1 | MODULE sbc_phy |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE sbc_phy *** |
---|
4 | !! A set of functions to compute air themodynamics parameters |
---|
5 | !! needed by Aerodynamic Bulk Formulas |
---|
6 | !!===================================================================== |
---|
7 | !! 4.x ! 2020 L. Brodeau from AeroBulk package (https://github.com/brodeau/aerobulk/) |
---|
8 | !!---------------------------------------------------------------------- |
---|
9 | |
---|
10 | !! virt_temp : virtual (aka sensible) temperature (potential or absolute) |
---|
11 | !! rho_air : density of (moist) air (depends on T_air, q_air and SLP |
---|
12 | !! visc_air : kinematic viscosity (aka Nu_air) of air from temperature |
---|
13 | !! L_vap : latent heat of vaporization of water as a function of temperature |
---|
14 | !! cp_air : specific heat of (moist) air (depends spec. hum. q_air) |
---|
15 | !! gamma_moist : adiabatic lapse-rate of moist air |
---|
16 | !! One_on_L : 1. / ( Obukhov length ) |
---|
17 | !! Ri_bulk : bulk Richardson number aka BRN |
---|
18 | !! q_sat : saturation humidity as a function of SLP and temperature |
---|
19 | !! q_air_rh : specific humidity as a function of RH (fraction, not %), t_air and SLP |
---|
20 | |
---|
21 | USE dom_oce ! ocean space and time domain |
---|
22 | USE phycst ! physical constants |
---|
23 | |
---|
24 | IMPLICIT NONE |
---|
25 | PRIVATE |
---|
26 | |
---|
27 | INTEGER , PARAMETER, PUBLIC :: nb_iter0 = 5 ! Default number of itterations in bulk-param algorithms (can be overriden b.m.o `nb_iter` optional argument) |
---|
28 | |
---|
29 | !! (mainly removed from sbcblk.F90) |
---|
30 | REAL(wp), PARAMETER, PUBLIC :: rCp_dry = 1005.0_wp !: Specic heat of dry air, constant pressure [J/K/kg] |
---|
31 | REAL(wp), PARAMETER, PUBLIC :: rCp_vap = 1860.0_wp !: Specic heat of water vapor, constant pressure [J/K/kg] |
---|
32 | REAL(wp), PARAMETER, PUBLIC :: R_dry = 287.05_wp !: Specific gas constant for dry air [J/K/kg] |
---|
33 | REAL(wp), PARAMETER, PUBLIC :: R_vap = 461.495_wp !: Specific gas constant for water vapor [J/K/kg] |
---|
34 | REAL(wp), PARAMETER, PUBLIC :: reps0 = R_dry/R_vap !: ratio of gas constant for dry air and water vapor => ~ 0.622 |
---|
35 | REAL(wp), PARAMETER, PUBLIC :: rctv0 = R_vap/R_dry - 1._wp !: for virtual temperature (== (1-eps)/eps) => ~ 0.608 |
---|
36 | REAL(wp), PARAMETER, PUBLIC :: rCp_air = 1000.5_wp !: specific heat of air (only used for ice fluxes now...) |
---|
37 | REAL(wp), PARAMETER, PUBLIC :: albo = 0.066_wp !: ocean albedo assumed to be constant |
---|
38 | ! |
---|
39 | REAL(wp), PARAMETER, PUBLIC :: rho0_a = 1.2_wp !: Approx. of density of air [kg/m^3] |
---|
40 | REAL(wp), PARAMETER, PUBLIC :: rho0_w = 1025._wp !: Density of sea-water (ECMWF->1025) [kg/m^3] |
---|
41 | REAL(wp), PARAMETER, PUBLIC :: radrw = rho0_a/rho0_w !: Density ratio |
---|
42 | REAL(wp), PARAMETER, PUBLIC :: sq_radrw = SQRT(rho0_a/rho0_w) |
---|
43 | REAL(wp), PARAMETER, PUBLIC :: rCp0_w = 4190._wp !: Specific heat capacity of seawater (ECMWF 4190) [J/K/kg] |
---|
44 | REAL(wp), PARAMETER, PUBLIC :: rnu0_w = 1.e-6_wp !: kinetic viscosity of water [m^2/s] |
---|
45 | REAL(wp), PARAMETER, PUBLIC :: rk0_w = 0.6_wp !: thermal conductivity of water (at 20C) [W/m/K] |
---|
46 | ! |
---|
47 | REAL(wp), PARAMETER, PUBLIC :: emiss_w = 0.98_wp !: Long-wave (thermal) emissivity of sea-water [] |
---|
48 | ! |
---|
49 | REAL(wp), PARAMETER, PUBLIC :: emiss_i = 0.996_wp !: " for ice and snow => but Rees 1993 suggests can be lower in winter on fresh snow... 0.72 ... |
---|
50 | |
---|
51 | REAL(wp), PARAMETER, PUBLIC :: wspd_thrshld_ice = 0.2_wp !: minimum scalar wind speed accepted over sea-ice... [m/s] |
---|
52 | |
---|
53 | ! |
---|
54 | REAL(wp), PARAMETER, PUBLIC :: rdct_qsat_salt = 0.98_wp !: reduction factor on specific humidity at saturation (q_sat(T_s)) due to salt |
---|
55 | REAL(wp), PARAMETER, PUBLIC :: rtt0 = 273.16_wp !: triple point of temperature [K] |
---|
56 | ! |
---|
57 | REAL(wp), PARAMETER, PUBLIC :: rcst_cs = -16._wp*9.80665_wp*rho0_w*rCp0_w*rnu0_w*rnu0_w*rnu0_w/(rk0_w*rk0_w) !: for cool-skin parameterizations... (grav = 9.80665_wp) |
---|
58 | ! => see eq.(14) in Fairall et al. 1996 (eq.(6) of Zeng aand Beljaars is WRONG! (typo?) |
---|
59 | |
---|
60 | REAL(wp), PARAMETER, PUBLIC :: z0_sea_max = 0.0025_wp !: maximum realistic value for roughness length of sea-surface... [m] |
---|
61 | |
---|
62 | REAL(wp), PUBLIC, SAVE :: pp_cldf = 0.81 !: cloud fraction over sea ice, summer CLIO value [-] |
---|
63 | |
---|
64 | |
---|
65 | REAL(wp), PARAMETER, PUBLIC :: Cx_min = 0.1E-3_wp ! smallest value allowed for bulk transfer coefficients (usually in stable conditions with now wind) |
---|
66 | |
---|
67 | REAL(wp), PARAMETER :: & |
---|
68 | !! Constants for Goff formula in the presence of ice: |
---|
69 | & rAg_i = -9.09718_wp, & |
---|
70 | & rBg_i = -3.56654_wp, & |
---|
71 | & rCg_i = 0.876793_wp, & |
---|
72 | & rDg_i = LOG10(6.1071_wp) |
---|
73 | |
---|
74 | REAL(wp), PARAMETER :: rc_louis = 5._wp |
---|
75 | REAL(wp), PARAMETER :: rc2_louis = rc_louis * rc_louis |
---|
76 | REAL(wp), PARAMETER :: ram_louis = 2. * rc_louis |
---|
77 | REAL(wp), PARAMETER :: rah_louis = 3. * rc_louis |
---|
78 | |
---|
79 | |
---|
80 | INTERFACE virt_temp |
---|
81 | MODULE PROCEDURE virt_temp_vctr, virt_temp_sclr |
---|
82 | END INTERFACE virt_temp |
---|
83 | |
---|
84 | INTERFACE visc_air |
---|
85 | MODULE PROCEDURE visc_air_vctr, visc_air_sclr |
---|
86 | END INTERFACE visc_air |
---|
87 | |
---|
88 | INTERFACE gamma_moist |
---|
89 | MODULE PROCEDURE gamma_moist_vctr, gamma_moist_sclr |
---|
90 | END INTERFACE gamma_moist |
---|
91 | |
---|
92 | INTERFACE e_sat |
---|
93 | MODULE PROCEDURE e_sat_vctr, e_sat_sclr |
---|
94 | END INTERFACE e_sat |
---|
95 | |
---|
96 | INTERFACE e_sat_ice |
---|
97 | MODULE PROCEDURE e_sat_ice_vctr, e_sat_ice_sclr |
---|
98 | END INTERFACE e_sat_ice |
---|
99 | INTERFACE de_sat_dt_ice |
---|
100 | MODULE PROCEDURE de_sat_dt_ice_vctr, de_sat_dt_ice_sclr |
---|
101 | END INTERFACE de_sat_dt_ice |
---|
102 | |
---|
103 | INTERFACE Ri_bulk |
---|
104 | MODULE PROCEDURE Ri_bulk_vctr, Ri_bulk_sclr |
---|
105 | END INTERFACE Ri_bulk |
---|
106 | |
---|
107 | INTERFACE q_sat |
---|
108 | MODULE PROCEDURE q_sat_vctr, q_sat_sclr |
---|
109 | END INTERFACE q_sat |
---|
110 | |
---|
111 | INTERFACE dq_sat_dt_ice |
---|
112 | MODULE PROCEDURE dq_sat_dt_ice_vctr, dq_sat_dt_ice_sclr |
---|
113 | END INTERFACE dq_sat_dt_ice |
---|
114 | |
---|
115 | INTERFACE L_vap |
---|
116 | MODULE PROCEDURE L_vap_vctr, L_vap_sclr |
---|
117 | END INTERFACE L_vap |
---|
118 | |
---|
119 | INTERFACE rho_air |
---|
120 | MODULE PROCEDURE rho_air_vctr, rho_air_sclr |
---|
121 | END INTERFACE rho_air |
---|
122 | |
---|
123 | INTERFACE cp_air |
---|
124 | MODULE PROCEDURE cp_air_vctr, cp_air_sclr |
---|
125 | END INTERFACE cp_air |
---|
126 | |
---|
127 | INTERFACE alpha_sw |
---|
128 | MODULE PROCEDURE alpha_sw_vctr, alpha_sw_sclr |
---|
129 | END INTERFACE alpha_sw |
---|
130 | |
---|
131 | INTERFACE bulk_formula |
---|
132 | MODULE PROCEDURE bulk_formula_vctr, bulk_formula_sclr |
---|
133 | END INTERFACE bulk_formula |
---|
134 | |
---|
135 | INTERFACE qlw_net |
---|
136 | MODULE PROCEDURE qlw_net_vctr, qlw_net_sclr |
---|
137 | END INTERFACE qlw_net |
---|
138 | |
---|
139 | INTERFACE f_m_louis |
---|
140 | MODULE PROCEDURE f_m_louis_vctr, f_m_louis_sclr |
---|
141 | END INTERFACE f_m_louis |
---|
142 | |
---|
143 | INTERFACE f_h_louis |
---|
144 | MODULE PROCEDURE f_h_louis_vctr, f_h_louis_sclr |
---|
145 | END INTERFACE f_h_louis |
---|
146 | |
---|
147 | |
---|
148 | PUBLIC virt_temp |
---|
149 | PUBLIC rho_air |
---|
150 | PUBLIC visc_air |
---|
151 | PUBLIC L_vap |
---|
152 | PUBLIC cp_air |
---|
153 | PUBLIC gamma_moist |
---|
154 | PUBLIC One_on_L |
---|
155 | PUBLIC Ri_bulk |
---|
156 | PUBLIC q_sat |
---|
157 | PUBLIC q_air_rh |
---|
158 | PUBLIC dq_sat_dt_ice |
---|
159 | !: |
---|
160 | PUBLIC update_qnsol_tau |
---|
161 | PUBLIC alpha_sw |
---|
162 | PUBLIC bulk_formula |
---|
163 | PUBLIC qlw_net |
---|
164 | ! |
---|
165 | PUBLIC f_m_louis, f_h_louis |
---|
166 | PUBLIC z0_from_Cd |
---|
167 | PUBLIC Cd_from_z0 |
---|
168 | PUBLIC UN10_from_ustar |
---|
169 | PUBLIC UN10_from_CD |
---|
170 | PUBLIC z0tq_LKB |
---|
171 | |
---|
172 | !! * Substitutions |
---|
173 | # include "do_loop_substitute.h90" |
---|
174 | !!---------------------------------------------------------------------- |
---|
175 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
176 | !! $Id: sbcblk.F90 10535 2019-01-16 17:36:47Z clem $ |
---|
177 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
178 | !!---------------------------------------------------------------------- |
---|
179 | CONTAINS |
---|
180 | |
---|
181 | |
---|
182 | FUNCTION virt_temp_sclr( pta, pqa ) |
---|
183 | !!------------------------------------------------------------------------ |
---|
184 | !! |
---|
185 | !! Compute the (absolute/potential) VIRTUAL temperature, based on the |
---|
186 | !! (absolute/potential) temperature and specific humidity |
---|
187 | !! |
---|
188 | !! If input temperature is absolute then output virtual temperature is absolute |
---|
189 | !! If input temperature is potential then output virtual temperature is potential |
---|
190 | !! |
---|
191 | !! Author: L. Brodeau, June 2019 / AeroBulk |
---|
192 | !! (https://github.com/brodeau/aerobulk/) |
---|
193 | !!------------------------------------------------------------------------ |
---|
194 | REAL(wp) :: virt_temp_sclr !: virtual temperature [K] |
---|
195 | REAL(wp), INTENT(in) :: pta !: absolute or potential air temperature [K] |
---|
196 | REAL(wp), INTENT(in) :: pqa !: specific humidity of air [kg/kg] |
---|
197 | !!------------------------------------------------------------------- |
---|
198 | ! |
---|
199 | virt_temp_sclr = pta * (1._wp + rctv0*pqa) |
---|
200 | !! |
---|
201 | !! This is exactly the same thing as: |
---|
202 | !! virt_temp_sclr = pta * ( pwa + reps0) / (reps0*(1.+pwa)) |
---|
203 | !! with wpa (mixing ration) defined as : pwa = pqa/(1.-pqa) |
---|
204 | ! |
---|
205 | END FUNCTION virt_temp_sclr |
---|
206 | !! |
---|
207 | FUNCTION virt_temp_vctr( pta, pqa ) |
---|
208 | REAL(wp), DIMENSION(jpi,jpj) :: virt_temp_vctr !: virtual temperature [K] |
---|
209 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pta !: absolute or potential air temperature [K] |
---|
210 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa !: specific humidity of air [kg/kg] |
---|
211 | virt_temp_vctr(:,:) = pta(:,:) * (1._wp + rctv0*pqa(:,:)) |
---|
212 | END FUNCTION virt_temp_vctr |
---|
213 | !=============================================================================================== |
---|
214 | |
---|
215 | |
---|
216 | FUNCTION rho_air_vctr( ptak, pqa, ppa ) |
---|
217 | !!------------------------------------------------------------------------------- |
---|
218 | !! *** FUNCTION rho_air_vctr *** |
---|
219 | !! |
---|
220 | !! ** Purpose : compute density of (moist) air using the eq. of state of the atmosphere |
---|
221 | !! |
---|
222 | !! ** Author: L. Brodeau, June 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
223 | !!------------------------------------------------------------------------------- |
---|
224 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak ! air temperature [K] |
---|
225 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa ! air specific humidity [kg/kg] |
---|
226 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ppa ! pressure in [Pa] |
---|
227 | REAL(wp), DIMENSION(jpi,jpj) :: rho_air_vctr ! density of moist air [kg/m^3] |
---|
228 | !!------------------------------------------------------------------------------- |
---|
229 | rho_air_vctr = MAX( ppa / (R_dry*ptak * ( 1._wp + rctv0*pqa )) , 0.8_wp ) |
---|
230 | END FUNCTION rho_air_vctr |
---|
231 | |
---|
232 | FUNCTION rho_air_sclr( ptak, pqa, ppa ) |
---|
233 | !!------------------------------------------------------------------------------- |
---|
234 | !! *** FUNCTION rho_air_sclr *** |
---|
235 | !! |
---|
236 | !! ** Purpose : compute density of (moist) air using the eq. of state of the atmosphere |
---|
237 | !! |
---|
238 | !! ** Author: L. Brodeau, June 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
239 | !!------------------------------------------------------------------------------- |
---|
240 | REAL(wp), INTENT(in) :: ptak ! air temperature [K] |
---|
241 | REAL(wp), INTENT(in) :: pqa ! air specific humidity [kg/kg] |
---|
242 | REAL(wp), INTENT(in) :: ppa ! pressure in [Pa] |
---|
243 | REAL(wp) :: rho_air_sclr ! density of moist air [kg/m^3] |
---|
244 | !!------------------------------------------------------------------------------- |
---|
245 | rho_air_sclr = MAX( ppa / (R_dry*ptak * ( 1._wp + rctv0*pqa )) , 0.8_wp ) |
---|
246 | END FUNCTION rho_air_sclr |
---|
247 | |
---|
248 | |
---|
249 | |
---|
250 | |
---|
251 | FUNCTION visc_air_sclr(ptak) |
---|
252 | !!---------------------------------------------------------------------------------- |
---|
253 | !! Air kinetic viscosity (m^2/s) given from air temperature in Kelvin |
---|
254 | !! |
---|
255 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
256 | !!---------------------------------------------------------------------------------- |
---|
257 | REAL(wp) :: visc_air_sclr ! kinetic viscosity (m^2/s) |
---|
258 | REAL(wp), INTENT(in) :: ptak ! air temperature in (K) |
---|
259 | ! |
---|
260 | REAL(wp) :: ztc, ztc2 ! local scalar |
---|
261 | !!---------------------------------------------------------------------------------- |
---|
262 | ! |
---|
263 | ztc = ptak - rt0 ! air temp, in deg. C |
---|
264 | ztc2 = ztc*ztc |
---|
265 | visc_air_sclr = 1.326e-5*(1. + 6.542E-3*ztc + 8.301e-6*ztc2 - 4.84e-9*ztc2*ztc) |
---|
266 | ! |
---|
267 | END FUNCTION visc_air_sclr |
---|
268 | |
---|
269 | FUNCTION visc_air_vctr(ptak) |
---|
270 | REAL(wp), DIMENSION(jpi,jpj) :: visc_air_vctr ! kinetic viscosity (m^2/s) |
---|
271 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak ! air temperature in (K) |
---|
272 | INTEGER :: ji, jj ! dummy loop indices |
---|
273 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
274 | visc_air_vctr(ji,jj) = visc_air_sclr( ptak(ji,jj) ) |
---|
275 | END_2D |
---|
276 | END FUNCTION visc_air_vctr |
---|
277 | |
---|
278 | |
---|
279 | FUNCTION L_vap_vctr( psst ) |
---|
280 | !!--------------------------------------------------------------------------------- |
---|
281 | !! *** FUNCTION L_vap_vctr *** |
---|
282 | !! |
---|
283 | !! ** Purpose : Compute the latent heat of vaporization of water from temperature |
---|
284 | !! |
---|
285 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
286 | !!---------------------------------------------------------------------------------- |
---|
287 | REAL(wp), DIMENSION(jpi,jpj) :: L_vap_vctr ! latent heat of vaporization [J/kg] |
---|
288 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: psst ! water temperature [K] |
---|
289 | !!---------------------------------------------------------------------------------- |
---|
290 | ! |
---|
291 | L_vap_vctr = ( 2.501_wp - 0.00237_wp * ( psst(:,:) - rt0) ) * 1.e6_wp |
---|
292 | ! |
---|
293 | END FUNCTION L_vap_vctr |
---|
294 | |
---|
295 | FUNCTION L_vap_sclr( psst ) |
---|
296 | !!--------------------------------------------------------------------------------- |
---|
297 | !! *** FUNCTION L_vap_sclr *** |
---|
298 | !! |
---|
299 | !! ** Purpose : Compute the latent heat of vaporization of water from temperature |
---|
300 | !! |
---|
301 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
302 | !!---------------------------------------------------------------------------------- |
---|
303 | REAL(wp) :: L_vap_sclr ! latent heat of vaporization [J/kg] |
---|
304 | REAL(wp), INTENT(in) :: psst ! water temperature [K] |
---|
305 | !!---------------------------------------------------------------------------------- |
---|
306 | ! |
---|
307 | L_vap_sclr = ( 2.501_wp - 0.00237_wp * ( psst - rt0) ) * 1.e6_wp |
---|
308 | ! |
---|
309 | END FUNCTION L_vap_sclr |
---|
310 | |
---|
311 | |
---|
312 | FUNCTION cp_air_vctr( pqa ) |
---|
313 | !!------------------------------------------------------------------------------- |
---|
314 | !! *** FUNCTION cp_air_vctr *** |
---|
315 | !! |
---|
316 | !! ** Purpose : Compute specific heat (Cp) of moist air |
---|
317 | !! |
---|
318 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
319 | !!------------------------------------------------------------------------------- |
---|
320 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa ! air specific humidity [kg/kg] |
---|
321 | REAL(wp), DIMENSION(jpi,jpj) :: cp_air_vctr ! specific heat of moist air [J/K/kg] |
---|
322 | !!------------------------------------------------------------------------------- |
---|
323 | cp_air_vctr = rCp_dry + rCp_vap * pqa |
---|
324 | END FUNCTION cp_air_vctr |
---|
325 | |
---|
326 | FUNCTION cp_air_sclr( pqa ) |
---|
327 | !!------------------------------------------------------------------------------- |
---|
328 | !! *** FUNCTION cp_air_sclr *** |
---|
329 | !! |
---|
330 | !! ** Purpose : Compute specific heat (Cp) of moist air |
---|
331 | !! |
---|
332 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
333 | !!------------------------------------------------------------------------------- |
---|
334 | REAL(wp), INTENT(in) :: pqa ! air specific humidity [kg/kg] |
---|
335 | REAL(wp) :: cp_air_sclr ! specific heat of moist air [J/K/kg] |
---|
336 | !!------------------------------------------------------------------------------- |
---|
337 | cp_air_sclr = rCp_dry + rCp_vap * pqa |
---|
338 | END FUNCTION cp_air_sclr |
---|
339 | |
---|
340 | |
---|
341 | |
---|
342 | !=============================================================================================== |
---|
343 | FUNCTION gamma_moist_sclr( ptak, pqa ) |
---|
344 | !!---------------------------------------------------------------------------------- |
---|
345 | !! ** Purpose : Compute the moist adiabatic lapse-rate. |
---|
346 | !! => http://glossary.ametsoc.org/wiki/Moist-adiabatic_lapse_rate |
---|
347 | !! => http://www.geog.ucsb.edu/~joel/g266_s10/lecture_notes/chapt03/oh10_3_01/oh10_3_01.html |
---|
348 | !! |
---|
349 | !! ** Author: L. Brodeau, June 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
350 | !!---------------------------------------------------------------------------------- |
---|
351 | REAL(wp) :: gamma_moist_sclr ! [K/m] |
---|
352 | REAL(wp), INTENT(in) :: ptak ! absolute air temperature [K] !#LB: double check it's absolute !!! |
---|
353 | REAL(wp), INTENT(in) :: pqa ! specific humidity [kg/kg] |
---|
354 | ! |
---|
355 | REAL(wp) :: zta, zqa, zwa, ziRT, zLvap ! local scalars |
---|
356 | !!---------------------------------------------------------------------------------- |
---|
357 | zta = MAX( ptak, 180._wp) ! prevents screw-up over masked regions where field == 0. |
---|
358 | zqa = MAX( pqa, 1.E-6_wp) ! " " " |
---|
359 | !! |
---|
360 | zwa = zqa / (1._wp - zqa) ! w is mixing ratio w = q/(1-q) | q = w/(1+w) |
---|
361 | ziRT = 1._wp / (R_dry*zta) ! 1/RT |
---|
362 | zLvap = L_vap_sclr( ptak ) |
---|
363 | !! |
---|
364 | gamma_moist_sclr = grav * ( 1._wp + zLvap*zwa*ziRT ) / ( rCp_dry + zLvap*zLvap*zwa*reps0*ziRT/zta ) |
---|
365 | !! |
---|
366 | END FUNCTION gamma_moist_sclr |
---|
367 | !! |
---|
368 | FUNCTION gamma_moist_vctr( ptak, pqa ) |
---|
369 | REAL(wp), DIMENSION(jpi,jpj) :: gamma_moist_vctr |
---|
370 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak |
---|
371 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa |
---|
372 | INTEGER :: ji, jj |
---|
373 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
374 | gamma_moist_vctr(ji,jj) = gamma_moist_sclr( ptak(ji,jj), pqa(ji,jj) ) |
---|
375 | END_2D |
---|
376 | END FUNCTION gamma_moist_vctr |
---|
377 | !=============================================================================================== |
---|
378 | |
---|
379 | |
---|
380 | FUNCTION One_on_L( ptha, pqa, pus, pts, pqs ) |
---|
381 | !!------------------------------------------------------------------------ |
---|
382 | !! |
---|
383 | !! Evaluates the 1./(Obukhov length) from air temperature, |
---|
384 | !! air specific humidity, and frictional scales u*, t* and q* |
---|
385 | !! |
---|
386 | !! Author: L. Brodeau, June 2019 / AeroBulk |
---|
387 | !! (https://github.com/brodeau/aerobulk/) |
---|
388 | !!------------------------------------------------------------------------ |
---|
389 | REAL(wp), DIMENSION(jpi,jpj) :: One_on_L !: 1./(Obukhov length) [m^-1] |
---|
390 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptha !: reference potential temperature of air [K] |
---|
391 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa !: reference specific humidity of air [kg/kg] |
---|
392 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pus !: u*: friction velocity [m/s] |
---|
393 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pts, pqs !: \theta* and q* friction aka turb. scales for temp. and spec. hum. |
---|
394 | ! |
---|
395 | INTEGER :: ji, jj ! dummy loop indices |
---|
396 | REAL(wp) :: zqa ! local scalar |
---|
397 | !!------------------------------------------------------------------- |
---|
398 | ! |
---|
399 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
400 | ! |
---|
401 | zqa = (1._wp + rctv0*pqa(ji,jj)) |
---|
402 | ! |
---|
403 | ! The main concern is to know whether, the vertical turbulent flux of virtual temperature, < u' theta_v' > is estimated with: |
---|
404 | ! a/ -u* [ theta* (1 + 0.61 q) + 0.61 theta q* ] => this is the one that seems correct! chose this one! |
---|
405 | ! or |
---|
406 | ! b/ -u* [ theta* + 0.61 theta q* ] |
---|
407 | ! |
---|
408 | One_on_L(ji,jj) = grav*vkarmn*( pts(ji,jj)*zqa + rctv0*ptha(ji,jj)*pqs(ji,jj) ) & |
---|
409 | & / MAX( pus(ji,jj)*pus(ji,jj)*ptha(ji,jj)*zqa , 1.E-9_wp ) |
---|
410 | ! |
---|
411 | END_2D |
---|
412 | ! |
---|
413 | One_on_L = SIGN( MIN(ABS(One_on_L),200._wp), One_on_L ) ! (prevent FPE from stupid values over masked regions...) |
---|
414 | ! |
---|
415 | END FUNCTION One_on_L |
---|
416 | |
---|
417 | |
---|
418 | !=============================================================================================== |
---|
419 | FUNCTION Ri_bulk_sclr( pz, psst, ptha, pssq, pqa, pub, pta_layer, pqa_layer ) |
---|
420 | !!---------------------------------------------------------------------------------- |
---|
421 | !! Bulk Richardson number according to "wide-spread equation"... |
---|
422 | !! |
---|
423 | !! Reminder: the Richardson number is the ratio "buoyancy" / "shear" |
---|
424 | !! |
---|
425 | !! ** Author: L. Brodeau, June 2019 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
426 | !!---------------------------------------------------------------------------------- |
---|
427 | REAL(wp) :: Ri_bulk_sclr |
---|
428 | REAL(wp), INTENT(in) :: pz ! height above the sea (aka "delta z") [m] |
---|
429 | REAL(wp), INTENT(in) :: psst ! SST [K] |
---|
430 | REAL(wp), INTENT(in) :: ptha ! pot. air temp. at height "pz" [K] |
---|
431 | REAL(wp), INTENT(in) :: pssq ! 0.98*q_sat(SST) [kg/kg] |
---|
432 | REAL(wp), INTENT(in) :: pqa ! air spec. hum. at height "pz" [kg/kg] |
---|
433 | REAL(wp), INTENT(in) :: pub ! bulk wind speed [m/s] |
---|
434 | REAL(wp), INTENT(in), OPTIONAL :: pta_layer ! when possible, a better guess of absolute temperature WITHIN the layer [K] |
---|
435 | REAL(wp), INTENT(in), OPTIONAL :: pqa_layer ! when possible, a better guess of specific humidity WITHIN the layer [kg/kg] |
---|
436 | !! |
---|
437 | LOGICAL :: l_ptqa_l_prvd = .FALSE. |
---|
438 | REAL(wp) :: zqa, zta, zgamma, zdthv, ztv, zsstv ! local scalars |
---|
439 | !!------------------------------------------------------------------- |
---|
440 | IF( PRESENT(pta_layer) .AND. PRESENT(pqa_layer) ) l_ptqa_l_prvd=.TRUE. |
---|
441 | ! |
---|
442 | zsstv = virt_temp_sclr( psst, pssq ) ! virtual SST (absolute==potential because z=0!) |
---|
443 | ! |
---|
444 | zdthv = virt_temp_sclr( ptha, pqa ) - zsstv ! air-sea delta of "virtual potential temperature" |
---|
445 | ! |
---|
446 | !! ztv: estimate of the ABSOLUTE virtual temp. within the layer |
---|
447 | IF( l_ptqa_l_prvd ) THEN |
---|
448 | ztv = virt_temp_sclr( pta_layer, pqa_layer ) |
---|
449 | ELSE |
---|
450 | zqa = 0.5_wp*( pqa + pssq ) ! ~ mean q within the layer... |
---|
451 | zta = 0.5_wp*( psst + ptha - gamma_moist(ptha, zqa)*pz ) ! ~ mean absolute temperature of air within the layer |
---|
452 | zta = 0.5_wp*( psst + ptha - gamma_moist( zta, zqa)*pz ) ! ~ mean absolute temperature of air within the layer |
---|
453 | zgamma = gamma_moist(zta, zqa) ! Adiabatic lapse-rate for moist air within the layer |
---|
454 | ztv = 0.5_wp*( zsstv + virt_temp_sclr( ptha-zgamma*pz, pqa ) ) |
---|
455 | END IF |
---|
456 | ! |
---|
457 | Ri_bulk_sclr = grav*zdthv*pz / ( ztv*pub*pub ) ! the usual definition of Ri_bulk_sclr |
---|
458 | ! |
---|
459 | END FUNCTION Ri_bulk_sclr |
---|
460 | !! |
---|
461 | FUNCTION Ri_bulk_vctr( pz, psst, ptha, pssq, pqa, pub, pta_layer, pqa_layer ) |
---|
462 | REAL(wp), DIMENSION(jpi,jpj) :: Ri_bulk_vctr |
---|
463 | REAL(wp) , INTENT(in) :: pz ! height above the sea (aka "delta z") [m] |
---|
464 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: psst ! SST [K] |
---|
465 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptha ! pot. air temp. at height "pz" [K] |
---|
466 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pssq ! 0.98*q_sat(SST) [kg/kg] |
---|
467 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa ! air spec. hum. at height "pz" [kg/kg] |
---|
468 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pub ! bulk wind speed [m/s] |
---|
469 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in), OPTIONAL :: pta_layer ! when possible, a better guess of absolute temperature WITHIN the layer [K] |
---|
470 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in), OPTIONAL :: pqa_layer ! when possible, a better guess of specific humidity WITHIN the layer [kg/kg] |
---|
471 | !! |
---|
472 | LOGICAL :: l_ptqa_l_prvd = .FALSE. |
---|
473 | INTEGER :: ji, jj |
---|
474 | IF( PRESENT(pta_layer) .AND. PRESENT(pqa_layer) ) l_ptqa_l_prvd=.TRUE. |
---|
475 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
476 | IF( l_ptqa_l_prvd ) THEN |
---|
477 | Ri_bulk_vctr(ji,jj) = Ri_bulk_sclr( pz, psst(ji,jj), ptha(ji,jj), pssq(ji,jj), pqa(ji,jj), pub(ji,jj), & |
---|
478 | & pta_layer=pta_layer(ji,jj ), pqa_layer=pqa_layer(ji,jj ) ) |
---|
479 | ELSE |
---|
480 | Ri_bulk_vctr(ji,jj) = Ri_bulk_sclr( pz, psst(ji,jj), ptha(ji,jj), pssq(ji,jj), pqa(ji,jj), pub(ji,jj) ) |
---|
481 | END IF |
---|
482 | END_2D |
---|
483 | END FUNCTION Ri_bulk_vctr |
---|
484 | !=============================================================================================== |
---|
485 | |
---|
486 | !=============================================================================================== |
---|
487 | FUNCTION e_sat_sclr( ptak ) |
---|
488 | !!---------------------------------------------------------------------------------- |
---|
489 | !! *** FUNCTION e_sat_sclr *** |
---|
490 | !! < SCALAR argument version > |
---|
491 | !! ** Purpose : water vapor at saturation in [Pa] |
---|
492 | !! Based on accurate estimate by Goff, 1957 |
---|
493 | !! |
---|
494 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
495 | !! |
---|
496 | !! Note: what rt0 should be here, is 273.16 (triple point of water) and not 273.15 like here |
---|
497 | !!---------------------------------------------------------------------------------- |
---|
498 | REAL(wp) :: e_sat_sclr ! water vapor at saturation [kg/kg] |
---|
499 | REAL(wp), INTENT(in) :: ptak ! air temperature [K] |
---|
500 | REAL(wp) :: zta, ztmp ! local scalar |
---|
501 | !!---------------------------------------------------------------------------------- |
---|
502 | zta = MAX( ptak , 180._wp ) ! air temp., prevents fpe0 errors dute to unrealistically low values over masked regions... |
---|
503 | ztmp = rt0 / zta !#LB: rt0 or rtt0 ???? (273.15 vs 273.16 ) |
---|
504 | ! |
---|
505 | ! Vapour pressure at saturation [Pa] : WMO, (Goff, 1957) |
---|
506 | e_sat_sclr = 100.*( 10.**( 10.79574*(1. - ztmp) - 5.028*LOG10(zta/rt0) & |
---|
507 | & + 1.50475*10.**(-4)*(1. - 10.**(-8.2969*(zta/rt0 - 1.)) ) & |
---|
508 | & + 0.42873*10.**(-3)*(10.**(4.76955*(1. - ztmp)) - 1.) + 0.78614) ) |
---|
509 | ! |
---|
510 | END FUNCTION e_sat_sclr |
---|
511 | !! |
---|
512 | FUNCTION e_sat_vctr(ptak) |
---|
513 | REAL(wp), DIMENSION(jpi,jpj) :: e_sat_vctr !: vapour pressure at saturation [Pa] |
---|
514 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak !: temperature (K) |
---|
515 | INTEGER :: ji, jj ! dummy loop indices |
---|
516 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
517 | e_sat_vctr(ji,jj) = e_sat_sclr(ptak(ji,jj)) |
---|
518 | END_2D |
---|
519 | END FUNCTION e_sat_vctr |
---|
520 | !=============================================================================================== |
---|
521 | |
---|
522 | !=============================================================================================== |
---|
523 | FUNCTION e_sat_ice_sclr(ptak) |
---|
524 | !!--------------------------------------------------------------------------------- |
---|
525 | !! Same as "e_sat" but over ice rather than water! |
---|
526 | !!--------------------------------------------------------------------------------- |
---|
527 | REAL(wp) :: e_sat_ice_sclr !: vapour pressure at saturation in presence of ice [Pa] |
---|
528 | REAL(wp), INTENT(in) :: ptak |
---|
529 | !! |
---|
530 | REAL(wp) :: zta, zle, ztmp |
---|
531 | !!--------------------------------------------------------------------------------- |
---|
532 | zta = MAX( ptak , 180._wp ) ! air temp., prevents fpe0 errors dute to unrealistically low values over masked regions... |
---|
533 | ztmp = rtt0/zta |
---|
534 | !! |
---|
535 | zle = rAg_i*(ztmp - 1._wp) + rBg_i*LOG10(ztmp) + rCg_i*(1._wp - zta/rtt0) + rDg_i |
---|
536 | !! |
---|
537 | e_sat_ice_sclr = 100._wp * 10._wp**zle |
---|
538 | END FUNCTION e_sat_ice_sclr |
---|
539 | !! |
---|
540 | FUNCTION e_sat_ice_vctr(ptak) |
---|
541 | !! Same as "e_sat" but over ice rather than water! |
---|
542 | REAL(wp), DIMENSION(jpi,jpj) :: e_sat_ice_vctr !: vapour pressure at saturation in presence of ice [Pa] |
---|
543 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak |
---|
544 | INTEGER :: ji, jj |
---|
545 | !!---------------------------------------------------------------------------------- |
---|
546 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
547 | e_sat_ice_vctr(ji,jj) = e_sat_ice_sclr( ptak(ji,jj) ) |
---|
548 | END_2D |
---|
549 | END FUNCTION e_sat_ice_vctr |
---|
550 | !! |
---|
551 | FUNCTION de_sat_dt_ice_sclr(ptak) |
---|
552 | !!--------------------------------------------------------------------------------- |
---|
553 | !! d [ e_sat_ice ] / dT (derivative / temperature) |
---|
554 | !! Analytical exact formulation: double checked!!! |
---|
555 | !! => DOUBLE-check possible / finite-difference version with "./bin/test_phymbl.x" |
---|
556 | !!--------------------------------------------------------------------------------- |
---|
557 | REAL(wp) :: de_sat_dt_ice_sclr !: [Pa/K] |
---|
558 | REAL(wp), INTENT(in) :: ptak |
---|
559 | !! |
---|
560 | REAL(wp) :: zta, zde |
---|
561 | !!--------------------------------------------------------------------------------- |
---|
562 | zta = MAX( ptak , 180._wp ) ! air temp., prevents fpe0 errors dute to unrealistically low values over masked regions... |
---|
563 | !! |
---|
564 | zde = -(rAg_i*rtt0)/(zta*zta) - rBg_i/(zta*LOG(10._wp)) - rCg_i/rtt0 |
---|
565 | !! |
---|
566 | de_sat_dt_ice_sclr = LOG(10._wp) * zde * e_sat_ice_sclr(zta) |
---|
567 | END FUNCTION de_sat_dt_ice_sclr |
---|
568 | !! |
---|
569 | FUNCTION de_sat_dt_ice_vctr(ptak) |
---|
570 | !! Same as "e_sat" but over ice rather than water! |
---|
571 | REAL(wp), DIMENSION(jpi,jpj) :: de_sat_dt_ice_vctr !: vapour pressure at saturation in presence of ice [Pa] |
---|
572 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak |
---|
573 | INTEGER :: ji, jj |
---|
574 | !!---------------------------------------------------------------------------------- |
---|
575 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
576 | de_sat_dt_ice_vctr(ji,jj) = de_sat_dt_ice_sclr( ptak(ji,jj) ) |
---|
577 | END_2D |
---|
578 | END FUNCTION de_sat_dt_ice_vctr |
---|
579 | |
---|
580 | |
---|
581 | |
---|
582 | !=============================================================================================== |
---|
583 | |
---|
584 | !=============================================================================================== |
---|
585 | FUNCTION q_sat_sclr( pta, ppa, l_ice ) |
---|
586 | !!--------------------------------------------------------------------------------- |
---|
587 | !! *** FUNCTION q_sat_sclr *** |
---|
588 | !! |
---|
589 | !! ** Purpose : Conputes specific humidity of air at saturation |
---|
590 | !! |
---|
591 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
592 | !!---------------------------------------------------------------------------------- |
---|
593 | REAL(wp) :: q_sat_sclr |
---|
594 | REAL(wp), INTENT(in) :: pta !: absolute temperature of air [K] |
---|
595 | REAL(wp), INTENT(in) :: ppa !: atmospheric pressure [Pa] |
---|
596 | LOGICAL, INTENT(in), OPTIONAL :: l_ice !: we are above ice |
---|
597 | REAL(wp) :: ze_s |
---|
598 | LOGICAL :: lice |
---|
599 | !!---------------------------------------------------------------------------------- |
---|
600 | lice = .FALSE. |
---|
601 | IF( PRESENT(l_ice) ) lice = l_ice |
---|
602 | IF( lice ) THEN |
---|
603 | ze_s = e_sat_ice( pta ) |
---|
604 | ELSE |
---|
605 | ze_s = e_sat( pta ) ! Vapour pressure at saturation (Goff) : |
---|
606 | END IF |
---|
607 | q_sat_sclr = reps0*ze_s/(ppa - (1._wp - reps0)*ze_s) |
---|
608 | END FUNCTION q_sat_sclr |
---|
609 | !! |
---|
610 | FUNCTION q_sat_vctr( pta, ppa, l_ice ) |
---|
611 | REAL(wp), DIMENSION(jpi,jpj) :: q_sat_vctr |
---|
612 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pta !: absolute temperature of air [K] |
---|
613 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ppa !: atmospheric pressure [Pa] |
---|
614 | LOGICAL, INTENT(in), OPTIONAL :: l_ice !: we are above ice |
---|
615 | LOGICAL :: lice |
---|
616 | INTEGER :: ji, jj |
---|
617 | !!---------------------------------------------------------------------------------- |
---|
618 | lice = .FALSE. |
---|
619 | IF( PRESENT(l_ice) ) lice = l_ice |
---|
620 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
621 | q_sat_vctr(ji,jj) = q_sat_sclr( pta(ji,jj) , ppa(ji,jj), l_ice=lice ) |
---|
622 | END_2D |
---|
623 | END FUNCTION q_sat_vctr |
---|
624 | !=============================================================================================== |
---|
625 | |
---|
626 | |
---|
627 | !=============================================================================================== |
---|
628 | FUNCTION dq_sat_dt_ice_sclr( pta, ppa ) |
---|
629 | !!--------------------------------------------------------------------------------- |
---|
630 | !! *** FUNCTION dq_sat_dt_ice_sclr *** |
---|
631 | !! => d [ q_sat_ice(T) ] / dT |
---|
632 | !! Analytical exact formulation: double checked!!! |
---|
633 | !! => DOUBLE-check possible / finite-difference version with "./bin/test_phymbl.x" |
---|
634 | !!---------------------------------------------------------------------------------- |
---|
635 | REAL(wp) :: dq_sat_dt_ice_sclr |
---|
636 | REAL(wp), INTENT(in) :: pta !: absolute temperature of air [K] |
---|
637 | REAL(wp), INTENT(in) :: ppa !: atmospheric pressure [Pa] |
---|
638 | REAL(wp) :: ze_s, zde_s_dt, ztmp |
---|
639 | !!---------------------------------------------------------------------------------- |
---|
640 | ze_s = e_sat_ice_sclr( pta ) ! Vapour pressure at saturation in presence of ice (Goff) |
---|
641 | zde_s_dt = de_sat_dt_ice( pta ) |
---|
642 | ! |
---|
643 | ztmp = (reps0 - 1._wp)*ze_s + ppa |
---|
644 | ! |
---|
645 | dq_sat_dt_ice_sclr = reps0*ppa*zde_s_dt / ( ztmp*ztmp ) |
---|
646 | ! |
---|
647 | END FUNCTION dq_sat_dt_ice_sclr |
---|
648 | !! |
---|
649 | FUNCTION dq_sat_dt_ice_vctr( pta, ppa ) |
---|
650 | REAL(wp), DIMENSION(jpi,jpj) :: dq_sat_dt_ice_vctr |
---|
651 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pta !: absolute temperature of air [K] |
---|
652 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ppa !: atmospheric pressure [Pa] |
---|
653 | INTEGER :: ji, jj |
---|
654 | !!---------------------------------------------------------------------------------- |
---|
655 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
656 | dq_sat_dt_ice_vctr(ji,jj) = dq_sat_dt_ice_sclr( pta(ji,jj) , ppa(ji,jj) ) |
---|
657 | END_2D |
---|
658 | END FUNCTION dq_sat_dt_ice_vctr |
---|
659 | !=============================================================================================== |
---|
660 | |
---|
661 | |
---|
662 | !=============================================================================================== |
---|
663 | FUNCTION q_air_rh(prha, ptak, ppa) |
---|
664 | !!---------------------------------------------------------------------------------- |
---|
665 | !! Specific humidity of air out of Relative Humidity |
---|
666 | !! |
---|
667 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
668 | !!---------------------------------------------------------------------------------- |
---|
669 | REAL(wp), DIMENSION(jpi,jpj) :: q_air_rh |
---|
670 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: prha !: relative humidity [fraction, not %!!!] |
---|
671 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak !: air temperature [K] |
---|
672 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ppa !: atmospheric pressure [Pa] |
---|
673 | ! |
---|
674 | INTEGER :: ji, jj ! dummy loop indices |
---|
675 | REAL(wp) :: ze ! local scalar |
---|
676 | !!---------------------------------------------------------------------------------- |
---|
677 | ! |
---|
678 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
679 | ze = prha(ji,jj)*e_sat_sclr(ptak(ji,jj)) |
---|
680 | q_air_rh(ji,jj) = ze*reps0/(ppa(ji,jj) - (1. - reps0)*ze) |
---|
681 | END_2D |
---|
682 | ! |
---|
683 | END FUNCTION q_air_rh |
---|
684 | |
---|
685 | |
---|
686 | SUBROUTINE UPDATE_QNSOL_TAU( pzu, pTs, pqs, pTa, pqa, pust, ptst, pqst, pwnd, pUb, ppa, prlw, & |
---|
687 | & pQns, pTau, & |
---|
688 | & Qlat) |
---|
689 | !!---------------------------------------------------------------------------------- |
---|
690 | !! Purpose: returns the non-solar heat flux to the ocean aka "Qlat + Qsen + Qlw" |
---|
691 | !! and the module of the wind stress => pTau = Tau |
---|
692 | !! ** Author: L. Brodeau, Sept. 2019 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
693 | !!---------------------------------------------------------------------------------- |
---|
694 | REAL(wp), INTENT(in) :: pzu ! height above the sea-level where all this takes place (normally 10m) |
---|
695 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pTs ! water temperature at the air-sea interface [K] |
---|
696 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqs ! satur. spec. hum. at T=pTs [kg/kg] |
---|
697 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pTa ! potential air temperature at z=pzu [K] |
---|
698 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa ! specific humidity at z=pzu [kg/kg] |
---|
699 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pust ! u* |
---|
700 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptst ! t* |
---|
701 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqst ! q* |
---|
702 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pwnd ! wind speed module at z=pzu [m/s] |
---|
703 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pUb ! bulk wind speed at z=pzu (inc. pot. effect of gustiness etc) [m/s] |
---|
704 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ppa ! sea-level atmospheric pressure [Pa] |
---|
705 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: prlw ! downwelling longwave radiative flux [W/m^2] |
---|
706 | ! |
---|
707 | REAL(wp), DIMENSION(jpi,jpj), INTENT(out) :: pQns ! non-solar heat flux to the ocean aka "Qlat + Qsen + Qlw" [W/m^2]] |
---|
708 | REAL(wp), DIMENSION(jpi,jpj), INTENT(out) :: pTau ! module of the wind stress [N/m^2] |
---|
709 | ! |
---|
710 | REAL(wp), DIMENSION(jpi,jpj), OPTIONAL, INTENT(out) :: Qlat |
---|
711 | ! |
---|
712 | REAL(wp) :: zdt, zdq, zCd, zCh, zCe, zz0, zQlat, zQsen, zQlw |
---|
713 | INTEGER :: ji, jj ! dummy loop indices |
---|
714 | !!---------------------------------------------------------------------------------- |
---|
715 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
716 | zdt = pTa(ji,jj) - pTs(ji,jj) ; zdt = SIGN( MAX(ABS(zdt),1.E-6_wp), zdt ) |
---|
717 | zdq = pqa(ji,jj) - pqs(ji,jj) ; zdq = SIGN( MAX(ABS(zdq),1.E-9_wp), zdq ) |
---|
718 | zz0 = pust(ji,jj)/pUb(ji,jj) |
---|
719 | zCd = zz0*zz0 |
---|
720 | zCh = zz0*ptst(ji,jj)/zdt |
---|
721 | zCe = zz0*pqst(ji,jj)/zdq |
---|
722 | |
---|
723 | CALL BULK_FORMULA( pzu, pTs(ji,jj), pqs(ji,jj), pTa(ji,jj), pqa(ji,jj), zCd, zCh, zCe, & |
---|
724 | & pwnd(ji,jj), pUb(ji,jj), ppa(ji,jj), & |
---|
725 | & pTau(ji,jj), zQsen, zQlat ) |
---|
726 | |
---|
727 | zQlw = qlw_net_sclr( prlw(ji,jj), pTs(ji,jj) ) ! Net longwave flux |
---|
728 | |
---|
729 | pQns(ji,jj) = zQlat + zQsen + zQlw |
---|
730 | |
---|
731 | IF( PRESENT(Qlat) ) Qlat(ji,jj) = zQlat |
---|
732 | END_2D |
---|
733 | END SUBROUTINE UPDATE_QNSOL_TAU |
---|
734 | |
---|
735 | |
---|
736 | SUBROUTINE BULK_FORMULA_SCLR( pzu, pTs, pqs, pTa, pqa, & |
---|
737 | & pCd, pCh, pCe, & |
---|
738 | & pwnd, pUb, ppa, & |
---|
739 | & pTau, pQsen, pQlat, & |
---|
740 | & pEvap, prhoa, pfact_evap ) |
---|
741 | !!---------------------------------------------------------------------------------- |
---|
742 | REAL(wp), INTENT(in) :: pzu ! height above the sea-level where all this takes place (normally 10m) |
---|
743 | REAL(wp), INTENT(in) :: pTs ! water temperature at the air-sea interface [K] |
---|
744 | REAL(wp), INTENT(in) :: pqs ! satur. spec. hum. at T=pTs [kg/kg] |
---|
745 | REAL(wp), INTENT(in) :: pTa ! potential air temperature at z=pzu [K] |
---|
746 | REAL(wp), INTENT(in) :: pqa ! specific humidity at z=pzu [kg/kg] |
---|
747 | REAL(wp), INTENT(in) :: pCd |
---|
748 | REAL(wp), INTENT(in) :: pCh |
---|
749 | REAL(wp), INTENT(in) :: pCe |
---|
750 | REAL(wp), INTENT(in) :: pwnd ! wind speed module at z=pzu [m/s] |
---|
751 | REAL(wp), INTENT(in) :: pUb ! bulk wind speed at z=pzu (inc. pot. effect of gustiness etc) [m/s] |
---|
752 | REAL(wp), INTENT(in) :: ppa ! sea-level atmospheric pressure [Pa] |
---|
753 | !! |
---|
754 | REAL(wp), INTENT(out) :: pTau ! module of the wind stress [N/m^2] |
---|
755 | REAL(wp), INTENT(out) :: pQsen ! [W/m^2] |
---|
756 | REAL(wp), INTENT(out) :: pQlat ! [W/m^2] |
---|
757 | !! |
---|
758 | REAL(wp), INTENT(out), OPTIONAL :: pEvap ! Evaporation [kg/m^2/s] |
---|
759 | REAL(wp), INTENT(out), OPTIONAL :: prhoa ! Air density at z=pzu [kg/m^3] |
---|
760 | REAL(wp), INTENT(in) , OPTIONAL :: pfact_evap ! ABOMINATION: corrective factor for evaporation (doing this against my will! /laurent) |
---|
761 | !! |
---|
762 | REAL(wp) :: ztaa, zgamma, zrho, zUrho, zevap, zfact_evap |
---|
763 | INTEGER :: jq |
---|
764 | !!---------------------------------------------------------------------------------- |
---|
765 | zfact_evap = 1._wp |
---|
766 | IF( PRESENT(pfact_evap) ) zfact_evap = pfact_evap |
---|
767 | |
---|
768 | !! Need ztaa, absolute temperature at pzu (formula to estimate rho_air needs absolute temperature, not the potential temperature "pTa") |
---|
769 | ztaa = pTa ! first guess... |
---|
770 | DO jq = 1, 4 |
---|
771 | zgamma = gamma_moist( 0.5*(ztaa+pTs) , pqa ) !#LB: why not "0.5*(pqs+pqa)" rather then "pqa" ??? |
---|
772 | ztaa = pTa - zgamma*pzu ! Absolute temp. is slightly colder... |
---|
773 | END DO |
---|
774 | zrho = rho_air(ztaa, pqa, ppa) |
---|
775 | zrho = rho_air(ztaa, pqa, ppa-zrho*grav*pzu) ! taking into account that we are pzu m above the sea level where SLP is given! |
---|
776 | |
---|
777 | zUrho = pUb*MAX(zrho, 1._wp) ! rho*U10 |
---|
778 | |
---|
779 | pTau = zUrho * pCd * pwnd ! Wind stress module |
---|
780 | |
---|
781 | zevap = zUrho * pCe * (pqa - pqs) |
---|
782 | pQsen = zUrho * pCh * (pTa - pTs) * cp_air(pqa) |
---|
783 | pQlat = L_vap(pTs) * zevap |
---|
784 | |
---|
785 | IF( PRESENT(pEvap) ) pEvap = - zfact_evap * zevap |
---|
786 | IF( PRESENT(prhoa) ) prhoa = zrho |
---|
787 | |
---|
788 | END SUBROUTINE BULK_FORMULA_SCLR |
---|
789 | !! |
---|
790 | SUBROUTINE BULK_FORMULA_VCTR( pzu, pTs, pqs, pTa, pqa, & |
---|
791 | & pCd, pCh, pCe, & |
---|
792 | & pwnd, pUb, ppa, & |
---|
793 | & pTau, pQsen, pQlat, & |
---|
794 | & pEvap, prhoa, pfact_evap ) |
---|
795 | !!---------------------------------------------------------------------------------- |
---|
796 | REAL(wp), INTENT(in) :: pzu ! height above the sea-level where all this takes place (normally 10m) |
---|
797 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pTs ! water temperature at the air-sea interface [K] |
---|
798 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqs ! satur. spec. hum. at T=pTs [kg/kg] |
---|
799 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pTa ! potential air temperature at z=pzu [K] |
---|
800 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa ! specific humidity at z=pzu [kg/kg] |
---|
801 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pCd |
---|
802 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pCh |
---|
803 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pCe |
---|
804 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pwnd ! wind speed module at z=pzu [m/s] |
---|
805 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pUb ! bulk wind speed at z=pzu (inc. pot. effect of gustiness etc) [m/s] |
---|
806 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ppa ! sea-level atmospheric pressure [Pa] |
---|
807 | !! |
---|
808 | REAL(wp), DIMENSION(jpi,jpj), INTENT(out) :: pTau ! module of the wind stress [N/m^2] |
---|
809 | REAL(wp), DIMENSION(jpi,jpj), INTENT(out) :: pQsen ! [W/m^2] |
---|
810 | REAL(wp), DIMENSION(jpi,jpj), INTENT(out) :: pQlat ! [W/m^2] |
---|
811 | !! |
---|
812 | REAL(wp), DIMENSION(jpi,jpj), INTENT(out), OPTIONAL :: pEvap ! Evaporation [kg/m^2/s] |
---|
813 | REAL(wp), DIMENSION(jpi,jpj), INTENT(out), OPTIONAL :: prhoa ! Air density at z=pzu [kg/m^3] |
---|
814 | REAL(wp), INTENT(in) , OPTIONAL :: pfact_evap ! ABOMINATION: corrective factor for evaporation (doing this against my will! /laurent) |
---|
815 | !! |
---|
816 | REAL(wp) :: ztaa, zgamma, zrho, zUrho, zevap, zfact_evap |
---|
817 | INTEGER :: ji, jj |
---|
818 | !!---------------------------------------------------------------------------------- |
---|
819 | zfact_evap = 1._wp |
---|
820 | IF( PRESENT(pfact_evap) ) zfact_evap = pfact_evap |
---|
821 | |
---|
822 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
823 | |
---|
824 | CALL BULK_FORMULA_SCLR( pzu, pTs(ji,jj), pqs(ji,jj), pTa(ji,jj), pqa(ji,jj), & |
---|
825 | & pCd(ji,jj), pCh(ji,jj), pCe(ji,jj), & |
---|
826 | & pwnd(ji,jj), pUb(ji,jj), ppa(ji,jj), & |
---|
827 | & pTau(ji,jj), pQsen(ji,jj), pQlat(ji,jj), & |
---|
828 | & pEvap=zevap, prhoa=zrho, pfact_evap=zfact_evap ) |
---|
829 | |
---|
830 | IF( PRESENT(pEvap) ) pEvap(ji,jj) = zevap |
---|
831 | IF( PRESENT(prhoa) ) prhoa(ji,jj) = zrho |
---|
832 | END_2D |
---|
833 | END SUBROUTINE BULK_FORMULA_VCTR |
---|
834 | |
---|
835 | |
---|
836 | FUNCTION alpha_sw_vctr( psst ) |
---|
837 | !!--------------------------------------------------------------------------------- |
---|
838 | !! *** FUNCTION alpha_sw_vctr *** |
---|
839 | !! |
---|
840 | !! ** Purpose : ROUGH estimate of the thermal expansion coefficient of sea-water at the surface (P =~ 1010 hpa) |
---|
841 | !! |
---|
842 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
843 | !!---------------------------------------------------------------------------------- |
---|
844 | REAL(wp), DIMENSION(jpi,jpj) :: alpha_sw_vctr ! thermal expansion coefficient of sea-water [1/K] |
---|
845 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: psst ! water temperature [K] |
---|
846 | !!---------------------------------------------------------------------------------- |
---|
847 | alpha_sw_vctr = 2.1e-5_wp * MAX(psst(:,:)-rt0 + 3.2_wp, 0._wp)**0.79 |
---|
848 | END FUNCTION alpha_sw_vctr |
---|
849 | |
---|
850 | FUNCTION alpha_sw_sclr( psst ) |
---|
851 | !!--------------------------------------------------------------------------------- |
---|
852 | !! *** FUNCTION alpha_sw_sclr *** |
---|
853 | !! |
---|
854 | !! ** Purpose : ROUGH estimate of the thermal expansion coefficient of sea-water at the surface (P =~ 1010 hpa) |
---|
855 | !! |
---|
856 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
857 | !!---------------------------------------------------------------------------------- |
---|
858 | REAL(wp) :: alpha_sw_sclr ! thermal expansion coefficient of sea-water [1/K] |
---|
859 | REAL(wp), INTENT(in) :: psst ! sea-water temperature [K] |
---|
860 | !!---------------------------------------------------------------------------------- |
---|
861 | alpha_sw_sclr = 2.1e-5_wp * MAX(psst-rt0 + 3.2_wp, 0._wp)**0.79 |
---|
862 | END FUNCTION alpha_sw_sclr |
---|
863 | |
---|
864 | |
---|
865 | !=============================================================================================== |
---|
866 | FUNCTION qlw_net_sclr( pdwlw, pts, l_ice ) |
---|
867 | !!--------------------------------------------------------------------------------- |
---|
868 | !! *** FUNCTION qlw_net_sclr *** |
---|
869 | !! |
---|
870 | !! ** Purpose : Estimate of the net longwave flux at the surface |
---|
871 | !!---------------------------------------------------------------------------------- |
---|
872 | REAL(wp) :: qlw_net_sclr |
---|
873 | REAL(wp), INTENT(in) :: pdwlw !: downwelling longwave (aka infrared, aka thermal) radiation [W/m^2] |
---|
874 | REAL(wp), INTENT(in) :: pts !: surface temperature [K] |
---|
875 | LOGICAL, INTENT(in), OPTIONAL :: l_ice !: we are above ice |
---|
876 | REAL(wp) :: zemiss, zt2 |
---|
877 | LOGICAL :: lice |
---|
878 | !!---------------------------------------------------------------------------------- |
---|
879 | lice = .FALSE. |
---|
880 | IF( PRESENT(l_ice) ) lice = l_ice |
---|
881 | IF( lice ) THEN |
---|
882 | zemiss = emiss_i |
---|
883 | ELSE |
---|
884 | zemiss = emiss_w |
---|
885 | END IF |
---|
886 | zt2 = pts*pts |
---|
887 | qlw_net_sclr = zemiss*( pdwlw - stefan*zt2*zt2) ! zemiss used both as the IR albedo and IR emissivity... |
---|
888 | END FUNCTION qlw_net_sclr |
---|
889 | !! |
---|
890 | FUNCTION qlw_net_vctr( pdwlw, pts, l_ice ) |
---|
891 | REAL(wp), DIMENSION(jpi,jpj) :: qlw_net_vctr |
---|
892 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pdwlw !: downwelling longwave (aka infrared, aka thermal) radiation [W/m^2] |
---|
893 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pts !: surface temperature [K] |
---|
894 | LOGICAL, INTENT(in), OPTIONAL :: l_ice !: we are above ice |
---|
895 | LOGICAL :: lice |
---|
896 | INTEGER :: ji, jj |
---|
897 | !!---------------------------------------------------------------------------------- |
---|
898 | lice = .FALSE. |
---|
899 | IF( PRESENT(l_ice) ) lice = l_ice |
---|
900 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
901 | qlw_net_vctr(ji,jj) = qlw_net_sclr( pdwlw(ji,jj) , pts(ji,jj), l_ice=lice ) |
---|
902 | END_2D |
---|
903 | END FUNCTION qlw_net_vctr |
---|
904 | !=============================================================================================== |
---|
905 | |
---|
906 | FUNCTION z0_from_Cd( pzu, pCd, ppsi ) |
---|
907 | REAL(wp), DIMENSION(jpi,jpj) :: z0_from_Cd !: roughness length [m] |
---|
908 | REAL(wp) , INTENT(in) :: pzu !: reference height zu [m] |
---|
909 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pCd !: (neutral or non-neutral) drag coefficient [] |
---|
910 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in), OPTIONAL :: ppsi !: "Psi_m(pzu/L)" stability correction profile for momentum [] |
---|
911 | !! |
---|
912 | !! If pCd is the NEUTRAL-STABILITY drag coefficient then ppsi must be 0 or not given |
---|
913 | !! If pCd is the drag coefficient (in stable or unstable conditions) then pssi must be provided |
---|
914 | !!---------------------------------------------------------------------------------- |
---|
915 | IF( PRESENT(ppsi) ) THEN |
---|
916 | !! Cd provided is the actual Cd (not the neutral-stability CdN) : |
---|
917 | z0_from_Cd = pzu * EXP( - ( vkarmn/SQRT(pCd(:,:)) + ppsi(:,:) ) ) !LB: ok, double-checked! |
---|
918 | ELSE |
---|
919 | !! Cd provided is the neutral-stability Cd, aka CdN : |
---|
920 | z0_from_Cd = pzu * EXP( - vkarmn/SQRT(pCd(:,:)) ) !LB: ok, double-checked! |
---|
921 | END IF |
---|
922 | END FUNCTION z0_from_Cd |
---|
923 | |
---|
924 | FUNCTION Cd_from_z0( pzu, pz0, ppsi ) |
---|
925 | REAL(wp), DIMENSION(jpi,jpj) :: Cd_from_z0 !: (neutral or non-neutral) drag coefficient [] |
---|
926 | REAL(wp) , INTENT(in) :: pzu !: reference height zu [m] |
---|
927 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pz0 !: roughness length [m] |
---|
928 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in), OPTIONAL :: ppsi !: "Psi_m(pzu/L)" stability correction profile for momentum [] |
---|
929 | !! |
---|
930 | !! If we want to return the NEUTRAL-STABILITY drag coefficient then ppsi must be 0 or not given |
---|
931 | !! If we want to return the stability-corrected Cd (i.e. in stable or unstable conditions) then pssi must be provided |
---|
932 | !!---------------------------------------------------------------------------------- |
---|
933 | IF( PRESENT(ppsi) ) THEN |
---|
934 | !! The Cd we return is the actual Cd (not the neutral-stability CdN) : |
---|
935 | Cd_from_z0 = 1._wp / ( LOG( pzu / pz0(:,:) ) - ppsi(:,:) ) |
---|
936 | ELSE |
---|
937 | !! The Cd we return is the neutral-stability Cd, aka CdN : |
---|
938 | Cd_from_z0 = 1._wp / LOG( pzu / pz0(:,:) ) |
---|
939 | END IF |
---|
940 | Cd_from_z0 = vkarmn2 * Cd_from_z0 * Cd_from_z0 |
---|
941 | END FUNCTION Cd_from_z0 |
---|
942 | |
---|
943 | |
---|
944 | FUNCTION f_m_louis_sclr( pzu, pRib, pCdn, pz0 ) |
---|
945 | !!---------------------------------------------------------------------------------- |
---|
946 | !! Stability correction function for MOMENTUM |
---|
947 | !! Louis (1979) |
---|
948 | !!---------------------------------------------------------------------------------- |
---|
949 | REAL(wp) :: f_m_louis_sclr ! term "f_m" in Eq.(6) when option "Louis" rather than "Psi(zeta) is chosen, Lupkes & Gryanik (2015), |
---|
950 | REAL(wp), INTENT(in) :: pzu ! reference height (height for pwnd) [m] |
---|
951 | REAL(wp), INTENT(in) :: pRib ! Bulk Richardson number |
---|
952 | REAL(wp), INTENT(in) :: pCdn ! neutral drag coefficient |
---|
953 | REAL(wp), INTENT(in) :: pz0 ! roughness length [m] |
---|
954 | !!---------------------------------------------------------------------------------- |
---|
955 | REAL(wp) :: ztu, zts, zstab |
---|
956 | !!---------------------------------------------------------------------------------- |
---|
957 | zstab = 0.5 + SIGN(0.5_wp, pRib) ; ! Unstable (Ri<0) => zstab = 0 | Stable (Ri>0) => zstab = 1 |
---|
958 | ! |
---|
959 | ztu = pRib / ( 1._wp + 3._wp * rc2_louis * pCdn * SQRT( ABS( -pRib * ( pzu / pz0 + 1._wp) ) ) ) ! ABS is just here for when it's stable conditions and ztu is not used anyways |
---|
960 | zts = pRib / SQRT( ABS( 1._wp + pRib ) ) ! ABS is just here for when it's UNstable conditions and zts is not used anyways |
---|
961 | ! |
---|
962 | f_m_louis_sclr = (1._wp - zstab) * ( 1._wp - ram_louis * ztu ) & ! Unstable Eq.(A6) |
---|
963 | & + zstab * 1._wp / ( 1._wp + ram_louis * zts ) ! Stable Eq.(A7) |
---|
964 | ! |
---|
965 | END FUNCTION f_m_louis_sclr |
---|
966 | !! |
---|
967 | FUNCTION f_m_louis_vctr( pzu, pRib, pCdn, pz0 ) |
---|
968 | REAL(wp), DIMENSION(jpi,jpj) :: f_m_louis_vctr |
---|
969 | REAL(wp), INTENT(in) :: pzu |
---|
970 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pRib |
---|
971 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pCdn |
---|
972 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pz0 |
---|
973 | INTEGER :: ji, jj |
---|
974 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
975 | f_m_louis_vctr(ji,jj) = f_m_louis_sclr( pzu, pRib(ji,jj), pCdn(ji,jj), pz0(ji,jj) ) |
---|
976 | END_2D |
---|
977 | END FUNCTION f_m_louis_vctr |
---|
978 | |
---|
979 | |
---|
980 | FUNCTION f_h_louis_sclr( pzu, pRib, pChn, pz0 ) |
---|
981 | !!---------------------------------------------------------------------------------- |
---|
982 | !! Stability correction function for HEAT |
---|
983 | !! Louis (1979) |
---|
984 | !!---------------------------------------------------------------------------------- |
---|
985 | REAL(wp) :: f_h_louis_sclr ! term "f_h" in Eq.(6) when option "Louis" rather than "Psi(zeta) is chosen, Lupkes & Gryanik (2015), |
---|
986 | REAL(wp), INTENT(in) :: pzu ! reference height (height for pwnd) [m] |
---|
987 | REAL(wp), INTENT(in) :: pRib ! Bulk Richardson number |
---|
988 | REAL(wp), INTENT(in) :: pChn ! neutral heat transfer coefficient |
---|
989 | REAL(wp), INTENT(in) :: pz0 ! roughness length [m] |
---|
990 | !!---------------------------------------------------------------------------------- |
---|
991 | REAL(wp) :: ztu, zts, zstab |
---|
992 | !!---------------------------------------------------------------------------------- |
---|
993 | zstab = 0.5 + SIGN(0.5_wp, pRib) ; ! Unstable (Ri<0) => zstab = 0 | Stable (Ri>0) => zstab = 1 |
---|
994 | ! |
---|
995 | ztu = pRib / ( 1._wp + 3._wp * rc2_louis * pChn * SQRT( ABS(-pRib * ( pzu / pz0 + 1._wp) ) ) ) |
---|
996 | zts = pRib / SQRT( ABS( 1._wp + pRib ) ) |
---|
997 | ! |
---|
998 | f_h_louis_sclr = (1._wp - zstab) * ( 1._wp - rah_louis * ztu ) & ! Unstable Eq.(A6) |
---|
999 | & + zstab * 1._wp / ( 1._wp + rah_louis * zts ) ! Stable Eq.(A7) !#LB: in paper it's "ram_louis" and not "rah_louis" typo or what???? |
---|
1000 | ! |
---|
1001 | END FUNCTION f_h_louis_sclr |
---|
1002 | !! |
---|
1003 | FUNCTION f_h_louis_vctr( pzu, pRib, pChn, pz0 ) |
---|
1004 | REAL(wp), DIMENSION(jpi,jpj) :: f_h_louis_vctr |
---|
1005 | REAL(wp), INTENT(in) :: pzu |
---|
1006 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pRib |
---|
1007 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pChn |
---|
1008 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pz0 |
---|
1009 | INTEGER :: ji, jj |
---|
1010 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
1011 | f_h_louis_vctr(ji,jj) = f_h_louis_sclr( pzu, pRib(ji,jj), pChn(ji,jj), pz0(ji,jj) ) |
---|
1012 | END_2D |
---|
1013 | END FUNCTION f_h_louis_vctr |
---|
1014 | |
---|
1015 | FUNCTION UN10_from_ustar( pzu, pUzu, pus, ppsi ) |
---|
1016 | !!---------------------------------------------------------------------------------- |
---|
1017 | !! Provides the neutral-stability wind speed at 10 m |
---|
1018 | !!---------------------------------------------------------------------------------- |
---|
1019 | REAL(wp), DIMENSION(jpi,jpj) :: UN10_from_ustar !: neutral stability wind speed at 10m [m/s] |
---|
1020 | REAL(wp), INTENT(in) :: pzu !: measurement heigh of wind speed [m] |
---|
1021 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pUzu !: bulk wind speed at height pzu m [m/s] |
---|
1022 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pus !: friction velocity [m/s] |
---|
1023 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ppsi !: "Psi_m(pzu/L)" stability correction profile for momentum [] |
---|
1024 | !!---------------------------------------------------------------------------------- |
---|
1025 | UN10_from_ustar(:,:) = pUzu(:,:) - pus(:,:)/vkarmn * ( LOG(pzu/10._wp) - ppsi(:,:) ) |
---|
1026 | !! |
---|
1027 | END FUNCTION UN10_from_ustar |
---|
1028 | |
---|
1029 | |
---|
1030 | FUNCTION UN10_from_CD( pzu, pUb, pCd, ppsi ) |
---|
1031 | !!---------------------------------------------------------------------------------- |
---|
1032 | !! Provides the neutral-stability wind speed at 10 m |
---|
1033 | !!---------------------------------------------------------------------------------- |
---|
1034 | REAL(wp), DIMENSION(jpi,jpj) :: UN10_from_CD !: [m/s] |
---|
1035 | REAL(wp), INTENT(in) :: pzu !: measurement heigh of bulk wind speed |
---|
1036 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pUb !: bulk wind speed at height pzu m [m/s] |
---|
1037 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pCd !: drag coefficient |
---|
1038 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ppsi !: "Psi_m(pzu/L)" stability correction profile for momentum [] |
---|
1039 | !!---------------------------------------------------------------------------------- |
---|
1040 | !! Reminder: UN10 = u*/vkarmn * log(10/z0) |
---|
1041 | !! and: u* = sqrt(Cd) * Ub |
---|
1042 | !! u*/vkarmn * log( 10 / z0 ) |
---|
1043 | UN10_from_CD(:,:) = SQRT(pCd(:,:))*pUb/vkarmn * LOG( 10._wp / z0_from_Cd( pzu, pCd(:,:), ppsi=ppsi(:,:) ) ) |
---|
1044 | !! |
---|
1045 | END FUNCTION UN10_from_CD |
---|
1046 | |
---|
1047 | |
---|
1048 | FUNCTION z0tq_LKB( iflag, pRer, pz0 ) |
---|
1049 | !!--------------------------------------------------------------------------------- |
---|
1050 | !! *** FUNCTION z0tq_LKB *** |
---|
1051 | !! |
---|
1052 | !! ** Purpose : returns the "temperature/humidity roughness lengths" |
---|
1053 | !! * iflag==1 => temperature => returns: z_{0t} |
---|
1054 | !! * iflag==2 => humidity => returns: z_{0q} |
---|
1055 | !! from roughness reynold number "pRer" (i.e. [z_0 u*]/Nu_{air}) |
---|
1056 | !! between 0 and 1000. Out of range "pRer" indicated by prt=-999. |
---|
1057 | !! and roughness length (for momentum) |
---|
1058 | !! |
---|
1059 | !! Based on Liu et al. (1979) JAS 36 1722-1723s |
---|
1060 | !! |
---|
1061 | !! Note: this is what is used into COARE 2.5 to estimate z_{0t} and z_{0q} |
---|
1062 | !! |
---|
1063 | !! ** Author: L. Brodeau, April 2020 / AeroBulk (https://github.com/brodeau/aerobulk/) |
---|
1064 | !!---------------------------------------------------------------------------------- |
---|
1065 | REAL(wp), DIMENSION(jpi,jpj) :: z0tq_LKB |
---|
1066 | INTEGER, INTENT(in) :: iflag !: 1 => dealing with temperature; 2 => dealing with humidity |
---|
1067 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pRer !: roughness Reynolds number [z_0 u*]/Nu_{air} |
---|
1068 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pz0 !: roughness length (for momentum) [m] |
---|
1069 | !------------------------------------------------------------------- |
---|
1070 | ! Scalar Re_r relation from Liu et al. |
---|
1071 | REAL(wp), DIMENSION(8,2), PARAMETER :: & |
---|
1072 | & XA = (/ 0.177, 1.376, 1.026, 1.625, 4.661, 34.904, 1667.19, 5.88e5, & |
---|
1073 | & 0.292, 1.808, 1.393, 1.956, 4.994, 30.709, 1448.68, 2.98e5 /) |
---|
1074 | !! |
---|
1075 | REAL(wp), DIMENSION(8,2), PARAMETER :: & |
---|
1076 | & XB = (/ 0., 0.929, -0.599, -1.018, -1.475, -2.067, -2.907, -3.935, & |
---|
1077 | & 0., 0.826, -0.528, -0.870, -1.297, -1.845, -2.682, -3.616 /) |
---|
1078 | !! |
---|
1079 | REAL(wp), DIMENSION(0:8), PARAMETER :: & |
---|
1080 | & XRAN = (/ 0., 0.11, 0.825, 3.0, 10.0, 30.0, 100., 300., 1000. /) |
---|
1081 | !------------------------------------------------------------------- |
---|
1082 | ! |
---|
1083 | !------------------------------------------------------------------- |
---|
1084 | ! Scalar Re_r relation from Moana Wave data. |
---|
1085 | ! |
---|
1086 | ! real*8 A(9,2),B(9,2),RAN(9),pRer,prt |
---|
1087 | ! integer iflag |
---|
1088 | ! DATA A/0.177,2.7e3,1.03,1.026,1.625,4.661,34.904,1667.19,5.88E5, |
---|
1089 | ! & 0.292,3.7e3,1.4,1.393,1.956,4.994,30.709,1448.68,2.98E5/ |
---|
1090 | ! DATA B/0.,4.28,0,-0.599,-1.018,-1.475,-2.067,-2.907,-3.935, |
---|
1091 | ! & 0.,4.28,0,-0.528,-0.870,-1.297,-1.845,-2.682,-3.616/ |
---|
1092 | ! DATA RAN/0.11,.16,1.00,3.0,10.0,30.0,100.,300.,1000./ |
---|
1093 | !------------------------------------------------------------------- |
---|
1094 | |
---|
1095 | LOGICAL :: lfound=.FALSE. |
---|
1096 | REAL(wp) :: zrr |
---|
1097 | INTEGER :: ji, jj, jm |
---|
1098 | |
---|
1099 | z0tq_LKB(:,:) = -999._wp |
---|
1100 | |
---|
1101 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
1102 | |
---|
1103 | zrr = pRer(ji,jj) |
---|
1104 | lfound = .FALSE. |
---|
1105 | |
---|
1106 | IF( (zrr > 0.).AND.(zrr < 1000.) ) THEN |
---|
1107 | jm = 0 |
---|
1108 | DO WHILE ( .NOT. lfound ) |
---|
1109 | jm = jm + 1 |
---|
1110 | lfound = ( (zrr > XRAN(jm-1)) .AND. (zrr <= XRAN(jm)) ) |
---|
1111 | END DO |
---|
1112 | |
---|
1113 | z0tq_LKB(ji,jj) = XA(jm,iflag)*zrr**XB(jm,iflag) * pz0(ji,jj)/zrr |
---|
1114 | |
---|
1115 | END IF |
---|
1116 | |
---|
1117 | END_2D |
---|
1118 | |
---|
1119 | z0tq_LKB(:,:) = MIN( MAX(ABS(z0tq_LKB(:,:)), 1.E-9) , 0.05_wp ) |
---|
1120 | |
---|
1121 | END FUNCTION z0tq_LKB |
---|
1122 | |
---|
1123 | |
---|
1124 | !!====================================================================== |
---|
1125 | END MODULE sbc_phy |
---|