT(in) :: Kmm ! time level index |
---|
340 | REAL(wp), DIMENSION(ST_2D(nn_hls),jpk), INTENT(in), OPTIONAL :: pvtr ! j-effective transport |
---|
341 | REAL(wp), DIMENSION(ST_2D(nn_hls),jpk) :: zmask ! 3D workspace |
---|
342 | REAL(wp), DIMENSION(ST_2D(nn_hls),jpk,jpts) :: zts ! 4D workspace |
---|
343 | REAL(wp), DIMENSION(ST_1Dj(nn_hls),jpk,nptr) :: sjk, v_msf ! Zonal sum: i-k surface area, j-effective transport |
---|
344 | REAL(wp), DIMENSION(ST_1Dj(nn_hls),jpk,nptr) :: zt_jk, zs_jk ! Zonal sum: i-k surface area * (T, S) |
---|
345 | REAL(wp) :: zsfc, zvfc ! i-k surface area |
---|
346 | INTEGER :: ji, jj, jk, jn ! dummy loop indices |
---|
347 | !!---------------------------------------------------------------------- |
---|
348 | |
---|
349 | IF( PRESENT( pvtr ) ) THEN |
---|
350 | ! i sum of effective j transport excluding closed seas |
---|
351 | IF( iom_use( 'zomsf' ) .OR. iom_use( 'sopstove' ) .OR. iom_use( 'sophtove' ) ) THEN |
---|
352 | DO jn = 1, nptr |
---|
353 | v_msf(:,:,jn) = ptr_sjk( pvtr(:,:,:), btmsk34(:,:,jn) ) |
---|
354 | ENDDO |
---|
355 | |
---|
356 | CALL ptr_sum( pvtr_int(:,:,jp_vtr,:), v_msf(:,:,:) ) |
---|
357 | ENDIF |
---|
358 | |
---|
359 | ! i sum of j surface area, j surface area - temperature/salinity product on V grid |
---|
360 | IF( iom_use( 'sopstove' ) .OR. iom_use( 'sophtove' ) .OR. & |
---|
361 | & iom_use( 'sopstbtr' ) .OR. iom_use( 'sophtbtr' ) ) THEN |
---|
362 | zmask(:,:,:) = 0._wp |
---|
363 | zts(:,:,:,:) = 0._wp |
---|
364 | |
---|
365 | DO_3D( 1, 0, 1, 1, 1, jpkm1 ) |
---|
366 | zvfc = e1v(ji,jj) * e3v(ji,jj,jk,Kmm) |
---|
367 | zmask(ji,jj,jk) = vmask(ji,jj,jk) * zvfc |
---|
368 | zts(ji,jj,jk,jp_tem) = (ts(ji,jj,jk,jp_tem,Kmm)+ts(ji,jj+1,jk,jp_tem,Kmm)) * 0.5 * zvfc !Tracers averaged onto V grid |
---|
369 | zts(ji,jj,jk,jp_sal) = (ts(ji,jj,jk,jp_sal,Kmm)+ts(ji,jj+1,jk,jp_sal,Kmm)) * 0.5 * zvfc |
---|
370 | END_3D |
---|
371 | |
---|
372 | DO jn = 1, nptr |
---|
373 | sjk(:,:,jn) = ptr_sjk( zmask(:,:,:) , btmsk(:,:,jn) ) |
---|
374 | zt_jk(:,:,jn) = ptr_sjk( zts(:,:,:,jp_tem), btmsk(:,:,jn) ) |
---|
375 | zs_jk(:,:,jn) = ptr_sjk( zts(:,:,:,jp_sal), btmsk(:,:,jn) ) |
---|
376 | ENDDO |
---|
377 | |
---|
378 | CALL ptr_sum( pvtr_int(:,:,jp_msk,:), sjk(:,:,:) ) |
---|
379 | CALL ptr_sum( pvtr_int(:,:,jp_tem,:), zt_jk(:,:,:) ) |
---|
380 | CALL ptr_sum( pvtr_int(:,:,jp_sal,:), zs_jk(:,:,:) ) |
---|
381 | ENDIF |
---|
382 | ELSE |
---|
383 | ! i sum of j surface area - temperature/salinity product on T grid |
---|
384 | IF( iom_use( 'zotem' ) .OR. iom_use( 'zosal' ) .OR. iom_use( 'zosrf' ) ) THEN |
---|
385 | zmask(:,:,:) = 0._wp |
---|
386 | zts(:,:,:,:) = 0._wp |
---|
387 | |
---|
388 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
389 | zsfc = e1t(ji,jj) * e3t(ji,jj,jk,Kmm) |
---|
390 | zmask(ji,jj,jk) = tmask(ji,jj,jk) * zsfc |
---|
391 | zts(ji,jj,jk,jp_tem) = ts(ji,jj,jk,jp_tem,Kmm) * zsfc |
---|
392 | zts(ji,jj,jk,jp_sal) = ts(ji,jj,jk,jp_sal,Kmm) * zsfc |
---|
393 | END_3D |
---|
394 | |
---|
395 | DO jn = 1, nptr |
---|
396 | sjk(:,:,jn) = ptr_sjk( zmask(:,:,:) , btmsk(:,:,jn) ) |
---|
397 | zt_jk(:,:,jn) = ptr_sjk( zts(:,:,:,jp_tem), btmsk(:,:,jn) ) |
---|
398 | zs_jk(:,:,jn) = ptr_sjk( zts(:,:,:,jp_sal), btmsk(:,:,jn) ) |
---|
399 | ENDDO |
---|
400 | |
---|
401 | CALL ptr_sum( pzon_int(:,:,jp_msk,:), sjk(:,:,:) ) |
---|
402 | CALL ptr_sum( pzon_int(:,:,jp_tem,:), zt_jk(:,:,:) ) |
---|
403 | CALL ptr_sum( pzon_int(:,:,jp_sal,:), zs_jk(:,:,:) ) |
---|
404 | ENDIF |
---|
405 | |
---|
406 | ! i-k sum of j surface area - temperature/salinity product on V grid |
---|
407 | IF( iom_use( 'sopstvtr' ) .OR. iom_use( 'sophtvtr' ) ) THEN |
---|
408 | zts(:,:,:,:) = 0._wp |
---|
409 | |
---|
410 | DO_3D( 1, 0, 1, 1, 1, jpkm1 ) |
---|
411 | zvfc = e1v(ji,jj) * e3v(ji,jj,jk,Kmm) |
---|
412 | zts(ji,jj,jk,jp_tem) = (ts(ji,jj,jk,jp_tem,Kmm)+ts(ji,jj+1,jk,jp_tem,Kmm)) * 0.5 * zvfc !Tracers averaged onto V grid |
---|
413 | zts(ji,jj,jk,jp_sal) = (ts(ji,jj,jk,jp_sal,Kmm)+ts(ji,jj+1,jk,jp_sal,Kmm)) * 0.5 * zvfc |
---|
414 | END_3D |
---|
415 | |
---|
416 | CALL dia_ptr_hst( jp_tem, 'vtr', zts(:,:,:,jp_tem) ) |
---|
417 | CALL dia_ptr_hst( jp_sal, 'vtr', zts(:,:,:,jp_sal) ) |
---|
418 | ENDIF |
---|
419 | ENDIF |
---|
420 | END SUBROUTINE dia_ptr_zint |
---|
421 | |
---|
422 | |
---|
423 | SUBROUTINE dia_ptr_init |
---|
424 | !!---------------------------------------------------------------------- |
---|
425 | !! *** ROUTINE dia_ptr_init *** |
---|
426 | !! |
---|
427 | !! ** Purpose : Initialization, namelist read |
---|
428 | !!---------------------------------------------------------------------- |
---|
429 | INTEGER :: inum, jn ! local integers |
---|
430 | !! |
---|
431 | REAL(wp), DIMENSION(jpi,jpj) :: zmsk |
---|
432 | !!---------------------------------------------------------------------- |
---|
433 | |
---|
434 | l_diaptr = .FALSE. |
---|
435 | IF( iom_use( 'zomsf' ) .OR. iom_use( 'zotem' ) .OR. iom_use( 'zosal' ) .OR. & |
---|
436 | & iom_use( 'zosrf' ) .OR. iom_use( 'sopstove' ) .OR. iom_use( 'sophtove' ) .OR. & |
---|
437 | & iom_use( 'sopstbtr' ) .OR. iom_use( 'sophtbtr' ) .OR. iom_use( 'sophtadv' ) .OR. & |
---|
438 | & iom_use( 'sopstadv' ) .OR. iom_use( 'sophtldf' ) .OR. iom_use( 'sopstldf' ) .OR. & |
---|
439 | & iom_use( 'sophteiv' ) .OR. iom_use( 'sopsteiv' ) .OR. iom_use( 'sopstvtr' ) .OR. & |
---|
440 | & iom_use( 'sophtvtr' ) .OR. iom_use( 'uocetr_vsum_cumul' ) ) l_diaptr = .TRUE. |
---|
441 | |
---|
442 | |
---|
443 | IF(lwp) THEN ! Control print |
---|
444 | WRITE(numout,*) |
---|
445 | WRITE(numout,*) 'dia_ptr_init : poleward transport and msf initialization' |
---|
446 | WRITE(numout,*) '~~~~~~~~~~~~' |
---|
447 | WRITE(numout,*) ' Namelist namptr : set ptr parameters' |
---|
448 | WRITE(numout,*) ' Poleward heat & salt transport (T) or not (F) l_diaptr = ', l_diaptr |
---|
449 | ENDIF |
---|
450 | |
---|
451 | IF( l_diaptr ) THEN |
---|
452 | ! |
---|
453 | IF( dia_ptr_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'dia_ptr_init : unable to allocate arrays' ) |
---|
454 | |
---|
455 | rc_pwatt = rc_pwatt * rho0_rcp ! conversion from K.s-1 to PetaWatt |
---|
456 | rc_ggram = rc_ggram * rho0 ! conversion from m3/s to Gg/s |
---|
457 | |
---|
458 | IF( lk_mpp ) CALL mpp_ini_znl( numout ) ! Define MPI communicator for zonal sum |
---|
459 | |
---|
460 | btmsk(:,:,:) = 0._wp |
---|
461 | btmsk(:,:,1) = tmask_i(:,:) |
---|
462 | CALL iom_open( 'subbasins', inum, ldstop = .FALSE. ) |
---|
463 | CALL iom_get( inum, jpdom_global, 'atlmsk', btmsk(:,:,2) ) ! Atlantic basin |
---|
464 | CALL iom_get( inum, jpdom_global, 'pacmsk', btmsk(:,:,3) ) ! Pacific basin |
---|
465 | CALL iom_get( inum, jpdom_global, 'indmsk', btmsk(:,:,4) ) ! Indian basin |
---|
466 | CALL iom_close( inum ) |
---|
467 | btmsk(:,:,5) = MAX ( btmsk(:,:,3), btmsk(:,:,4) ) ! Indo-Pacific basin |
---|
468 | DO jn = 2, nptr |
---|
469 | btmsk(:,:,jn) = btmsk(:,:,jn) * tmask_i(:,:) ! interior domain only |
---|
470 | END DO |
---|
471 | ! JD : modification so that overturning streamfunction is available in Atlantic at 34S to compare with observations |
---|
472 | WHERE( gphit(:,:)*tmask_i(:,:) < -34._wp) |
---|
473 | zmsk(:,:) = 0._wp ! mask out Southern Ocean |
---|
474 | ELSE WHERE |
---|
475 | zmsk(:,:) = ssmask(:,:) |
---|
476 | END WHERE |
---|
477 | btmsk34(:,:,1) = btmsk(:,:,1) |
---|
478 | DO jn = 2, nptr |
---|
479 | btmsk34(:,:,jn) = btmsk(:,:,jn) * zmsk(:,:) ! interior domain only |
---|
480 | ENDDO |
---|
481 | |
---|
482 | ! Initialise arrays to zero because diatpr is called before they are first calculated |
---|
483 | ! Note that this means diagnostics will not be exactly correct when model run is restarted. |
---|
484 | hstr_adv(:,:,:) = 0._wp |
---|
485 | hstr_ldf(:,:,:) = 0._wp |
---|
486 | hstr_eiv(:,:,:) = 0._wp |
---|
487 | hstr_ove(:,:,:) = 0._wp |
---|
488 | hstr_btr(:,:,:) = 0._wp ! |
---|
489 | hstr_vtr(:,:,:) = 0._wp ! |
---|
490 | pvtr_int(:,:,:,:) = 0._wp |
---|
491 | pzon_int(:,:,:,:) = 0._wp |
---|
492 | ! |
---|
493 | ll_init = .FALSE. |
---|
494 | ! |
---|
495 | ENDIF |
---|
496 | ! |
---|
497 | END SUBROUTINE dia_ptr_init |
---|
498 | |
---|
499 | |
---|
500 | SUBROUTINE dia_ptr_hst( ktra, cptr, pvflx ) |
---|
501 | !!---------------------------------------------------------------------- |
---|
502 | !! *** ROUTINE dia_ptr_hst *** |
---|
503 | !!---------------------------------------------------------------------- |
---|
504 | !! Wrapper for heat and salt transport calculations to calculate them for each basin |
---|
505 | !! Called from all advection and/or diffusion routines |
---|
506 | !!---------------------------------------------------------------------- |
---|
507 | INTEGER , INTENT(in ) :: ktra ! tracer index |
---|
508 | CHARACTER(len=3) , INTENT(in) :: cptr ! transport type 'adv'/'ldf'/'eiv' |
---|
509 | REAL(wp), DIMENSION(ST_2D(nn_hls),jpk) , INTENT(in) :: pvflx ! 3D input array of advection/diffusion |
---|
510 | REAL(wp), DIMENSION(ST_1Dj(nn_hls),nptr) :: zsj ! |
---|
511 | INTEGER :: jn ! |
---|
512 | |
---|
513 | DO jn = 1, nptr |
---|
514 | zsj(:,jn) = ptr_sj( pvflx(:,:,:), btmsk(:,:,jn) ) |
---|
515 | ENDDO |
---|
516 | ! |
---|
517 | IF( cptr == 'adv' ) THEN |
---|
518 | IF( ktra == jp_tem ) CALL ptr_sum( hstr_adv(:,jp_tem,:), zsj(:,:) ) |
---|
519 | IF( ktra == jp_sal ) CALL ptr_sum( hstr_adv(:,jp_sal,:), zsj(:,:) ) |
---|
520 | ELSE IF( cptr == 'ldf' ) THEN |
---|
521 | IF( ktra == jp_tem ) CALL ptr_sum( hstr_ldf(:,jp_tem,:), zsj(:,:) ) |
---|
522 | IF( ktra == jp_sal ) CALL ptr_sum( hstr_ldf(:,jp_sal,:), zsj(:,:) ) |
---|
523 | ELSE IF( cptr == 'eiv' ) THEN |
---|
524 | IF( ktra == jp_tem ) CALL ptr_sum( hstr_eiv(:,jp_tem,:), zsj(:,:) ) |
---|
525 | IF( ktra == jp_sal ) CALL ptr_sum( hstr_eiv(:,jp_sal,:), zsj(:,:) ) |
---|
526 | ELSE IF( cptr == 'vtr' ) THEN |
---|
527 | IF( ktra == jp_tem ) CALL ptr_sum( hstr_vtr(:,jp_tem,:), zsj(:,:) ) |
---|
528 | IF( ktra == jp_sal ) CALL ptr_sum( hstr_vtr(:,jp_sal,:), zsj(:,:) ) |
---|
529 | ENDIF |
---|
530 | ! |
---|
531 | END SUBROUTINE dia_ptr_hst |
---|
532 | |
---|
533 | |
---|
534 | SUBROUTINE ptr_sum_2d( phstr, pva ) |
---|
535 | !!---------------------------------------------------------------------- |
---|
536 | !! *** ROUTINE ptr_sum_2d *** |
---|
537 | !!---------------------------------------------------------------------- |
---|
538 | !! ** Purpose : Add two 2D arrays with (j,nptr) dimensions |
---|
539 | !! |
---|
540 | !! ** Method : - phstr = phstr + pva |
---|
541 | !! - Call mpp_sum if the final tile |
---|
542 | !! |
---|
543 | !! ** Action : phstr |
---|
544 | !!---------------------------------------------------------------------- |
---|
545 | REAL(wp), DIMENSION(jpj,nptr) , INTENT(inout) :: phstr ! |
---|
546 | REAL(wp), DIMENSION(ST_1Dj(nn_hls),nptr), INTENT(in) :: pva ! |
---|
547 | INTEGER :: jj |
---|
548 | #if defined key_mpp_mpi |
---|
549 | INTEGER, DIMENSION(1) :: ish1d |
---|
550 | INTEGER, DIMENSION(2) :: ish2d |
---|
551 | REAL(wp), DIMENSION(jpj*nptr) :: zwork |
---|
552 | #endif |
---|
553 | |
---|
554 | DO jj = ntsj, ntej |
---|
555 | phstr(jj,:) = phstr(jj,:) + pva(jj,:) |
---|
556 | END DO |
---|
557 | |
---|
558 | #if defined key_mpp_mpi |
---|
559 | IF( ntile == 0 .OR. ntile == nijtile ) THEN |
---|
560 | ish1d(1) = jpj*nptr |
---|
561 | ish2d(1) = jpj ; ish2d(2) = nptr |
---|
562 | zwork(:) = RESHAPE( phstr(:,:), ish1d ) |
---|
563 | CALL mpp_sum( 'diaptr', zwork, ish1d(1), ncomm_znl ) |
---|
564 | phstr(:,:) = RESHAPE( zwork, ish2d ) |
---|
565 | ENDIF |
---|
566 | #endif |
---|
567 | END SUBROUTINE ptr_sum_2d |
---|
568 | |
---|
569 | |
---|
570 | SUBROUTINE ptr_sum_3d( phstr, pva ) |
---|
571 | !!---------------------------------------------------------------------- |
---|
572 | !! *** ROUTINE ptr_sum_3d *** |
---|
573 | !!---------------------------------------------------------------------- |
---|
574 | !! ** Purpose : Add two 3D arrays with (j,k,nptr) dimensions |
---|
575 | !! |
---|
576 | !! ** Method : - phstr = phstr + pva |
---|
577 | !! - Call mpp_sum if the final tile |
---|
578 | !! |
---|
579 | !! ** Action : phstr |
---|
580 | !!---------------------------------------------------------------------- |
---|
581 | REAL(wp), DIMENSION(jpj,jpk,nptr) , INTENT(inout) :: phstr ! |
---|
582 | REAL(wp), DIMENSION(ST_1Dj(nn_hls),jpk,nptr), INTENT(in) :: pva ! |
---|
583 | INTEGER :: jj, jk |
---|
584 | #if defined key_mpp_mpi |
---|
585 | INTEGER, DIMENSION(1) :: ish1d |
---|
586 | INTEGER, DIMENSION(3) :: ish3d |
---|
587 | REAL(wp), DIMENSION(jpj*jpk*nptr) :: zwork |
---|
588 | #endif |
---|
589 | |
---|
590 | DO jk = 1, jpk |
---|
591 | DO jj = ntsj, ntej |
---|
592 | phstr(jj,jk,:) = phstr(jj,jk,:) + pva(jj,jk,:) |
---|
593 | END DO |
---|
594 | END DO |
---|
595 | |
---|
596 | #if defined key_mpp_mpi |
---|
597 | IF( ntile == 0 .OR. ntile == nijtile ) THEN |
---|
598 | ish1d(1) = jpj*jpk*nptr |
---|
599 | ish3d(1) = jpj ; ish3d(2) = jpk ; ish3d(3) = nptr |
---|
600 | zwork(:) = RESHAPE( phstr(:,:,:), ish1d ) |
---|
601 | CALL mpp_sum( 'diaptr', zwork, ish1d(1), ncomm_znl ) |
---|
602 | phstr(:,:,:) = RESHAPE( zwork, ish3d ) |
---|
603 | ENDIF |
---|
604 | #endif |
---|
605 | END SUBROUTINE ptr_sum_3d |
---|
606 | |
---|
607 | |
---|
608 | FUNCTION dia_ptr_alloc() |
---|
609 | !!---------------------------------------------------------------------- |
---|
610 | !! *** ROUTINE dia_ptr_alloc *** |
---|
611 | !!---------------------------------------------------------------------- |
---|
612 | INTEGER :: dia_ptr_alloc ! return value |
---|
613 | INTEGER, DIMENSION(2) :: ierr |
---|
614 | !!---------------------------------------------------------------------- |
---|
615 | ierr(:) = 0 |
---|
616 | ! |
---|
617 | IF( .NOT. ALLOCATED( btmsk ) ) THEN |
---|
618 | ALLOCATE( btmsk(jpi,jpj,nptr) , btmsk34(jpi,jpj,nptr), & |
---|
619 | & hstr_adv(jpj,jpts,nptr), hstr_eiv(jpj,jpts,nptr), & |
---|
620 | & hstr_ove(jpj,jpts,nptr), hstr_btr(jpj,jpts,nptr), & |
---|
621 | & hstr_ldf(jpj,jpts,nptr), hstr_vtr(jpj,jpts,nptr), STAT=ierr(1) ) |
---|
622 | ! |
---|
623 | ALLOCATE( pvtr_int(jpj,jpk,jpts+2,nptr), & |
---|
624 | & pzon_int(jpj,jpk,jpts+1,nptr), STAT=ierr(2) ) |
---|
625 | ! |
---|
626 | dia_ptr_alloc = MAXVAL( ierr ) |
---|
627 | CALL mpp_sum( 'diaptr', dia_ptr_alloc ) |
---|
628 | ENDIF |
---|
629 | ! |
---|
630 | END FUNCTION dia_ptr_alloc |
---|
631 | |
---|
632 | |
---|
633 | FUNCTION ptr_sj_3d( pvflx, pmsk ) RESULT ( p_fval ) |
---|
634 | !!---------------------------------------------------------------------- |
---|
635 | !! *** ROUTINE ptr_sj_3d *** |
---|
636 | !! |
---|
637 | !! ** Purpose : i-k sum computation of a j-flux array |
---|
638 | !! |
---|
639 | !! ** Method : - i-k sum of pvflx using the interior 2D vmask (vmask_i). |
---|
640 | !! pvflx is supposed to be a masked flux (i.e. * vmask*e1v*e3v) |
---|
641 | !! |
---|
642 | !! ** Action : - p_fval: i-k-mean poleward flux of pvflx |
---|
643 | !!---------------------------------------------------------------------- |
---|
644 | REAL(wp), INTENT(in), DIMENSION(ST_2D(nn_hls),jpk) :: pvflx ! mask flux array at V-point |
---|
645 | REAL(wp), INTENT(in), DIMENSION(jpi,jpj) :: pmsk ! Optional 2D basin mask |
---|
646 | ! |
---|
647 | INTEGER :: ji, jj, jk ! dummy loop arguments |
---|
648 | REAL(wp), DIMENSION(ST_1Dj(nn_hls)) :: p_fval ! function value |
---|
649 | !!-------------------------------------------------------------------- |
---|
650 | ! |
---|
651 | p_fval(:) = 0._wp |
---|
652 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
653 | p_fval(jj) = p_fval(jj) + pvflx(ji,jj,jk) * pmsk(ji,jj) * tmask_i(ji,jj) |
---|
654 | END_3D |
---|
655 | END FUNCTION ptr_sj_3d |
---|
656 | |
---|
657 | |
---|
658 | FUNCTION ptr_sj_2d( pvflx, pmsk ) RESULT ( p_fval ) |
---|
659 | !!---------------------------------------------------------------------- |
---|
660 | !! *** ROUTINE ptr_sj_2d *** |
---|
661 | !! |
---|
662 | !! ** Purpose : "zonal" and vertical sum computation of a j-flux array |
---|
663 | !! |
---|
664 | !! ** Method : - i-k sum of pvflx using the interior 2D vmask (vmask_i). |
---|
665 | !! pvflx is supposed to be a masked flux (i.e. * vmask*e1v*e3v) |
---|
666 | !! |
---|
667 | !! ** Action : - p_fval: i-k-mean poleward flux of pvflx |
---|
668 | !!---------------------------------------------------------------------- |
---|
669 | REAL(wp) , INTENT(in), DIMENSION(ST_2D(nn_hls)) :: pvflx ! mask flux array at V-point |
---|
670 | REAL(wp) , INTENT(in), DIMENSION(jpi,jpj) :: pmsk ! Optional 2D basin mask |
---|
671 | ! |
---|
672 | INTEGER :: ji,jj ! dummy loop arguments |
---|
673 | REAL(wp), DIMENSION(ST_1Dj(nn_hls)) :: p_fval ! function value |
---|
674 | !!-------------------------------------------------------------------- |
---|
675 | ! |
---|
676 | p_fval(:) = 0._wp |
---|
677 | DO_2D( 0, 0, 0, 0 ) |
---|
678 | p_fval(jj) = p_fval(jj) + pvflx(ji,jj) * pmsk(ji,jj) * tmask_i(ji,jj) |
---|
679 | END_2D |
---|
680 | END FUNCTION ptr_sj_2d |
---|
681 | |
---|
682 | FUNCTION ptr_ci_2d( pva ) RESULT ( p_fval ) |
---|
683 | !!---------------------------------------------------------------------- |
---|
684 | !! *** ROUTINE ptr_ci_2d *** |
---|
685 | !! |
---|
686 | !! ** Purpose : "meridional" cumulated sum computation of a j-flux array |
---|
687 | !! |
---|
688 | !! ** Method : - j cumulated sum of pva using the interior 2D vmask (umask_i). |
---|
689 | !! |
---|
690 | !! ** Action : - p_fval: j-cumulated sum of pva |
---|
691 | !!---------------------------------------------------------------------- |
---|
692 | REAL(wp) , INTENT(in), DIMENSION(jpi,jpj) :: pva ! mask flux array at V-point |
---|
693 | ! |
---|
694 | INTEGER :: ji,jj,jc ! dummy loop arguments |
---|
695 | INTEGER :: ijpj ! ??? |
---|
696 | REAL(wp), DIMENSION(jpi,jpj) :: p_fval ! function value |
---|
697 | !!-------------------------------------------------------------------- |
---|
698 | ! |
---|
699 | ijpj = jpj ! ??? |
---|
700 | p_fval(:,:) = 0._wp |
---|
701 | DO jc = 1, jpnj ! looping over all processors in j axis |
---|
702 | DO_2D( 0, 0, 0, 0 ) |
---|
703 | p_fval(ji,jj) = p_fval(ji,jj-1) + pva(ji,jj) * tmask_i(ji,jj) |
---|
704 | END_2D |
---|
705 | END DO |
---|
706 | ! |
---|
707 | END FUNCTION ptr_ci_2d |
---|
708 | |
---|
709 | |
---|
710 | |
---|
711 | FUNCTION ptr_sjk( pta, pmsk ) RESULT ( p_fval ) |
---|
712 | !!---------------------------------------------------------------------- |
---|
713 | !! *** ROUTINE ptr_sjk *** |
---|
714 | !! |
---|
715 | !! ** Purpose : i-sum computation of an array |
---|
716 | !! |
---|
717 | !! ** Method : - i-sum of field using the interior 2D vmask (pmsk). |
---|
718 | !! |
---|
719 | !! ** Action : - p_fval: i-sum of masked field |
---|
720 | !!---------------------------------------------------------------------- |
---|
721 | !! |
---|
722 | IMPLICIT none |
---|
723 | REAL(wp) , INTENT(in), DIMENSION(ST_2D(nn_hls),jpk) :: pta ! mask flux array at V-point |
---|
724 | REAL(wp) , INTENT(in), DIMENSION(jpi,jpj) :: pmsk ! Optional 2D basin mask |
---|
725 | !! |
---|
726 | INTEGER :: ji, jj, jk ! dummy loop arguments |
---|
727 | REAL(wp), DIMENSION(ST_1Dj(nn_hls),jpk) :: p_fval ! return function value |
---|
728 | !!-------------------------------------------------------------------- |
---|
729 | ! |
---|
730 | p_fval(:,:) = 0._wp |
---|
731 | ! |
---|
732 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
733 | p_fval(jj,jk) = p_fval(jj,jk) + pta(ji,jj,jk) * pmsk(ji,jj) * tmask_i(ji,jj) |
---|
734 | END_3D |
---|
735 | END FUNCTION ptr_sjk |
---|
736 | |
---|
737 | |
---|
738 | !!====================================================================== |
---|
739 | END MODULE diaptr |
---|