1 | MODULE traadv |
---|
2 | !!============================================================================== |
---|
3 | !! *** MODULE traadv *** |
---|
4 | !! Ocean active tracers: advection trend |
---|
5 | !!============================================================================== |
---|
6 | !! History : 2.0 ! 2005-11 (G. Madec) Original code |
---|
7 | !! 3.3 ! 2010-09 (C. Ethe, G. Madec) merge TRC-TRA + switch from velocity to transport |
---|
8 | !! 3.6 ! 2011-06 (G. Madec) Addition of Mixed Layer Eddy parameterisation |
---|
9 | !! 3.7 ! 2014-05 (G. Madec) Add 2nd/4th order cases for CEN and FCT schemes |
---|
10 | !! - ! 2014-12 (G. Madec) suppression of cross land advection option |
---|
11 | !! 3.6 ! 2015-06 (E. Clementi) Addition of Stokes drift in case of wave coupling |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | !! tra_adv : compute ocean tracer advection trend |
---|
16 | !! tra_adv_init : control the different options of advection scheme |
---|
17 | !!---------------------------------------------------------------------- |
---|
18 | USE oce ! ocean dynamics and active tracers |
---|
19 | USE dom_oce ! ocean space and time domain |
---|
20 | USE domvvl ! variable vertical scale factors |
---|
21 | USE sbcwave ! wave module |
---|
22 | USE sbc_oce ! surface boundary condition: ocean |
---|
23 | USE traadv_cen ! centered scheme (tra_adv_cen routine) |
---|
24 | USE traadv_fct ! FCT scheme (tra_adv_fct routine) |
---|
25 | USE traadv_fct_lf ! FCT scheme (tra_adv_fct routine - loop fusion version) |
---|
26 | USE traadv_mus ! MUSCL scheme (tra_adv_mus routine) |
---|
27 | USE traadv_mus_lf ! MUSCL scheme (tra_adv_mus routine - loop fusion version) |
---|
28 | USE traadv_ubs ! UBS scheme (tra_adv_ubs routine) |
---|
29 | USE traadv_qck ! QUICKEST scheme (tra_adv_qck routine) |
---|
30 | USE tramle ! Mixed Layer Eddy transport (tra_mle_trp routine) |
---|
31 | USE ldftra ! Eddy Induced transport (ldf_eiv_trp routine) |
---|
32 | USE ldfslp ! Lateral diffusion: slopes of neutral surfaces |
---|
33 | USE trd_oce ! trends: ocean variables |
---|
34 | USE trdtra ! trends manager: tracers |
---|
35 | USE diaptr ! Poleward heat transport |
---|
36 | ! |
---|
37 | USE in_out_manager ! I/O manager |
---|
38 | USE iom ! I/O module |
---|
39 | USE prtctl ! Print control |
---|
40 | USE lib_mpp ! MPP library |
---|
41 | USE timing ! Timing |
---|
42 | |
---|
43 | IMPLICIT NONE |
---|
44 | PRIVATE |
---|
45 | |
---|
46 | PUBLIC tra_adv ! called by step.F90 |
---|
47 | PUBLIC tra_adv_init ! called by nemogcm.F90 |
---|
48 | |
---|
49 | ! !!* Namelist namtra_adv * |
---|
50 | LOGICAL :: ln_traadv_OFF ! no advection on T and S |
---|
51 | LOGICAL :: ln_traadv_cen ! centered scheme flag |
---|
52 | INTEGER :: nn_cen_h, nn_cen_v ! =2/4 : horizontal and vertical choices of the order of CEN scheme |
---|
53 | LOGICAL :: ln_traadv_fct ! FCT scheme flag |
---|
54 | INTEGER :: nn_fct_h, nn_fct_v ! =2/4 : horizontal and vertical choices of the order of FCT scheme |
---|
55 | LOGICAL :: ln_traadv_mus ! MUSCL scheme flag |
---|
56 | LOGICAL :: ln_mus_ups ! use upstream scheme in vivcinity of river mouths |
---|
57 | LOGICAL :: ln_traadv_ubs ! UBS scheme flag |
---|
58 | INTEGER :: nn_ubs_v ! =2/4 : vertical choice of the order of UBS scheme |
---|
59 | LOGICAL :: ln_traadv_qck ! QUICKEST scheme flag |
---|
60 | |
---|
61 | INTEGER :: nadv ! choice of the type of advection scheme |
---|
62 | ! ! associated indices: |
---|
63 | INTEGER, PARAMETER :: np_NO_adv = 0 ! no T-S advection |
---|
64 | INTEGER, PARAMETER :: np_CEN = 1 ! 2nd/4th order centered scheme |
---|
65 | INTEGER, PARAMETER :: np_FCT = 2 ! 2nd/4th order Flux Corrected Transport scheme |
---|
66 | INTEGER, PARAMETER :: np_MUS = 3 ! MUSCL scheme |
---|
67 | INTEGER, PARAMETER :: np_UBS = 4 ! 3rd order Upstream Biased Scheme |
---|
68 | INTEGER, PARAMETER :: np_QCK = 5 ! QUICK scheme |
---|
69 | |
---|
70 | # include "domzgr_substitute.h90" |
---|
71 | !!---------------------------------------------------------------------- |
---|
72 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
73 | !! $Id$ |
---|
74 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
75 | !!---------------------------------------------------------------------- |
---|
76 | CONTAINS |
---|
77 | |
---|
78 | SUBROUTINE tra_adv( kt, Kbb, Kmm, pts, Krhs ) |
---|
79 | !!---------------------------------------------------------------------- |
---|
80 | !! *** ROUTINE tra_adv *** |
---|
81 | !! |
---|
82 | !! ** Purpose : compute the ocean tracer advection trend. |
---|
83 | !! |
---|
84 | !! ** Method : - Update (uu(:,:,:,Krhs),vv(:,:,:,Krhs)) with the advection term following nadv |
---|
85 | !!---------------------------------------------------------------------- |
---|
86 | INTEGER , INTENT(in) :: kt ! ocean time-step index |
---|
87 | INTEGER , INTENT(in) :: Kbb, Kmm, Krhs ! time level indices |
---|
88 | REAL(wp), DIMENSION(jpi,jpj,jpk,jpts,jpt), INTENT(inout) :: pts ! active tracers and RHS of tracer equation |
---|
89 | ! |
---|
90 | INTEGER :: jk ! dummy loop index |
---|
91 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zuu, zvv, zww ! 3D workspace |
---|
92 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ztrdt, ztrds |
---|
93 | !!---------------------------------------------------------------------- |
---|
94 | ! |
---|
95 | IF( ln_timing ) CALL timing_start('tra_adv') |
---|
96 | ! |
---|
97 | ! !== effective transport ==! |
---|
98 | zuu(:,:,jpk) = 0._wp |
---|
99 | zvv(:,:,jpk) = 0._wp |
---|
100 | zww(:,:,jpk) = 0._wp |
---|
101 | IF( ln_wave .AND. ln_sdw ) THEN |
---|
102 | DO jk = 1, jpkm1 ! eulerian transport + Stokes Drift |
---|
103 | zuu(:,:,jk) = & |
---|
104 | & e2u (:,:) * e3u(:,:,jk,Kmm) * ( uu(:,:,jk,Kmm) + usd(:,:,jk) ) |
---|
105 | zvv(:,:,jk) = & |
---|
106 | & e1v (:,:) * e3v(:,:,jk,Kmm) * ( vv(:,:,jk,Kmm) + vsd(:,:,jk) ) |
---|
107 | zww(:,:,jk) = & |
---|
108 | & e1e2t(:,:) * ( ww(:,:,jk) + wsd(:,:,jk) ) |
---|
109 | END DO |
---|
110 | ELSE |
---|
111 | DO jk = 1, jpkm1 |
---|
112 | zuu(:,:,jk) = e2u (:,:) * e3u(:,:,jk,Kmm) * uu(:,:,jk,Kmm) ! eulerian transport only |
---|
113 | zvv(:,:,jk) = e1v (:,:) * e3v(:,:,jk,Kmm) * vv(:,:,jk,Kmm) |
---|
114 | zww(:,:,jk) = e1e2t(:,:) * ww(:,:,jk) |
---|
115 | END DO |
---|
116 | ENDIF |
---|
117 | ! |
---|
118 | IF( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN ! add z-tilde and/or vvl corrections |
---|
119 | zuu(:,:,:) = zuu(:,:,:) + un_td(:,:,:) |
---|
120 | zvv(:,:,:) = zvv(:,:,:) + vn_td(:,:,:) |
---|
121 | ENDIF |
---|
122 | ! |
---|
123 | zuu(:,:,jpk) = 0._wp ! no transport trough the bottom |
---|
124 | zvv(:,:,jpk) = 0._wp |
---|
125 | zww(:,:,jpk) = 0._wp |
---|
126 | ! |
---|
127 | IF( ln_ldfeiv .AND. .NOT. ln_traldf_triad ) & |
---|
128 | & CALL ldf_eiv_trp( kt, nit000, zuu, zvv, zww, 'TRA', Kmm, Krhs ) ! add the eiv transport (if necessary) |
---|
129 | ! |
---|
130 | IF( ln_mle ) CALL tra_mle_trp( kt, nit000, zuu, zvv, zww, 'TRA', Kmm ) ! add the mle transport (if necessary) |
---|
131 | ! |
---|
132 | CALL iom_put( "uocetr_eff", zuu ) ! output effective transport |
---|
133 | CALL iom_put( "vocetr_eff", zvv ) |
---|
134 | CALL iom_put( "wocetr_eff", zww ) |
---|
135 | ! |
---|
136 | !!gm ??? |
---|
137 | CALL dia_ptr( kt, Kmm, zvv ) ! diagnose the effective MSF |
---|
138 | !!gm ??? |
---|
139 | ! |
---|
140 | |
---|
141 | IF( l_trdtra ) THEN !* Save ta and sa trends |
---|
142 | ALLOCATE( ztrdt(jpi,jpj,jpk), ztrds(jpi,jpj,jpk) ) |
---|
143 | ztrdt(:,:,:) = pts(:,:,:,jp_tem,Krhs) |
---|
144 | ztrds(:,:,:) = pts(:,:,:,jp_sal,Krhs) |
---|
145 | ENDIF |
---|
146 | ! |
---|
147 | SELECT CASE ( nadv ) !== compute advection trend and add it to general trend ==! |
---|
148 | ! |
---|
149 | CASE ( np_CEN ) ! Centered scheme : 2nd / 4th order |
---|
150 | IF (nn_hls.EQ.2) CALL lbc_lnk( 'tra_adv', pts(:,:,:,:,Kmm), 'T', 1. ) |
---|
151 | CALL tra_adv_cen ( kt, nit000, 'TRA', zuu, zvv, zww, Kmm, pts, jpts, Krhs, nn_cen_h, nn_cen_v ) |
---|
152 | CASE ( np_FCT ) ! FCT scheme : 2nd / 4th order |
---|
153 | IF (nn_hls.EQ.2) THEN |
---|
154 | CALL lbc_lnk_multi( 'tra_adv', pts(:,:,:,:,Kbb), 'T', 1., pts(:,:,:,:,Kmm), 'T', 1.) |
---|
155 | CALL lbc_lnk_multi( 'tra_adv', zuu(:,:,:), 'U', -1., zvv(:,:,:), 'V', -1., zww(:,:,:), 'W', 1.) |
---|
156 | CALL tra_adv_fct_lf ( kt, nit000, 'TRA', rDt, zuu, zvv, zww, Kbb, Kmm, pts, jpts, Krhs, nn_fct_h, nn_fct_v ) |
---|
157 | ELSE |
---|
158 | CALL tra_adv_fct ( kt, nit000, 'TRA', rDt, zuu, zvv, zww, Kbb, Kmm, pts, jpts, Krhs, nn_fct_h, nn_fct_v ) |
---|
159 | END IF |
---|
160 | CASE ( np_MUS ) ! MUSCL |
---|
161 | IF (nn_hls.EQ.2) THEN |
---|
162 | CALL tra_adv_mus_lf ( kt, nit000, 'TRA', rDt, zuu, zvv, zww, Kbb, Kmm, pts, jpts, Krhs, ln_mus_ups ) |
---|
163 | ELSE |
---|
164 | CALL tra_adv_mus ( kt, nit000, 'TRA', rDt, zuu, zvv, zww, Kbb, Kmm, pts, jpts, Krhs, ln_mus_ups ) |
---|
165 | END IF |
---|
166 | CASE ( np_UBS ) ! UBS |
---|
167 | IF (nn_hls.EQ.2) CALL lbc_lnk_multi( 'tra_adv', pts(:,:,:,:,Kbb), 'T', 1.) |
---|
168 | CALL tra_adv_ubs ( kt, nit000, 'TRA', rDt, zuu, zvv, zww, Kbb, Kmm, pts, jpts, Krhs, nn_ubs_v ) |
---|
169 | CASE ( np_QCK ) ! QUICKEST |
---|
170 | IF (nn_hls.EQ.2) THEN ; CALL lbc_lnk_multi( 'tra_adv', zuu(:,:,:), 'U', -1., zvv(:,:,:), 'V', -1.) |
---|
171 | CALL lbc_lnk( 'tra_adv', pts(:,:,:,:,Kbb), 'T', 1.) ; END IF |
---|
172 | CALL tra_adv_qck ( kt, nit000, 'TRA', rDt, zuu, zvv, zww, Kbb, Kmm, pts, jpts, Krhs ) |
---|
173 | ! |
---|
174 | END SELECT |
---|
175 | ! |
---|
176 | IF( l_trdtra ) THEN ! save the advective trends for further diagnostics |
---|
177 | DO jk = 1, jpkm1 |
---|
178 | ztrdt(:,:,jk) = pts(:,:,jk,jp_tem,Krhs) - ztrdt(:,:,jk) |
---|
179 | ztrds(:,:,jk) = pts(:,:,jk,jp_sal,Krhs) - ztrds(:,:,jk) |
---|
180 | END DO |
---|
181 | CALL trd_tra( kt, Kmm, Krhs, 'TRA', jp_tem, jptra_totad, ztrdt ) |
---|
182 | CALL trd_tra( kt, Kmm, Krhs, 'TRA', jp_sal, jptra_totad, ztrds ) |
---|
183 | DEALLOCATE( ztrdt, ztrds ) |
---|
184 | ENDIF |
---|
185 | ! ! print mean trends (used for debugging) |
---|
186 | IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab3d_1=pts(:,:,:,jp_tem,Krhs), clinfo1=' adv - Ta: ', mask1=tmask, & |
---|
187 | & tab3d_2=pts(:,:,:,jp_sal,Krhs), clinfo2= ' Sa: ', mask2=tmask, clinfo3='tra' ) |
---|
188 | ! |
---|
189 | IF( ln_timing ) CALL timing_stop( 'tra_adv' ) |
---|
190 | ! |
---|
191 | END SUBROUTINE tra_adv |
---|
192 | |
---|
193 | |
---|
194 | SUBROUTINE tra_adv_init |
---|
195 | !!--------------------------------------------------------------------- |
---|
196 | !! *** ROUTINE tra_adv_init *** |
---|
197 | !! |
---|
198 | !! ** Purpose : Control the consistency between namelist options for |
---|
199 | !! tracer advection schemes and set nadv |
---|
200 | !!---------------------------------------------------------------------- |
---|
201 | INTEGER :: ioptio, ios ! Local integers |
---|
202 | ! |
---|
203 | NAMELIST/namtra_adv/ ln_traadv_OFF, & ! No advection |
---|
204 | & ln_traadv_cen , nn_cen_h, nn_cen_v, & ! CEN |
---|
205 | & ln_traadv_fct , nn_fct_h, nn_fct_v, & ! FCT |
---|
206 | & ln_traadv_mus , ln_mus_ups, & ! MUSCL |
---|
207 | & ln_traadv_ubs , nn_ubs_v, & ! UBS |
---|
208 | & ln_traadv_qck ! QCK |
---|
209 | !!---------------------------------------------------------------------- |
---|
210 | ! |
---|
211 | ! !== Namelist ==! |
---|
212 | READ ( numnam_ref, namtra_adv, IOSTAT = ios, ERR = 901) |
---|
213 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namtra_adv in reference namelist' ) |
---|
214 | ! |
---|
215 | READ ( numnam_cfg, namtra_adv, IOSTAT = ios, ERR = 902 ) |
---|
216 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namtra_adv in configuration namelist' ) |
---|
217 | IF(lwm) WRITE( numond, namtra_adv ) |
---|
218 | ! |
---|
219 | IF(lwp) THEN ! Namelist print |
---|
220 | WRITE(numout,*) |
---|
221 | WRITE(numout,*) 'tra_adv_init : choice/control of the tracer advection scheme' |
---|
222 | WRITE(numout,*) '~~~~~~~~~~~~' |
---|
223 | WRITE(numout,*) ' Namelist namtra_adv : chose a advection scheme for tracers' |
---|
224 | WRITE(numout,*) ' No advection on T & S ln_traadv_OFF = ', ln_traadv_OFF |
---|
225 | WRITE(numout,*) ' centered scheme ln_traadv_cen = ', ln_traadv_cen |
---|
226 | WRITE(numout,*) ' horizontal 2nd/4th order nn_cen_h = ', nn_fct_h |
---|
227 | WRITE(numout,*) ' vertical 2nd/4th order nn_cen_v = ', nn_fct_v |
---|
228 | WRITE(numout,*) ' Flux Corrected Transport scheme ln_traadv_fct = ', ln_traadv_fct |
---|
229 | WRITE(numout,*) ' horizontal 2nd/4th order nn_fct_h = ', nn_fct_h |
---|
230 | WRITE(numout,*) ' vertical 2nd/4th order nn_fct_v = ', nn_fct_v |
---|
231 | WRITE(numout,*) ' MUSCL scheme ln_traadv_mus = ', ln_traadv_mus |
---|
232 | WRITE(numout,*) ' + upstream scheme near river mouths ln_mus_ups = ', ln_mus_ups |
---|
233 | WRITE(numout,*) ' UBS scheme ln_traadv_ubs = ', ln_traadv_ubs |
---|
234 | WRITE(numout,*) ' vertical 2nd/4th order nn_ubs_v = ', nn_ubs_v |
---|
235 | WRITE(numout,*) ' QUICKEST scheme ln_traadv_qck = ', ln_traadv_qck |
---|
236 | ENDIF |
---|
237 | ! |
---|
238 | ! !== Parameter control & set nadv ==! |
---|
239 | ioptio = 0 |
---|
240 | IF( ln_traadv_OFF ) THEN ; ioptio = ioptio + 1 ; nadv = np_NO_adv ; ENDIF |
---|
241 | IF( ln_traadv_cen ) THEN ; ioptio = ioptio + 1 ; nadv = np_CEN ; ENDIF |
---|
242 | IF( ln_traadv_fct ) THEN ; ioptio = ioptio + 1 ; nadv = np_FCT ; ENDIF |
---|
243 | IF( ln_traadv_mus ) THEN ; ioptio = ioptio + 1 ; nadv = np_MUS ; ENDIF |
---|
244 | IF( ln_traadv_ubs ) THEN ; ioptio = ioptio + 1 ; nadv = np_UBS ; ENDIF |
---|
245 | IF( ln_traadv_qck ) THEN ; ioptio = ioptio + 1 ; nadv = np_QCK ; ENDIF |
---|
246 | ! |
---|
247 | IF( ioptio /= 1 ) CALL ctl_stop( 'tra_adv_init: Choose ONE advection option in namelist namtra_adv' ) |
---|
248 | ! |
---|
249 | IF( ln_traadv_cen .AND. ( nn_cen_h /= 2 .AND. nn_cen_h /= 4 ) & ! Centered |
---|
250 | .AND. ( nn_cen_v /= 2 .AND. nn_cen_v /= 4 ) ) THEN |
---|
251 | CALL ctl_stop( 'tra_adv_init: CEN scheme, choose 2nd or 4th order' ) |
---|
252 | ENDIF |
---|
253 | IF( ln_traadv_fct .AND. ( nn_fct_h /= 2 .AND. nn_fct_h /= 4 ) & ! FCT |
---|
254 | .AND. ( nn_fct_v /= 2 .AND. nn_fct_v /= 4 ) ) THEN |
---|
255 | CALL ctl_stop( 'tra_adv_init: FCT scheme, choose 2nd or 4th order' ) |
---|
256 | ENDIF |
---|
257 | IF( ln_traadv_ubs .AND. ( nn_ubs_v /= 2 .AND. nn_ubs_v /= 4 ) ) THEN ! UBS |
---|
258 | CALL ctl_stop( 'tra_adv_init: UBS scheme, choose 2nd or 4th order' ) |
---|
259 | ENDIF |
---|
260 | IF( ln_traadv_ubs .AND. nn_ubs_v == 4 ) THEN |
---|
261 | CALL ctl_warn( 'tra_adv_init: UBS scheme, only 2nd FCT scheme available on the vertical. It will be used' ) |
---|
262 | ENDIF |
---|
263 | IF( ln_isfcav ) THEN ! ice-shelf cavities |
---|
264 | IF( ln_traadv_cen .AND. nn_cen_v == 4 .OR. & ! NO 4th order with ISF |
---|
265 | & ln_traadv_fct .AND. nn_fct_v == 4 ) CALL ctl_stop( 'tra_adv_init: 4th order COMPACT scheme not allowed with ISF' ) |
---|
266 | ENDIF |
---|
267 | ! |
---|
268 | ! !== Print the choice ==! |
---|
269 | IF(lwp) THEN |
---|
270 | WRITE(numout,*) |
---|
271 | SELECT CASE ( nadv ) |
---|
272 | CASE( np_NO_adv ) ; WRITE(numout,*) ' ==>>> NO T-S advection' |
---|
273 | CASE( np_CEN ) ; WRITE(numout,*) ' ==>>> CEN scheme is used. Horizontal order: ', nn_cen_h, & |
---|
274 | & ' Vertical order: ', nn_cen_v |
---|
275 | CASE( np_FCT ) ; WRITE(numout,*) ' ==>>> FCT scheme is used. Horizontal order: ', nn_fct_h, & |
---|
276 | & ' Vertical order: ', nn_fct_v |
---|
277 | CASE( np_MUS ) ; WRITE(numout,*) ' ==>>> MUSCL scheme is used' |
---|
278 | CASE( np_UBS ) ; WRITE(numout,*) ' ==>>> UBS scheme is used' |
---|
279 | CASE( np_QCK ) ; WRITE(numout,*) ' ==>>> QUICKEST scheme is used' |
---|
280 | END SELECT |
---|
281 | ENDIF |
---|
282 | ! |
---|
283 | CALL tra_mle_init !== initialisation of the Mixed Layer Eddy parametrisation (MLE) ==! |
---|
284 | ! |
---|
285 | END SUBROUTINE tra_adv_init |
---|
286 | |
---|
287 | !!====================================================================== |
---|
288 | END MODULE traadv |
---|